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Abstract—We present a symbolic approach towards solving
the Bergman three-state minimal patient model of glucose
metabolism. Our work first translates the Bergman three-
state minimal patient model into the modified control algebraic
Riccati equation. Next, the modified control algebraic Ricatti
equation is reduced to a system of polynomial equations, and
an optimal (minimal) solution of these polynomials is computed
using Dixon resultants. We demonstrate the use of our method
by reporting on three case studies over glucose metabolism.
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I. INTRODUCTION

According to the data provided by the World Health

Organization (WHO), diabetes mellitus is predicted to be

the “disease of the future” especially in the developing

countries [1]. The diabetic population, representing 4% of

the world’s population in the year 2000, is predicted to be

doubled by the year 2030 and is being estimated to be 5,4%

of the world’s total population. The recent statistics of [2]

show the same prevalence in terms of the period between

years 2010-2030, and report on a significant increase in the

overall diabetes population; for example 6.4% of the world’s

population in the year 2010 and an estimate of 7.7% in the

year 2030.

Understanding and preventing the risks emphasized by

these statistics requires a better understanding of the diabetes

characteristics of a human body. It is well-known that the

normal blood glucose concentration level in the human body

varies in a narrow range, between 70 - 110 ml/dL. If for

some reasons the human body is unable to control the

normal glucose-insulin interaction, for example the glucose

concentration level is constantly out of the aforementioned

range, diabetes mellitus, or simply just diabetes, is diag-

nosed. Depending on the blood glucose concentration level,

diabetes is classified in various types, such as: (i) type I, also

known as insulin dependent diabetes mellitus or IDDM; (ii)

type II, also known as insulin independent diabetes mellitus

or NIDDM; (iii) gestational diabetes (under pregnancy);

and (iv) caused by genetic deflections. The consequences

of diabetes are known to be mostly long-term; among

others, diabetes increases the risk of cardiovascular diseases,

neuropathy, and retinopathy [3].

Among the existing types of diabetes, we focus in this

paper on type I diabetes mellitus. This type of diabetes

is determined by the loss of insulin producing beta-cells,

since they are completely destroyed by a still unknown au-

toimmune process [3]. Therefore, there is no human insulin

production and an external insulin source has to be applied.

For this reason, the question of artificial pancreas appeared

and has been addressed throughout the past decades in order

to enable the automatic control and treatment of diabetes

mellitus [4], [5], [6].

The approach of a systematic artificial pancreas is to

formulate the partially or totally deficient blood glucose

control system of the human body as an engineering prob-

lem. To this end, from an engineering point of view, the

treatment of diabetes mellitus can be represented by an outer

control loop. As pointed out in [4], [5], the difficulty with

engineering artificial pancreas comes with the design of (i) a

continuous glucose sensor for measurements, (ii) an insulin

pump for infusion, and (iii) a control algorithm. Moreover,

an appropriate control algorithm crucially depends on the

underlining computational model. For this reason, different

mathematical models of the human blood glucose system

have appeared during the last decades – see [6] for a brief

overview.

The nonlinear model described in [7] proved to be

the simplest one and was developed for type I diabetes

patients under intensive care. However, its simplicity is

also its disadvantage since in its formulation many com-

ponents of the glucose-insulin interaction were neglected.

Therefore, more general, but more complicated nonlinear

models appeared, e.g. [8], [9], [10], [11], [12], where the

nonlinear behavior of these models encode specific control

aspects, such as stability, controllability, and observability.

Consequently, control strategies for modeling the blood-

glucose problem have been widely studied in the literature,

e.g. [4], [5], [6]. Predictive or adaptive control proved to

give adequate results if individualized treatment is desired.

However, general requirements, like avoiding hypoglycemia

(deviation under the basal glucose level) and minimizing

hyperglycemia (deviation over the basal glucose level) are

non-individual dependent ”constraints”, and these cannot

be generally guaranteed by the aforecited control methods.
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Modern robust control methods are capable to handle such

problems by designing optimal controllers on hard con-

straints [13], searching to determine the worst case of the

system and determining an optimal solution for this case;

hence, by designing a robust controller. Different methods

are known in this topic, for example the H2/H∞ method,

also known as extended Linear Quadratic (LQ) method or

minimax method; the pure H∞ method; or the μ-synthesis

method [13]. A detailed comparison and study of these

methods in the modern robust control of the blood glucose

system can be found in [14], [15].

However, all aforementioned methods are applicable effi-

ciently only for linear models. Hence, to use these methods,

the nonlinear models should be first linearized. Nonlinearity

is however in general unavoidable in the proper mathe-

matical modeling of artificial pancreas. Therefore, control

methods developed directly for nonlinear systems are needed

[16].

In [17] a differential geometric approach is proposed,

combining advantages of linear-model based control theory,

but it comes at the cost of high computational complexities

of deployed numeric operations. The works described in

[18], [19] overcome the difficulties of numeric computations

and propose the use of formal methods, such as symbolic

computation [20] and model checking [21], in the study of

biological control systems. The control properties studied

in [18] are expressed using temporal logic and describe

changes between various states of the control model of a

biological process. The formal analysis of these properties

is then performed using symbolic model checking [21].

Characterizing the relation between the control states of

a biological process is also addressed in [19]. However,

unlike [18], the approach of [19] describes the nonlinear

model as a collection of polynomial equations, and uses

Gröbner basis computation [22] for solving the polynomial

constraints. While the technique of [19] makes the first

steps towards using symbolic computation in the artificial

pancreas problem by deploying the Bergman-minimal model

[7] and the H2/H∞ method, it faces a number or practical

challenges. To name a few, the polynomial constraints of the

control model contains a large number of variables, and the

initial states of the models are in general unknown.

In this paper we address these challenges and propose

the use of Dixon resultants [23], for studying the diabetic

system of glucose metabolism (Section IV). While glucose

metabolism can be modeled in different ways, we make

use of the Bergman three-state minimal patient model (Sec-

tion II) for the following reasons. This model can be found in

the background of any other model of glucose metabolism,

and it can be used in conjunction with symbolic techniques

for solving polynomial constraints, such as Gröbner basis

computations or Dixon resultants. In our approach to solve

the Bergman three-state minimal patient model, we first

reduce the model to the modified control algebraic Riccati

equation (MCARE) and then propose a method to symbol-

ically solve the optimal solution of MCARE (Section III).

Our solution uses the computation of Dixon resultant, and

therefore benefits from the relatively small size of Dixon

resultants (Section IV). Further, as Dixon resultants allow

the elimination of more than one variable in one step

of a computation, solving multivariate polynomial systems

can become more efficient by using Dixon resultants. We

demonstrate the use of our method by various case studies

over glucose metabolism (Section V). All computations

described in this paper were carried out using the symbolic

computation framework of the computer algebra system

Mathematica [24].

II. PRELIMINARIES

This section contains some definitions and properties

about polynomials and matrixes (Section II-A), which are

used in the rest of the paper. For additional details we

refer to [25]. Next, we overview the Bergman three-state

minimal patient control model of [7] (Section II-B), and

present how this nonlinear control model can be linearized

(Section II-C). Finally, the minimax method [13] is briefly

introduced (Section II-D).

A. Algebraic Considerations

Throughout this paper we write Q and C to mean,

respectively, the set of rational and complex numbers. For a

complex number z ∈ C, we denote by Real(z) and Im(z)
its real part, respectively its imaginary part.

In the sequel, let K denote an arbitrary field of char-

acteristic zero (e.g. Q, C, etc.). For variables x1, . . . , xm,

with m ≥ 1, the ring K[x1, . . . , xm] denotes the ring of

polynomials in variables x1, . . . , xm with coefficients in

K. A polynomial p(x1, . . . , xm) ∈ K[x1, . . . , xm] is called

symmetric if, after interchanging any of its variables, one

obtains the same polynomial p(x1, . . . , xm). A polynomial

equation is p(x1, . . . , xm) = 0. Throughout this paper

whenever we refer to a solution or a root of p(x1, . . . , xm)
we mean values of x1, . . . , xm such that p(x1, . . . , xm) = 0.

Given an n ×m matrix A, we write by AT the m × n
matrix denoting the transpose of A. A is a square matrix if

n = m. Further, a square matrix A is called symmetric if

A = AT . Let x = (x1, . . . , xm) denote a nonzero complex

vector. An m×m square matrix A with complex coefficients

is a positive definite matrix if Real
(
xTAx

)
> 0.

B. The Bergman Three-State Minimal Patient Control Model

In what follows, we use the following measures: mg for

milligrams, mU for milliUnits, min for minutes and dL for

deciliters.

According to [7], the three-state minimal patient control

model of glucose metabolism is characterized by the fol-

lowing three state variables (represented as functions over

rationals with values in rationals): (i) G(t) denoting the
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plasma glucose deviation measured in mg/dL, (ii) X(t)
representing the remote compartment insulin utilization mea-

sured in 1/min, and (iii) Y (t) denoting the plasma insulin

deviation measured in mU/dL. The behavior of these state

variables is characterized by the physical parameters as well

as by the model parameters of the model. By physical

parameters we mean the basal glucose level (denoted by GB
and measured in mg/dL), the basal insulin level (denoted by

Y B and measured in mU/dL), and the insulin distribution

volume (denoted by V L and measured in dL) in the model.

In the sequel, the model parameters of the model will be

denoted by p1, p2, p3, and p4, where p1, p2, p4 represent

measures in 1/min and p3 is dL/(mU ∗min2). The value

of the physical and model parameters are given by [26].

However, to avoid round-off errors in representing these

parameters, we consider the physical and model parameter

to be rational constants. Following [26], we fix the values of

the physical and model parameters as given below. To ease

readability, we only list the values and omit their measures.

p1 = 28
103 , p2 = 25

103 , p3 = 13
105 , p4 = 5

54 ,

GB = 110, Y B = 1.5, V L = 120.
(1)

We have now all ingredients to give the defining differ-

ential equations of the Bergman three-state minimal patient

control model. These equations are listed below:

G′(t) = −p1G(t)−X(t)(G(t) +GB) + h(t)
X ′(t) = −p2X(t) + p3Y (t)
Y ′(t) = −p4(Y (t) + Y B) + i(t)/V L

, (2)

where i(t) is the rational-valued control variable (input1) of

the model representing the exogenous insulin infusion rate

measured in mU/min, and h(t) is the rational-valued dis-

turbance (input2) of the model representing the exogenous

glucose infusion rate in mg/(dL ∗ min). We write G′(t)
(respectively, X ′(t) and Y ′(t)) to mean the partial derivative

of G(t) (respectively, of X(t) and Y (t)) wrt t.
In general, it is assumed that the state variable X(t) is a

so-called slow variable1, that is X ′[t] = 0 [19]. By making

use of this assumption, the defining equations of (2) are

reduced to the following model equations:

G′(t) = −p1G(t)− p3

p2

Y (t)(G(t) +GB) + h(t)

Y ′(t) = −p4(Y (t) + Y B) + i(t)/V L
. (3)

In what follows, we use (3) as the defining equations of

the nonlinear diabetic control model under study.

C. Linearized Control Model

Note that (3) is a nonlinear differential equation system.
Therefore, the first step in analyzing this model is to trans-
form it into an equivalent, but linear system of differential
equations. The linearization is done in the equilibrium state

1to be precise, X′(t) can safely be approximated by 0

of system (3) denoted by X(0), Y (0), h(0), and i(0), where
X(0) = 0, Y (0) = 0, h(0) = 0, and i(0) = p4∗Y B∗V L =
16.667. As a result, we derive the following linearized model
of (3), written in matrix form:

x′(t) =

(
−p1 −

p3Y (0)
p2

−

(G(0)+GB)p3
p2

0 −p4

)
x(t)+(

1 0

0 1
V L

)
u(t)

y(t) =

(
1 0
0 1

)
x(t) +

(
0 0
0 0

)
u(t),

(4)

where x(t) denotes the states of the system given by (G(t),
Y (t)); y(t) represents the outputs of the system given by

(G(t), Y (t)); and u(t) denotes the inputs of the system given

by (i(t), h(t)).
Following the notations of a linear time invariant state-

space system [19], from (4) we get:

x′(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

, (5)

where the following matrix equalities are satisfied: A =(
−p1 −

GBp3

p2

0 −p4

)
, B =

(
1 0

0 1
V L

)
, C =

(
1 0
0 1

)

and D =

(
0 0
0 0

)
.

As a result, we thus obtained a linear system (5) rep-

resenting the dynamics of the nonlinear system (3). By

reducing (3) to (5), the nonlinear Bergman model has thus

been linearized.

D. The minimax control method

In the study of the linearized Bergman three-state minimal

patient model, after linearization, one is interested to find

an optimal solution of (5). One way to find such an optimal

solution is by deploying the classical linear quadratic (LQ)

method [13], as follows. The LQ problem is defined to

find an optimal solution of (5) by using the quadratic cost

function:

J(u(t)) =
1

2

∫
∞

0

yT (t)Qy(t) + uT (t)Ru(t)dt, (6)

where R and Q are unknown constant square matrices

over the rationals, whose values effect the optimal solution

and can be arbitrarily chosen. This represents the major

disadvantage of the classical LQ method.

Therefore, the problem was extended by using modern

robust control theory. The extension or the generalized

version of the LQ method is called the minimax control

method [13]. The starting point of the minimax method is to

classify the the inputs of the system in two types, namely in

wanted inputs (e.g. control inputs u(t)) and unwanted inputs

(e.g. disturbances h(t), appeared to perturb the system).

Using this classification, the dynamics (5) of the linear
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model is changed by an explicit handling of the disturbance.

That is, (5) is changed into the following system describing

the dynamics of (4):

x′(t) = Ax(t) +Bu(t) + Lh(t)
y(t) = Cx(t) +Du(t)

, (7)

where L =

(
1 0
0 0

)
.

As a result, the quadratic cost function (6) of the LQ
method is changed to the following cost function of the
minimax method:

J(u(t)) =
1

2

∫
∞

0

yT (t)y(t)+uT (t) u(t)− γ2hT (t)h(t)dt, (8)

where γ > 0 is a positive rational constant. Note that,

unlike (6), in the case of using (8) we are left with only

one unknown rational constant, that is with γ. Hence, the

solution of u(t) in (8) is parameterized only by γ.

To find the optimal control means to compute the value of

γ, called the optimal value of γ, such that the value of (8) is

minimised. The optimal value of γ is computed by solving

the below given modified control algebraic Riccati equation

(MCARE) [13]:

PA+ATP + CTC − P

(
BBT

−
1

γ2
LLT

)
P = 0, (9)

where P is a positive definite symmetric matrix, called the

solution of MCARE. The challenge of finding P comes

however with the fact that, in the general case, P is

a complex matrix. The elements of P are therefore not

guaranteed to be rationals, although in the study of (7) and

(8) we are interested to find rational solutions. Therefore,

when solving (9) our goal is to find an optimal rational

solution (see Section III) from which an optimum solution

of u(t) in (8) can be derived.

Note that in (8) the disturbance h(t) appears with negative

sign. Therefore, finding an optimum solution for u(t) that

minimizes the maximum cost of (8) is reduced to the

problem of finding the worst case disturbance value of h(t).
Hence, a worst case design problem appears that can be

written in the following minimax differential game:

max
h(t)

J (u(t), h(t))→ min
u(t)

J(u(t), h(t)). (10)

According to [13], the differential game (10) admits

a unique solution and its solution satisfies the following

saddle-point condition:

J (u∗(t), h(t)) ≤ J (u(t), h(t)) ≤ J (u(t), h∗(t)) , (11)

where u∗(t) is the optimal control solution for u(t), and

h∗(t) denotes the worst-case disturbance. In addition, the

optimal solutions for u(t) and h(t) satisfy the following

equations:
u∗(t) = −BTPx(t)
h∗(t) = 1

γ2L
Tx(t)

. (12)

Minimizing the maximum cost of (8) requires thus com-

puting the matrix P such that (9) holds and P is rational

matrix. The challenge in deriving the optimal solutions (12)

is therefore to compute the unknown rational elements of P .

A standard approach for solving this challenge is to numer-

ically approximate P . However, numeric computations can

be expensive and crucially depend on the deployed preci-

sions for representing rational/complex values. To overcome

the burden of numeric representation, in what follows we

propose a symbolic approach to compute the matrix P as a

rational matrix satisfying (9).

III. PROBLEM SETTING AND STATEMENT: SOLVING

MCARE

Solving the linear model (7) of a diabetic control system

comes with the task of deriving the optimal solution of

the minimax differential game (10). To infer the optimal

solution of (10) reduces however to compute the rational

matrix solution of the MCARE system (9).

In what follows, let us focus our attention to solving (9),

more precisely, to compute the unknown coefficients of the

positive definite symmetric matrix P satisfying (9). To this

end, we consider P as follows:

P =

(
p11 p12
p12 p22

)
, (13)

where p11, p12, p22 are the unknown constants whose values

are to be determined. In the general case, p11, p12, p22
are complex constants. However, in finding the optimal

solution of (10) we are interested to derive p11, p12, p22
as rational constants. That is, we seek solutions to the

complex constants p11, p12, p22 such that the imaginary parts

of p11, p12, p22 can be approximated by zero, and therefore

minimized.

Substituting (13) in the left-hand-side of (9), the resulting

matrix is symmetric. Further, using (13) together with the

numeric values (1) of the physical and model parameters

in (9), we obtain the following system of equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

7p11

125 +
p2

12

14400 −
p2

11

γ2 − 1 = 0

p12( 26048

15
+p22)

14400 − p11

(
143
250 −

p12

γ2

)
= 0

143p12

125 +
(

5
27 + p22

14400

)
p22 −

p2

12

γ2 − 1 = 0

(14)

Note that the resulting system of equations (14) is param-

eterized by γ and describes polynomial constraints over the

unknowns p11, p12, and p22. Let us denote by T the algebraic

field C[γ]. Then, (14) is a system of algebraic polynomials

with variables p11, p12, and p22, and with coefficients

from T. In other words, (14) describes polynomials from

T[p11, p12, p22]. In what follows, for a fixed positive γ ∈ Q,

we respectively denote by p∗11,γ , p
∗

12,γ , and p∗22,γ the values

of p11, p12, p22 such that (14) is satisfied.
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Any solution of (14) determines the elements of P in (9),

and hence yields a solution of (10). However, in order to

compute an optimal solution of (10), we need to ensure

that the solution of (14) is minimal, in the following sense.

Minimizing the solutions of (14) reduces to find the opti-

mal γ, denoted by γmin, such that the imaginary parts of

p∗11,γ , p
∗

12,γ , and p∗22,γ are minimal, that is (approximated

to) zero. The optimal value γmin of γ thus ensures that P
is a rational-valued matrix. Current approaches for deriving

γmin start from an arbitrarily chosen fixed γ and iteratively

approximate γmin by computing the numerical solution of

the multivariate polynomial (14) at every approximation step

of γmin. Namely, an interval halving iteration process is

computed to determine γmin. The halved intervals constrain

the sought positive rational value for γ and ensure a positive

definite matrix P .

However, recent advances [19] suggest that, instead of

minimizing the imaginary part of each element of P , it is

sufficient to minimize the imaginary part of only one of the

three unknowns of P . Therefore, in this paper, we propose

to seek the minimal γmin such that the imaginary part of

only one element of P , namely of p12, is minimal. Hence,

when solving (14) we also need to solve the following

minimization problem:

γmin = minγ
(
Im(p∗12,γ)

)
. (15)

Unlike existing methods, in this paper we thus reduce the

problem of minimizing the imaginary parts of solutions

of a multivariate polynomial system to the problem of

minimizing the imaginary part of the solution of a univariate

polynomial system.

Summarizing, our goal in this paper is to derive an optimal

solution of (10). For doing so, we need to solve (14) such

that (15) is also satisfied. Using the notation above, we

are therefore left with computing γmin and p∗11,γmin
, p∗12,γmin

,

and p∗22,γmin
. To this end, instead of using numeric approx-

imations for minimizing (15), we propose to first compute

p∗12,γ as a symbolic solution of (14) (see Section IV-B). For

doing so, we deploy the computation of Dixon resultants

(see Section IV-A). Next, γmin is derived by making use

of p∗12,γ and minimizing (15). We hence avoid solving nu-

merically the multivariate polynomial system resulting from

the minimization of (14), in every steps of the minimization

process.

IV. MCARE REDUCTION TO DIXON RESULTANTS

In Section III we showed that finding an optimal solution

of (14) corresponding to the MCARE system reduces to

minimizing (15). Minimizing (15) however comes with the

task of solving a system of polynomial equations. We

address this problem by deploying symbolic computation,

as follows.

One of the classical methods of solving a system of poly-

nomial equations is with so-called resultants. In our work,

for solving and minimizing the polynomial system (15)

constructed from the multivariate system (14), we make use

of Dixon resultants (see Section IV-A). By using Dixon

resultants, we then present our approach to derive optimal

solutions of (14) (see Section IV-B). Moreover, as the

Dixon resultants are relatively small in size, we argue that

our method is computationally less expensive than other

approaches using numeric techniques.

A. The Dixon Resultant

We begin by introducing the Dixon resultant for solving

a system of polynomial equations [27], [28]. The Dixon

resultant has various advantages over other resultant-based

elimination methods for solving polynomial equations. To

name a few, (i) the resulting matrix corresponding to the

polynomial system has a considerably smaller size, hence,

it is often easier to compute its determinant; (ii) a block of

variables can be eliminated in one calculation, instead of

using successive eliminations of variables. In the sequel, we

overview the main ingredients of Dixon resultants.

Dixon resultants of univariate polynomials. We first

recall Cayley’s formulation [29] for solving a system of

two polynomial equations. Consider two univariate poly-

nomials f(x), g(x) ∈ K[x], and we denote by degree(f),
degree(g) the degree of f and g, respectively. Let deg =
max(degree(f), degree(g)) and let a be a fresh new vari-

able. Then,

δ(x, a) = 1
x−a

det

(
f(x) g(x)
f(a) g(a)

)
= f(x)g(a)−f(a)g(x)

x−a

(16)

is a symmetric polynomial in variables x and a of degree

deg−1. The polynomial δ(x, a) ∈ K[x, a] is called the Dixon

polynomial of f and g. The common roots of f(x) and g(x)
are also roots of δ(x, a) for every value of a. Consequently,

at a common root, the coefficients of all powers ai in δ(x, a),
with i = 0, . . . , deg − 1, are functions of x and should

be zero. Using matrix notation, we thus have the following

homogeneous system in one variable:

M

⎛
⎜⎜⎜⎜⎜⎜⎝

1
x
.
.
.

xdeg−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
.
.
.
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (17)

the columns of the deg × deg matrix M consist of the

coefficients of ai. The matrix M is called the Dixon matrix

and its determinant D = det(M) is the Dixon resultant.

System (17) has nontrivial solutions if and only if D is zero.

Therefore, D = 0 is a necessary condition for the existence

of common roots of f and g.

Example 1: Let us consider the following example. We

take f(x) = x3−2x2−11x+12 and g(x) = x2+3x−4, and

5757



D �
418 161 601 Γ8

167 961 600 000 000 000 000 000 000
�

2 924 207 Γ6 p12

167 961 600 000 000 000 000 000
�

143 286 143 Γ8 p12

10 497 600 000 000 000 000 000 000 000
�

20 449 Γ4 p12
2

447 897 600 000 000 000 000
�

14 080 956 461 Γ6 p12
2

195 910 410 240 000 000 000 000 000 000
�

32 650 536 864 803 Γ8 p12
2

61 222 003 200 000 000 000 000 000 000 000 000
�

143 Γ2 p12
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Figure 1. Dixon Resultant of MCARE (14), computed in Mathematica.

derive the Dixon polynomial δ(x, a) = 8− 4a− 4a2− 4x+
ax+3a2x− 4x2 +3ax2 + a2x2. By making the coefficient

of powers of a to be zero, (17) becomes:⎛
⎝ 8 −4 −4
−4 1 3
−4 3 1

⎞
⎠

⎛
⎝ 1

x
x2

⎞
⎠ =

⎛
⎝ 0

0
0

⎞
⎠ .

The Dixon matrix is thus M =

⎛
⎝ 8 −4 −4
−4 1 3
−4 3 1

⎞
⎠ and its

determinant D is zero. Thus, f(x) and g(x) have common

root(s), namely x = 1.

Dixon resultants of multivariate polynomials. Cayley’s

formulation applies only to a system of univariate polyno-

mials. Dixon has therefore generalized Cayley’s approach

to systems of multi-variate polynomials, more precisely, to

a system of three polynomials with two variables, as follows.

Take the polynomials f(x, y), g(x, y), h(x, y) ∈ K[x, y], and

let a, b be fresh new variables. The polynomial δ(x, y, a, b) ∈
K[x, y, a, b] is then defined as:

δ(x, y, a, b) =

1
(x−a)(y−b)det

⎛
⎝ f(x, y) g(x, y) h(x, y)

f(a, y) g(a, y) h(a, y)
f(a, b) g(a, b) h(a, b)

⎞
⎠ . (18)

The common roots of f(x, y), g(x, y) and h(x, y) are also

roots of δ(x, y, a, b) for every value of a and b. Setting

the power products aibj equal to zero, we again obtain a

homogenous system in x, y. The coefficient matrix M of this

homogenous system is the Dixon matrix, and its determinant

is the Dixon resultant D.

Similarly to the univariate case, Dixon proved that D = 0
is a necessary condition for the existence of common roots

of f, g, and h. Dixon’s method easily generalize to a system

of n + 1 polynomials of degree n with n variables, where

n ≥ 1. However, Dixon resultants can also be used to solve

a system of multivariate polynomials with n+1 variables of

degree n (or less). The idea is to consider the multivariate

polynomials with n + 1 variables and constant coefficients

as multivariate polynomials with n variables and coefficients

parameterized by one variable of the original polynomial

system. The example given below illustrates this idea.

Example 2: Let us consider the following example. Take

f(y, z) = x2+ y2− 1, g(y, z) = x2+ z2− 1, and h(y, z) =
y2 + z2 − 1. That is, f, g, h ∈ T[y, z], where T is K[x]. In

other words, the coefficients of f, g, h are parameterized by

x. We derive δ(y, z, a, b) = ab−2abx2+ by−2bx2y+az−
2ax2z+yz−2x2yz as the Dixon polynomial. By making the

coefficient of powers of ab to be zero, we obtain the Dixon

matrix M =

⎛
⎜⎜⎝

0 0 0 1− 2x2

0 0 1− 2x2 0
0 1− 2x2 0 0

1− 2x2 0 0 0

⎞
⎟⎟⎠.

The Dixon resultant is hence D = 1 − 8x2 + 24x4 −

32x6 +16x8. To ensure that f, g, h have common roots, we

impose the condition that D = 0. We are therefore left with

solving a univariate polynomial equation in x. Any value of

x satisfying D = 0, guarantees that f, g, h have roots, and in

addition, they have common roots. Note that substituting x
in f, g, h by its value computed from D = 0, the coefficients

of f, g, h parameterized by x become constants. Hence, in

solving the multi-variate polynomial system resulting from

f(y, z) = 0, g(y, z) = 0, h(y, z) = 0 one does not have to

derive also the value of x.

As shown in Example 2, Dixon’s generalized method

can be applied to polynomials with symbolic coefficients

(i.e. coefficients parameterized by variables). This property

of Dixon’s method allows the elimination of a block of

variables by one calculation of the Dixon resultants. As the

Dixon resultants are relatively small in size, we argue that

solving a system of multivariate polynomials using Dixon

resultants is a promising approach in various application

domains, in particular, in the study of the diabetic system

of glucose metabolism (Section IV-B).

B. Solving MCARE by Dixon Resultant Computations

Let us now reconsider the problem of finding an optimal

solution of the MCARE system given in (14). Solving (14)

means finding a common solution of the polynomial equa-

tions of (14). To this end, we propose to use the computation

of Dixon resultants. Note however that (14) is a system

of three polynomials with three variables and of degree

two. Hence, when solving (14) we proceed in a similar

manner as in Example 2, but also take into consideration

the minimization problem of (15). That is, we are interested
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Figure 2. p12 as function of γ, where p12 satisfies D = 0.

in solving (14), by also computing the value γ for which the

imaginary part of p12 is minimized (and therefore, p12 ∈ Q).

To this end, we apply Dixon resultant computation such that

we eliminate the variables p11, p22 and compute p12 as a

solution of the Dixon resultant. More precisely, we proceed

as follows.

We consider (14) as a system of three 2-degree univariate

polynomials in variables p11, p22, with coefficients parame-

terized by p12. We next introduce the fresh new variables a
and b, and compute the Dixon polynomial δ(p11, p22, a, b) as

given in (18). Setting further the power products aibj equal

to zero, a homogenous system in p12 is derived. The Dixon

resultant D computed for this univariate homogeneous sys-

tem yields a 4-degree univariate polynomial in p12, with

coefficients parameterized by γ, as listed in Figure 1.

As D = 0 is a necessary condition for the existence of

a solution of (14), we are left with solving the univariate

polynomial equation D = 0. Any value of p12 satisfying

D = 0 yields thus a solution of (14), however, not any

value of p12 gives an optimal solution of (10). In order to

ensure that an optimal solution of (10) is computed, we need

to solve the univariate polynomial equation D = 0 such

that (15) is also satisfied. That is, among the solutions of

D = 0 we compute γmin such that the imaginary part of

p12 is minimized (i.e. it is zero). Hence, the solution p∗12,γ
corresponding to γ = γmin not only satisfies the polynomial

equation D = 0, but also yields an optimal solution of (10).

To this end, by solving both D = 0 and (15), we obtain:

γmin = 17.1968.

Figure 2 shows how the imaginary part of p12 changes as

function of γ, where p12 is the (first) root of D = 0.

Using that γmin = 17.1968, we derive the value of p12 and

we replace γ by γmin in (14). This way, the numeric values

of p11, p12, p22 are obtained. As D = 0 yields four roots, we

obtain four different solutions for p11, p12, p22. Out of the

possible solutions for p11, p12, p22, we choose the solution

which makes matrix P to be a positive definite matrix. We

thus derive:

P =

(
299.512 −2034.94
−2034.94 14059.9

)
(19)

100 200 300 400 500 600
t�min�

0.2
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0.6

0.8
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h�
mg
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Figure 3. Exogenous glucose infusion h(t) by meal.

as a solution of (9).

V. CASE STUDIES AND RESULTS

We report on three case studies using Dixon resultants in

the analysis of the presented blood-glucose problem (2). Our

case studies were carried out with the computer algebra sys-

tem Mathematica [24], by using the Mathematica package

of [23] for computing Dixon resultants.

In our case studies we were interested on the efficiency

and the robustness of our obtained control system solution,

given by (19). In what follows, (19) will be regarded as our

controller’s MCARE solution. By replacing the solution (19)

in the MCARE system (9), we derive the controller matrix

KLQR, called the gain matrix, as follows: KLQR =(
BT + 1

γmin
LT

)
P . Substituting matrixes by their concrete

values, we have:

KLQR =

(
1.01279 −6.88108
−16.9579 117.166

)
.

In our case studies we used as meal input the classical six

hour meal absorption profile modeled by [30] – see Figure 3.

When testing the performance of our controller, our case

studies reproduced the simulation scenarios used in [31].

Case study 1. In our first case study we turn back to the orig-

inal nonlinear model (2), even though the design of KLQR

was carried out on the reduced system (3). The glucose and

insulin concentrations of (2) are shown in Figures 4 and 5.

The results of our case study are in good agreement with

the previous results of [31], [19], and they emphasize the

use of our method. That is, using a methodology based on

Dixon resultants and therefore different than state-of-the-art

approaches, the same results can also be obtained. A more

important question appears though when the robustness of

our controller is investigated. The work of [31] shows that

when limiting the model parameter p1 to be zero, the system

is unable to regulate the glucose level on its own. Indeed,

when p1 = 0, the eigenvalues of the linearized model are

(−0.0925926,−0.025, 0), so the control system with p1 = 0
is unstable.
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Case study 2. In our second case study the constraint p1 = 0
was tested for the original nonlinear model (2). Our results

showed that our controller is able to control (2) even in this

case - see Figure 6. Moreover, the obtained results are better

then [19] and thus demonstrate the use of Dixon resultants.

However, it should be noted that the quality of the control

when p1 = 0 is not as precise as in the original case when

p1 = 0.028. This is due to the fact that, when p1 = 0, a

constant insulin infusion rate offset remains to compensate

the system error even at the equilibrium state.

Case study 3. Our third case study focused on the robustness

of the initial state of the nonlinear model (2). This question is

crucial as identifying the right model parameters is hard due

to, e.g., patient variability. Therefore, it is a nontrivial task

to determine where the simulation of (2) should start from.

Hence, a realistic sensor behavior performance is tested,

as follows. The insulin infusion rate is considered to be

nonnegative and its maximum value is limited. Figure 7

shows our results on simulating the nonlinear model (2) for

a negative deviation of the initial values of the model. In

the case of positive deviation of the initial values, we obtain

similar simulation results. Our results thus show that the

system performance can be stabilized fairly well even in the

situations when the initial values of the model are deviated

from their optimal values.

VI. CONCLUSIONS

We present the use of Dixon resultants in the study of the

Bergman three-state minimal patient model, in particular for

computing optimal solution of the modified control algebraic

Riccati equation of the model. Our approach benefits from

the small size of Dixon resultants and from the elimination

of block of variables using Dixon resultants. Moreover, the

derived solutions are symbolic and we thus avoid the burden

of successive numeric computations in inferring optimal

solutions. We give practical evidence of our method by

presenting three cases studies over glucose metabolism.

Further work includes applying our approach to nonlinear

models which are more complex than the Bergman three-

state minimal patient model.
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