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PII: S0171-2985(14)00221-6
DOI: http://dx.doi.org/doi:10.1016/j.imbio.2014.10.023
Reference: IMBIO 51241

To appear in:

Received date: 24-9-2014
Revised date: 20-10-2014
Accepted date: 22-10-2014

Please cite this article as: Deák, M., Hornung, Á., Novák, J., Demydenko, D., Szabó, E.,
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Abstract

Secreted, extracellular galectin-1 (exGal-1) but not intracellular Gal-1 (inGal-1)

has been described as a strong immunosuppressive protein due to its major activity of 

inducing apoptosis of activated T-cells. It has previously been reported that T-cells 

express Gal-1 upon activation, however its participation in T-cell functions has 

remained largely elusive. To determine function of Gal-1 expressed by activated T-

cells we have carried out a series of experiments. We have shown that Gal-1, expressed 

in Gal-1-transgenic Jurkat cells or in activated T-cells, remained intracellularly

indicating that Gal-1-induced T-cell death was not a result of an autocrine effect of the 

de novo expressed Gal-1. Rather, a particular consequence of the inGal-1 expression 

was that T-cells became more sensitive to exGal-1 added either as a soluble protein or 

bound to the surface of a Gal-1-secreting effector cell. This was also verified when the 

susceptibility of activated T-cells from wild type or Gal-1 knockout mice to Gal-1-

induced apoptosis were compared. Murine T-cells expressing Gal-1 were more sensitive 

to the cytotoxicity of the exGal-1 than their Gal-1 knockout counterparts. We also 

conducted a study with activated T-cells from patients with systemic lupus 

erythematosus (SLE), a disease in which dysregulated T-cell apoptosis has been well 

described. SLE T-cells expressed lower amounts of Gal-1 than healthy T-cells and were 

less sensitive to exGal-1. These results suggested a novel role of inGal-1 in T-cells as a 

regulator of T-cell response to exGal-1, and its likely contribution to the mechanism in

T-cell apoptosis deficiency in lupus.

Key words: intracellular galectin-1; activated T-cells; systemic lupus erythematosus; 

apoptosis
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Introduction

Galectin-1 (Gal-1) is a member of a family of -galactoside binding lectin-type 

proteins. It has well-defined roles in maintaining immunohomeostasis [1,2] partly via

the induction of apoptosis of activated T-cells, a function that has been attributed to its

secreted form [3]. The mechanism of Gal-1-triggered cell death has extensively been 

studied in vitro and presented by our group and others [4,5]. As it has been shown,

stimulation of apoptosis requires the presence of p56lck and ZAP70 kinases, release of 

ceramide, decrease of mitochondrial membrane potential and caspase activation [4,6,7]

and requires the direct interaction between T-cells and the surrounding environment 

(cells or extracellular matrix) [4]. Immunoregulatory function of Gal-1 has also been 

confirmed by in vivo experiments [5]. Role of the endogenous Gal-1 in disease 

development and progression has recently been shown in the animal models of 

autoimmune or inflammatory diseases such as arthritis, colitis, hepatitis, nephritis, 

encephalomyelitis and SLE [8–13]. All parameters of experimentally induced arthritis, 

such as incidence, clinical score and paw edema being significantly higher in Gal-1

knockout mice than in wild type animals and Gal-1 therapy efficacious in the 

amelioration of the disease [14]. The therapeutical effect of exGal- 1 depends on its 

differential impact on the T-cell subpopulations. It inhibits cytokine production and 

triggers apoptosis of activated Th1 and Th17 cells while induces cytokine production of 

Th2 and Treg cells [15]. Hence this mechanism shifts the immune response from the 

inflammatory Th1 to the Th2 direction [16].

Systemic lupus erythematosus (SLE) is one of the most common and serious 

systemic autoimmune diseases. Very complex immune dysregulations have been 

explored, including T- and B-cell functional alterations that eventually lead to the loss 
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of peripheral tolerance [17,18]. Lupus is characterized by immune-mediated 

inflammation in multiple organs and by the production of various autoantibodies [19]. 

T-cell dysfunction, including the malfunction of apoptosis is a major factor in SLE 

pathophysiology [17]. Although Gal-1 participates in the maintenance of 

immunohomeostasis by regulating T-cell functions and survival, its role in the lupus T-

cell pathology has not yet been revealed.

Intracellular roles of Gal-1 have also been studied; however these functions do 

not participate in immunoregulation. Two remarkable Gal-1 intracellular functions 

discovered so far are the membrane anchorage of the oncogene H-Ras [20] and the 

interaction with spliceosomes via Gemin4 [21]. Neither of these functions requires 

sugar binding activity of Gal-1 [22,23]. 

In addition to being targets of exGal-1, T-cells themselves express Gal-1 upon 

activation [24]. However the cellular localization and the function of the de novo

expressed Gal-1 have not yet been appropriately clarified. Here we show that activated 

T-cells express Gal-1 and the protein remains intracellularly. As a result of the de novo

production of Gal-1, T-cells become more sensitive to the apoptotic effect of exGal-1. 

Results of the analysis of SLE T-cells support this finding. Expression of Gal-1 in SLE 

T-cells is diminished compared to healthy control cells and, as a consequence,

pathological T-cells are less sensitive to Gal-1-induced cell death.

Materials and methods

Ethics statement
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The study was designed in accordance with the guidelines of the Declaration of 

Helsinki and was approved by the Human Investigation Review Board, University of 

Szeged. 

Cells

The human Jurkat T-cell line was cultured in RPMI 1640 (Gibco, Carlsbad, CA, USA)  

medium supplemented with 5% heat inactivated fetal calf serum (FCS) (Gibco), 2 mM 

L-glutamine (Sigma, St. Louis, MO, USA), 100 IU penicillin (Biogal, Kibbutz Galed, 

Israel) and 100 g/ml streptomycin (EGIS, Budapest, Hungary). Transgenic Jurkat cell 

lines, Jmock and JGal were established and cultured as described in Supplemental material.

HeLa human cervix adenocarcinoma cells were transfected as described 

previously [4]. Mock transfected (HeLamock) or Gal-1 transgenic (HeLaGal) human 

cervix adenocarcinoma cells were cultured in MEM (Gibco) supplemented with 100 IU 

penicillin, 100 µg/ml streptomycin, 2mM L-glutamine and 10% FCS. 

Blood samples from SLE patients and healthy donors were separated using 

Ficoll (GE Healthcare, Chalfont St. Giles, UK) gradient centrifugation. Peripheral blood 

mononuclear cells (PBMC) were stimulated with 5 µg/ml Phytohaemagglutinin (PHA-

M, Sigma-Aldrich) and were cultured for 72 hours at 37 °C in RPMI-1640 medium 

(Gibco) supplemented with 10%  FCS, 2 mM L-glutamine, 100 IU penicillin and 100 

µg/ml streptomycin.

Murine T-cells were isolated from lymph nodes of C57BL/6 wild type and Gal-1 

knock out mice (strain B6.Cg-Lgals1tm1Rob/J, 006337, Jackson Laboratory). The lymph 

nodes were crushed in RPMI 1640 medium until a homogenous cell suspension was 

achieved, then centrifuged at 300 x g for 10 min and washed twice in phosphate 

buffered saline (PBS). Afterwards, cells were centrifuged at 300 x g. The cells were 
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resuspended in RPMI 1640 medium supplemented with 10% FCS and 50µM β-

mercaptoethanol (Sigma), followed by activation with 7.5 µg/ml Concanavalin A 

(ConA, Sigma) for 72 hours.

Isolation, characterization and maintenance of murine bone marrow 

mesenchymal stem cells (BMMSC) were carried out as described previously [25].

Western blotting

Cell lysates prepared with lysis buffer (10 mM Tris pH 7.5, 1% Triton X-100, 1 

mM EDTA, 150 mM NaCl, 1 mM PMSF) from 2×105 cells were loaded onto a 12% 

SDS-polyacrylamide gel (SDS-PAGE). The separated proteins were electro-transferred 

onto nitrocellulose membrane (Whatman, GE Healthcare). After blocking with 3% 

gelatin (Sigma) in Tris buffered saline (TBS)/0.05% Tween 20, the membrane was 

incubated with rabbit anti-mouse Gal-1 antibody [25] or rabbit anti-actin antibody 

(Abcam, Cambridge, UK) and then with HRP-conjugated swine anti-rabbit IgG (Dako, 

Glostrup, Denmark). Immunoreactive proteins were visualized using the ECL Plus 

detection system (Amersham Pharmacia Biotech, GE Healthcare) on X-ray film (Agfa, 

Morstel, Belgium).

Indirect immunofluorescence and cytofluorimetry

Cells were suspended in cold PBS supplemented with 1% FCS and 0.1% NaN3

(immunofluorescence buffer, IFB). Gal-1, presented on the cell surface, was detected 

using a mouse anti-human Gal-1 monoclonal antibody (clone 2c1/6, produced in our 

laboratory [4]). For detection of inGal-1, the cells were permeabilized in IFB containing 

0.1% Triton-X 100 prior to adding the anti-Gal-1 antibody. After incubation for 45 min 

on ice, the samples were washed two times with IFB then treated with donkey anti-
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mouse IgG conjugated with NorthernLights557 (R&D Systems, Minneapolis, MN, 

USA). For indirect immunofluorescence analysis, the cells were then mounted on 

microscopic slides with Fluoromount-G (Southern Biotech, Birmingham, AL, USA) 

and analyzed with laser scanning confocal microscope (Olympus FV 1000). For 

cytofluorimetric measurements the cells were incubated with biotinylated mAb to Gal-1 

(2C1/6) followed with FITC labeled Streptavidin or with mAb to Gal-1 (2C1/6) and 

goat anti-mouse IgG – Atto 488 (Sigma), and then the samples were analyzed by 

FACSCalibur flow cytometer using the CellQuestTM software (Becton Dickinson, San 

Jose, CA, USA).  

Apoptosis assays

T-cell apoptosis induced by soluble Gal-1: the cells were treated with human 

recombinant Gal-1 (produced in our laboratory [26]) for 24 hours and then subjected to 

DNA content analysis. Briefly, the cells were harvested, washed with PBS, then treated 

with PBS supplemented with 0.1% Triton X-100, 0.1% sodium-citrate, 10 g/ml RNase 

and stained with 10 g/ml propidium-iodide. After incubation in dark for 15 min at 

room temperature, the cells were analyzed with flow cytometry. The ‘sub-G1’ 

(hypodiploid) population was determined with DNA content analysis using CellQuest 

software (Becton Dickinson) and was considered as apoptotic cells.

T-cell apoptosis induced in co-culture: the apoptosis induced by cell-derived Gal-1 was 

detected as previously described [4]. Briefly, HeLamock (control) or HeLaGal cells 

(effector cells, 5×103 cells/sample) were plated on cover slips. Target T-cells (2×105

cells/sample) were labeled with Hoechst 33342 (100 ng/ml for 30 min at 37 °C) and co-

cultured with HeLa cells for 16 hours. Co-culture experiments for murine T-cells were 



Page 8 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

8

carried out similarly as described for the human system, except for the following: 

effector cells were BMMSCs from wild type or Gal-1 knockout (KO) mice (used as 

control). T-cells derived from wild-type and Gal-1 KO mice were activated with Con-A 

for 72 hours and then co-cultured with the Gal-1 secreting and Gal-1 KO BMMSCs for 

16 hours. The T-cells (human or mouse) were subsequently labeled for 

phosphatidylserine exposure on the outer cell membrane (early apoptotic signal) with 

Annexin V-Alexa Fluor 488 (Invitrogen) for 30 min and mounted with Fluoromount-G. 

Finally, the samples were analyzed with Carl Zeiss (Axioskop 2Mot) fluorescence 

microscope using AxioCam camera, AxioVision 3.1 software and 20 × objective 

magnifications. The contrasts of the images were adjusted using Adobe Photoshop CS4 

Extended. 

The degree of apoptosis was determined by counting at least 100 cells/sample 

and was calculated as follows: relative apoptotic ratio (RAR) = % of Annexin V 

positive cells on HeLaGal -1- % of Annexin V positive cells on HeLamock. 

Quantitative real-time PCR

Peripheral blood mononuclear cells (PBMC) (1-3x106 cells) were activated with 

PHA-M for 72 hours then washed twice with PBS. Total RNA was extracted applying 

Nucleospin RNA II isolation kit (MACHEREY-NAGEL GmbH, Düren, Germany) 

according to manufacturer’s instructions. cDNA was synthesized using 2 μg of total 

RNA, in the presence of 50 pmol of oligo(dT18) and of random hexamer primers, 0.5 

mM dNTP, 20 U RiboLock RNase Inhibitor and 200 U RevertAid H Minus Reverse 

Transcriptase (Thermo Fisher Scientific Inc., Boston, MA, USA) for 60 min at 42 °C 

and then heated for 10 min at 70 °C. qPCR was performed using AccuPower Greenstar 

qPCR Master Mix (Bioneer, Daejeon, Korea) in RotoGene3000 instrument (Corbett 
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Life Science, Quiagen, Hilden, Germany). Relative quantification of gene expression 

was determined by comparison of threshold cycles (Ct) related to endogenous RPL27. 

Relative mRNA amounts (R) were calculated by the equation R = 2Ct(RPL27)-Ct(Lgals-1). 

The following primer sequences were used: 

RPL27:

forward 5’-CGCAAAGCTGTCATCGTG-3’ 

reverse 5’-GTCACTTTGCGGGGGTAG-3’

LGALS1:

forward 5’-CGCCAGCAACCTGAATCT-3’

reverse 5’-CAGGTTCAGCACGAAGCTCT-3’.

Patients

Adult female SLE patients (age >18 years) were enrolled (the numbers of 

patients are indicated under the experiments) with the approval of the Local Ethics 

Committee. All patients fulfilled the American College of Rheumatology updated 

criteria for the classification of SLE [27]. The control group consisted of sex- and age-

matched healthy volunteers.

The first blood samples were taken before starting an immunosuppressive 

therapy. These patients were in clinically active stage of the disease, and were either 

newly diagnosed or relapsing cases (active SLE). The second blood samples were taken 

when the enrolled patients’ disease has become quiescent after treatment (inactive SLE). 

Treatments stably maintained for at least two months included low-dose (< 20 mg 

prednisolone) corticosteroid, azathioprin, methotrexate, cyclosporine or epratuzumab.
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Results

Galectin-1 is expressed de novo in activated T-cells and remains intracellularly

Expression of Gal-1 in activated T-cells has previously been reported [24] and 

suggested that it might act as an autocrine apoptotic factor. However it has not been 

decisively proven whether Gal-1 is secreted from the cells or remains intracellularly. 

This point is crucial to clarify since autocrine or paracrine mechanisms can exist if

secreted, while its contribution to cell death as an intracellular protein has not been 

examined yet. To investigate this question we established a useful model of Gal-1 

transgenic Jurkat cell line (Supplemental material). Western-blot analysis showed that 

untransfected Jurkat cells or cells transfected with empty vector (Jmock) do not express 

Gal-1, while cells transfected with Gal-1 cDNA (JGal) produce this protein (Fig. 1 A).

In order to determine whether Gal-1 was secreted to the extracellular space, 

permeabilized and non-permeabilized JGal cells were analyzed with confocal microscopy

(Fig. 1B. upper) or flow cytometry (Fig. 1B. lower). Gal-1 was exclusively present 

intracellularly, and was not detectable on the cell surface (Fig. 1B). Failure of secretion 

of Gal-1 was also shown using JGal conditioned medium since no Gal-1 binding to Jurkat 

cells from JGal derived cell culture supernatant was detected (Fig. 2).

Gal-1 expression in human and mouse peripheral T-cells was also analyzed. As 

shown on Fig. 3A, both mouse (left) and human (right) activated but not resting T-cells 

expressed Gal-1. Cellular localization of Gal-1 in activated human T-cells was similar 

to that of Gal-1 transgenic Jurkat cells (Fig. 3B, C and Fig. 1B, respectively), as Gal-1

was only detected intracellularly (Fig. 3B and C).

Expression of Gal-1 in transgenic Jurkat or mouse activated T-cells modulates 

apoptotic response to extracellular Gal-1
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To assess the effect of endogenous, intracellularly expressed Gal-1 in the course of

exGal-1 induced apoptosis, Jmock and JGal Jurkat cell lines were treated with soluble, 

recombinant galectin-1 (rGal-1) (Fig. 4A) or were co-cultured with Gal-1-secreting 

HeLa cells (Fig. 4B). Gal-1 expressing Jurkat cells reacted significantly more 

vigorously to the cytotoxic effect of Gal-1 in either soluble or cell-bound form than the 

Gal-1 non-expressing Jurkat cells.

The role of inGal-1 in T-cells was further supported with studying murine T-

cells. For this purpose, T-cells obtained from wild type and Gal-1 KO animals were 

activated and co-cultured with wild type, Gal-1 secreting or Gal-1 KO MSCs. As shown 

in Fig. 5, the apoptotic response of Gal-1 deficient T-cells was significantly weaker than 

that of the wild type, Gal-1-expressing counterparts.

Diminished Gal-1 expression coincides with decreased exGal-1 induced apoptosis in 

activated SLE T-cells

Previous studies have indicated that Gal-1 expression is diminished at the sites 

of severe chronic inflammation such as psoriatic skin ([28] and Krenacs L et al., 

unpublished data). However, Gal-1 expression in pathological T-cells has not yet been 

specifically investigated. Dysregulated T-cell apoptosis in SLE has been well 

documented [17,29] and has been determined as one of the crucial defects in SLE 

pathogenesis. Hence, it is a plausible question whether Gal-1, acting on T-cells as a pro-

apoptotic protein, is dysregulated in activated SLE T-cells and apoptotic sensitivity of 

these cells to exGal-1 is down-regulated thereby contributing to the pathomechanism of 

lupus.
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Fourteen active SLE, nine inactive SLE (in remission after therapy) patients and 

sixteen control individuals were enrolled into the study. SLE or control activated T-cells 

were used as the source of mRNA, and Gal-1 expression was analyzed by qPCR (Fig. 

6A). Gal-1 expression declined significantly in active SLE patients compared to the 

controls, and elevated significantly after treatment, reaching a similar level to that of 

healthy controls. It must be noted that the individual values of the Gal-1 mRNA levels 

did not show correlation with other parameters of the disease activity such as SLEDAI-

2K, anti-DNA antibodies or erythrocyte sedimentation rate (ESR) (data not shown).

Apoptotic response of activated SLE T-cells to exGal-1 in a co-culture 

experiment was also measured. Twenty active, ten inactive SLE and twenty control 

patients were included. As shown on Fig. 6B, activated T-cells of active SLE patients 

responded poorly to exGal-1 compared to control cells while the responsiveness 

significantly increased in T-cells of patients in remission.  
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Discussion

The apoptotic effect of extracellular Gal-1 on activated T-cells has been 

described in a number of papers [3,4,6,24,30]. It has also been shown that T-cells 

express Gal-1 upon activation. Blaser et al. have proposed that the apoptotic effect of 

exGal-1 on T-cells might stem from an autocrine loop that is created by the secretion of 

the protein, since they have found Gal-1 in the supernatant of an activated T-cell culture 

[24]. However, the resulting supernatant had to be concentrated 100-fold to be effective 

in inducing T-cell apoptosis which indicated a very low amount of secreted Gal-1. 

Moreover, the possibility could not be excluded that Gal-1 was released from necrotic 

cells in the culture. The result of these authors indicated that even if secreted, Gal-1 

amount in unconcentrated supernatant could not be enough to exert cytotoxicity, since 

the concentration of soluble Gal-1 inducing T-cell death was shown to be between 25-

400 g/ml in all published experiments [4,7,30,31]. Moreover, Gal-1 is normally 

present in serum only in very low quantity (several ng/ml), which is far below the 

apoptosis inducing concentration of the soluble protein [32]. Accordingly, we showed 

here, that conditioned supernatant harvested from JGal or activated T-cell cultures did 

not contain detectable amount of Gal-1 and did not induce apoptosis (data not shown)

confirming that the protein was not secreted but remained intracellularly. However the 

intracellular form of this protein has not been implicated in the process of apoptosis. 

Hence, we have examined whether the intracellular, de novo expressed Gal-1 in T-cells 

plays a role in the fate of T-cells by conducting studies in a Jurkat model system and on 

activated T-cells. Treatment of T-cells either with soluble rGal-1 or cell-bound Gal-1 in 

co-culture showed that the presence of endogenous inGal-1 in the target T-cells had an 

impact on the apoptotic response induced by exGal-1. T-cells expressing Gal-1 either 
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due to transfection with Gal-1 gene (JGal) or upon activation displayed higher sensitivity 

to exGal-1 induced apoptosis (see Fig. 7)

Since Gal-1 has been proposed as a possible candidate for immunosuppressive 

therapy in earlier studies [8,11,13,33], we turned to the prototypical inflammatory 

autoimmune disease, SLE as a pathological model. Our results showed that active SLE

T-cells contained significantly lower levels of Gal-1 mRNA than healthy controls. 

These T-cells were also significantly less sensitive to the apoptotic signal of exGal-1. 

Although there was no clear correlation between disease activity index scores or 

particular symptoms and Gal-1 levels, we hypothesized that low expression and 

diminished responsiveness of activated SLE T-cells to Gal-1 might contribute to 

immune regulatory dysfunction and enhanced T-cell activity in SLE pathology 

[17,29,34,35]. This assumption was supported by the finding that successful 

immunosuppressive therapy resulted in restoration of the level of Gal-1 as well as of the

apoptotic sensitivity of SLE T-cells. 

The modulating effect of inGal-1 content on the apoptotic reaction of cells to 

exGal-1 is a novel finding. Even though the signaling pathways responsible for exGal-1 

driven T-cell apoptosis have largely been mapped [6,7,36–38], many questions about 

the exact mechanism by which the cells were sensitized by inGal-1 to exGal-1 mediated 

apoptosis remain to be elucidated. While the anti-apoptotic effect of intracellular Gal-3 

can be explained by the Bcl-2 homolog motif of the protein [39], Gal-1 does not have a 

homologous segment with any known apoptotic protein, and thus its function in 

apoptosis must stem from a yet unknown mechanism.

In this study we have demonstrated that the de novo expressed Gal-1 remains 

intracellularly and regulates responsiveness of activated T-cells to the apoptosis 
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inducing effect of extracellular Gal-1. The analysis of activated T-cells from SLE 

patients shows a clear diminution in Gal-1 expression and concomitant resistance to 

exGal-1 triggered apoptosis. These latter findings serve as potential novel markers to 

SLE pathogenesis. 
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Figure legends

Figure 1. Gal-1 transgenic Jurkat cells express but do not secrete Gal-1. A) Cell lysates 

prepared from 2×105 cells were loaded onto a 12% SDS-polyacrylamide gel. The

separated proteins were electro-transferred onto nitrocellulose membrane. After 

blocking with 3% gelatin, the membrane was incubated with rabbit anti-human Gal-1 

and rabbit anti-human actin antibody followed by HRP-conjugated swine anti-rabbit 

IgG. Immunoreactive proteins were visualized using the ECL Plus detection system.

B) Cells were suspended in cold IFB or IFB supplemented with 0.1% Triton-X 100 for 

non-permeabilized or permeabilized samples, respectively. Cellular Gal-1 was detected 

using mouse anti-human Gal-1 monoclonal antibody followed by donkey anti-mouse 

IgG conjugated with NorthernLights557. Finally, the cells were mounted on 

microscopic slides with Fluoromount-G and analyzed with laser scanning confocal

microscope (upper). Alternatively, the cells were incubated with mouse mAb to Gal-1 

(2C1/6) followed by goat anti-mouse IgG – Atto 488 (Sigma). The samples were 

analyzed by FACSCalibur flow cytometer using the CellQuestTM software or subjected 

to flow cytometry (lower).

Figure 2. Supernatant of JGal cells does not contain galectin-1. Jurkat cells were 

incubated with fresh (dashed line), JGal -conditioned (thin line) medium or 50µg/ml 

rGal-1 (thick line). Then the samples were stained with biotinylated mAb to Gal-1 

(2C1/6) followed by FITC labeled Streptavidin and subjected to cytofluorimetric 

analysis. 

Figure 3. Human and mouse peripheral T-cells express Gal-1 after activation. Western 

blotting of resting and activated mouse and human T-cells (A) and analysis of cellular 
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localization of Gal-1 in activated human T-cells (B) was performed as described under 

Fig. 1A and B, respectively. Expression of intracellular (left) and extracellular (right) 

Gal-1 in human activated T-cells was analyzed also with flow cytometry as described 

under Fig. 1B lower.

Figure 4. Gal-1 expression sensitizes Jurkat cells to the apoptotic effect of extracellular 

Gal-1. (A) Jmock or JGal cells were treated with 1.8 µM rGal-1 for 24 hours or left 

untreated. The percentage of apoptotic cells was determined by detecting the sub-G1 

cell population by cytofluorimetry. n=3, * p<0.05. (B) Jmock or JGal cells were co-

cultured with HeLamock or HeLaGal-1 cells for 16 hours. Jurkat cells were then stained 

with Annexin V-AlexaFluor 488 and analyzed with fluorescence microscopy. The

Annexin V positive cells were counted in every sample (at least 100 cells/sample) and 

the percentage of apoptotic cells was calculated. Apoptosis calculated as relative 

apoptotic ratio, RAR as follows: RAR = % of Annexin V positive cells on HeLaGal-1 - % 

of Annexin V positive cells on HeLamock. n=3, ** p <0.01.

Figure 5. Gal-1 deficient T- cells respond weakly to the cytotoxic effect of exGal-1. T-

cells from wild type and Gal-1 knockout mice were activated with Con-A and co-

cultured with BMMSCwt or BMMSCGal1-/- cells for 16 hours. Apoptotic T-cells were 

then stained and analyzed as described under Fig. 4 B. n=3, ** p< 0.01

Figure 6. Decreased Gal-1 expression in activated SLE T-cells coincides with the poor 

apoptotic response of these cells to exGal-1. A) Gal-1 mRNA level was measured in 

activated T-cells by qPCR. HC: healthy control, n= 16, Active SLE, n= 14, Inactive 

(treated) SLE, patients in remission after treatment, n=9, ** p<0.01. Relative mRNA 

level was calculated as described in Materials and Methods. B) Apoptosis assay was 
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carried out in co-culture as described under Fig. 4B. HC n=20, active SLE n=20, 

inactive SLE n=10.  *** p<0.001, * p<0.05

Figure 7. A proposed mechanism of the interaction of inGal-1 and exGal-1 in apoptosis 

induction: Gal-1 produced by activated T- cells sensitizes the cells to the apoptotic 

effect of exogenous Gal-1. Activated T-cells expressing inGal-1 meet Gal-1 secreting 

activated B-cells and macrophages in an inflammatory environment and upon direct cell

contact T-cells may undergo Gal-1 induced apoptosis (route A). The autocrine induction 

of apoptosis can be excluded since activated T-cells do not secrete Gal-1 (route B).
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