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The trace anomaly or, equivalently, the interaction measure is the impor-
tant thermodynamic quantity/observable, since it is very sensitive to the non-

perturbative effects in the gluon plasma. It has been calculated and its analytic
and asymptotic properties have been investigated with the combined force of
analytic and lattice approaches to SU(3) Yang-Mills (YM) quantum gauge
theory at finite temperature. The first one is based on the effective potential

approach for composite operators properly generalized to finite temperature.
This makes it possible to introduce into this formalism a dependence on the
mass gap ∆2, which is responsible for the large-scale dynamical structure of
the QCD ground state. The gluon plasma pressure as a function of the mass

gap adjusted by this approach to the corresponding lattice data is shown to be
a continuously growing function of temperature T in the whole temperature
range [0,∞) with correct Stefan-Boltzmann limit at very hight temperature.
The corresponding trace anomaly has finite jump discontinuity at some char-

acteristic temperature Tc = 266.5 MeV with latent heat ϵLH = 1.41. This is a
firm evidence of the first-order phase transition in SU(3) pure gluon plasma. It
is exponentially suppressed below Tc and has a complicated and rather differ-

ent dependence on the mass gap and temperature across Tc. In the very high
temperature limit its non-perturbative part has a power-type fall off.

1. Introduction

From the very beginning and up to present days, lattice QCD remains

the only practical method to investigate QCD at finite temperature and

density from first principles. Recently it underwent a rapid progress1 (and
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references therein). However, lattice QCD is primarily aimed at obtaining

well-defined calculation schemes in order to get realistic numbers for physi-

cal quantities. One may therefore get numbers and curves for various ther-

modynamic quantities/observables, but without understanding what is the

physics behind them. Such an understanding can only come from an ana-

lytic description of the corresponding lattice data in the whole temperature

range and desirably on a general dynamical basis. So the merger between

lattice and analytical approaches to QCD at finite temperature and density

is unavoidable, i.e., they do not exclude each other: on the contrary, they

should be complementary. In other words, numbers and curves come from

thermal lattice QCD, while the analytic description of the physics behind

them comes from the dynamical theory, which is continuous QCD.

The effective potential approach for composite operators2,3 turned out

to be a very effective analytical and perspective dynamical tool for the

generalization of QCD to non-zero temperature4 (and references therein).

In the absence of external sources it is nothing but the vacuum energy

density (VED), i.e., the pressure apart from the sign. This approach is non-

perturbative (NP) from the very beginning, since it deals with the expansion

of the corresponding skeleton vacuum loop diagrams in powers of the Plank

constant, and thus allows one to calculate the VED from first principles.

The key element in this program is the extension of our paper3 to non-

zero temperature.4 This makes it possible to introduce the temperature-

dependent gluon pressure as a function of the Jaffe-Witten (JW) mass

gap.5,6 It is this which is responsible for the large-scale structure of the QCD

ground state (in what follows we will call it as mass gap, for simplicity).

The confining dynamics in the gluon matter (GM) is therefore nontrivially

taken into account directly through the mass gap and via the temperature-

dependent gluon pressure itself, but other NP effects are also present. Being

NP, the effective approach for composite operators, nevertheless, makes it

possible to incorporate the thermal perturbation theory (PT) expansion

in a self-consistent way. In our auxiliary work7 we have formulated and

developed the analytic thermal PT which allows one to calculate the PT

contributions in terms of the convergent series in integer powers of a small

αs. In this way, we have explicitly derived and numerically calculated the

first PT correction of the αs-order to the NP part of the gluon pressure

investigated and calculated previously in.4
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2. The gluon pressure Pg(T )

Gathering all our results, obtained previously4,7 and summarized in,6 the

gluon pressure Pg(T ) can be written down as follows:

Pg(T ) = PNP (T )+P s
PT (T ) = ∆2T 2 − 6

π2
∆2P ′

1(T )+
16

π2
TM(T )+P s

PT (T ),

(1)

where the integrals P ′
1(T ) and P s

PT (T ) are

P ′
1(T ) =

∫ ωeff

0

dω
ω

eβω − 1
, (2)

and

P s
PT (T ) ≡ P s

PT (∆
2;T ) = αs ×

9

2π2
∆2

∫ ∞

ΛY M

dω ω2 1

ω̄

1

eβω̄ − 1
, (3)

respectively, while the composition M(T ) = [P2(T ) + P3(T ) − P4(T )] is

defined via the following integrals

P2(T ) =

∫ ∞

ωeff

dω ω2 ln
(
1− e−βω

)
,

P3(T ) =

∫ ωeff

0

dω ω2 ln
(
1− e−βω′

)
,

P4(T ) =

∫ ∞

0

dω ω2 ln
(
1− e−βω̄

)
, (4)

where ωeff = 1 GeV and the mass gap ∆2 = 0.4564 GeV 2 for SU(3) gauge

theory have been fixed in,3,4 and this choice has been explained as well.

Here ωeff is a scale separating the low- and high frequency-momentum

regions, while ω′ and ω̄ are given by the relations

ω′ =
√

ω2 + 3∆2 =
√
ω2 +m′2

eff , m′
eff =

√
3∆ = 1.17 GeV, (5)

and

ω̄ =

√
ω2 +

3

4
∆2 =

√
ω2 + m̄2

eff , m̄eff =

√
3

2
∆ = 0.585 GeV, (6)

respectively. The so-called gluon mean number8,9
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Ng ≡ Ng(β, ω) =
1

eβω − 1
, β = T−1, (7)

which appears in the integrals (2)-(4), describes the distribution and corre-

lation of massless gluons in the GM. Replacing ω by ω̄ and ω′ we can con-

sider the corresponding gluon mean numbers as describing the distribution

and correlation of the corresponding massive gluonic excitations in the GM,

see integrals P3(T ) and P4(T ) in Eqs. (4). They are of NP dynamical ori-

gin, since their masses are due to the mass gap ∆2. All three different gluon

mean numbers range continuously from zero to infinity.8,9 We have the two

different massless excitations, propagating in accordance with the integral

(2) and the first of the integrals (4). However, they are not free, since in

the PT ∆2 = 0 limit they vanish (the composition [P2(T )+P3(T )−P4(T )]

becomes zero in this case). The gluon mean numbers are closely related to

the pressure. Its exponential suppression in the T → 0 limit and the poly-

nomial structure in the T → ∞ limit are determined by the corresponding

asymptotics of the gluon mean numbers. The low- and high-temperature

expansions for the gluon pressure (1) have been derived in.6,7

It is worth emphasizing that the effective scale ωeff is not an indepen-

dent scale parameter. From the stationary condition at zero temperature3

and the scale-setting scheme at non-zero temperature4 it follows that

ω2
eff = (0.4564)−1∆2, (8)

so it is expressed in terms of the initial fundamental scale parameter -

the mass gap. Its introduction is convenient from the technical point of

view in order to simplify our expressions which otherwise would be too

cumbersome.

Let us note that the term (3) describes the same massive gluonic exci-

tations ω̄ (6), but their propagation, however, suppressed by the αs-order.

We can consider it as a new massive excitation in the GM, denoted it as

αs · ω̄. In fact, the term P s
PT (T ) is NP, depending on the mass gap ∆2,

which is only suppressed by the αs order. When the interaction is formally

switched off, i.e., letting αs = ∆2 = 0, the above-defined composition M(T )

becomes zero, as it follows from Eqs. (4), and thus the gluon pressure (1)

itself. This is due to the normalization condition of the free PT vacuum to

zero valid at non-zero T as well.

As mentioned above, the gluon pressure (1) has been calculated and

discussed in.6,7 It is shown in Fig. 1 and its numerical values in the form
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of the corresponding Table are present in,10 where one can find the ex-

plicit expansions of its asymptotics as well. It has a maximum at some

”characteristic” temperature, Tc = 266.5 MeV . Below Tc the gluon pres-

sure is exponentially suppressed in the T → 0 limit, in accordance with

the low-temperature asymptotic of the gluon mean number (7), as noted

above. Close to Tc and at moderately high temperatures up to approxi-

mately (4− 5)Tc the exact functional dependence on the mass gap ∆2 and

the temperature T of the gluon pressure (1) remains rather complicated.

This means that the NP effects due to the mass gap are still important up

to rather high temperature. The gluon pressure Pg(T ) has a polynomial

character in integer powers of T up to T 2 at high temperatures. So it is in

agreement with the corresponding asymptotic of the gluon mean number

(7). At very high temperature its expansion is as follows:

Pg(T ) ∼ B2αs∆
2T 2 + [B3∆

3 +M3]T, T → ∞, (9)

up to unimportant here parametersB2, B3 and M3. The term ∼ T 2 has

been first introduced and discussed in the phenomenological equation of

state (EoS)11 (see also4,6,7,10,12–19 and references therein). On the contrary,

in our approach both terms ∼ T 2 and ∼ T have not been introduced by

hand. They naturally appear on a general ground as a result of the explicit

presence of the mass gap from the very beginning in the gluon analytical

EoS (1).

Concluding, let us note that the first term ∆2T 2 in the gluon pressure

(1) plays a dominant role in the region of moderately high temperatures

approximately up to (4 − 5)Tc. In the limit of very high temperatures it

is exactly cancelled by the term coming from the composition M(T ) in

Eq. (1), as it has been established in.7 In other words, the ∼ ∆2T 2 behav-

ior of Pg(T ) is replaced by ∼ αs∆
2T 2 behavior at very high temperature,

as it should be, in principle. It would be very surprised if a pure NP contri-

bution were survived in the limit of very high temperature, while for its PT

counterpart/correction it would be expected/possible. At the same time,

the second purely NP term ∼ T is suppressed in comparison with the first

PT term in the very high temperature limit in Eq. (9), indeed.

3. The full GP EoS

From Fig. 1 it clearly follows that the gluon pressure (1) will never reach the

general Stefan-Boltzmann (SB) constant 3PSB(T )/T
4 = 24π2/45 at very

high temperatures. Let us remind that the very high-temperature behavior
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Fig. 1. The gluon pressure (1) scaled (i.e., divided) by T 4/3 is shown as a function
of T/Tc (solid curve). It has a maximum at Tc = 266.5 MeV (vertical solid line). The
horizontal dashed line is the general SB constant 3PSB(T )/T 4 = 24π2/45.

(T → ∞) of all the thermodynamic quantities is governed just by the SB

ideal gas limit, when the matter can be described in terms of non-interacting

(i.e., free) massless particles (gluons). That is not a surprise, since the SB

term has been canceled in the gluon pressure from the very beginning due

to the normalization condition of the free PT vacuum to zero.4,7 Analyti-

cally this cancelation/subtraction at high temperatures (above Tc) has been

shown in,7 where it has also been shown that the massless (but not free)

gluons may be present at low temperatures (below Tc) in the GM. However,

their propagation in this region cannot be described by the SB term itself.

All this means that the SB pressure has been already subtracted from the

gluon pressure, but in a very specific way, i.e., the above-mentioned nor-

malization condition is not simply the subtraction of SB term. The gluon

pressure (1) may change its continuously falling off regime above Tc only

in the near neighborhood of Tc in order for its full counterpart to reach the

corresponding SB limit at high temperatures. The SB term is valid only at

high temperatures, nevertheless, it cannot be added to Eq. (1) above Tc,

even multiplied by the corresponding Θ((T/Tc)−1)-function. The problem

is that in this case the pressure will get a jump at T = Tc, which is not

acceptable. The full pressure is always a continuous growing function of tem-

perature at any point of its domain. This means that we should add some

other terms valid below Tc in order to restore a continuous character of the
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full pressure across Tc. This can be achieved by imposing a special continu-

ity condition on these terms valid just at Tc. Moreover, the gluon pressure

Pg(T ) itself should be additionally multiplied by the functions which are

always negative below and above Tc. This guarantees the positivity of the

full pressure below Tc, while above Tc this guarantees the approach of the

full pressure to the SB limit in the AF way, i.e., slowly and from below.

These terms will also contribute to the condition of continuity for the full

pressure. All these problems make the inclusion of the SB term into EoS

highly non-trivial. The most general way how this can be done is to add to

the both sides of Eq. (1) the term [Θ((T/Tc)−1)H(T )+Θ((Tc/T−1))L(T )],

valid in the whole temperature range, and the auxiliary functions H(T ) and

L(T ) are to be expressed in terms of PSB(T ) and Pg(T ) (see below).

The previous Eq. (1) then becomes

PGP (T ) = Pg(T ) + Θ

(
Tc

T
− 1

)
L(T ) + Θ

(
T

Tc
− 1

)
H(T ), (10)

and its left-hand side here and below is denoted as PGP (T ) (the above-

mentioned full counterpart). The gluon plasma (GP) pressure (10) is con-

tinuous at Tc if and only if

L(Tc) = H(Tc), (11)

which can be easily checked. Due to the continuity condition (11), the

dependence on the corresponding Θ-functions disappears at Tc, and the GP

pressure (10) remains continuous at any point of its domain. The role of the

auxiliary function L(T ) is to change the behavior of PGP (T ) from Pg(T )

at low (L) temperatures below Tc, especially in its near neighborhood, as

well as to take into account the suppression of the SB-type terms below Tc.

The auxiliary function H(T ) is aimed to change the behavior of PGP (T )

from Pg(T ), as well as to introduce the SB term itself and its modification

due to AF at high (H) temperatures above and near Tc. These changes

are necessary, since in the gluon pressure Pg(T ) the SB term is missing

(as described above), and it cannot be restored in a trivial way. So the

appearance of the corresponding Θ-functions in the GP pressure (10) is

inevitable together with the functions H(T ) and L(T ), playing only an

auxiliary role but still useful from the technical point of view.

The gluon pressure Pg(T ) (1), which fixes the value of the characteristic

temperature Tc = 266.5 MeV , is a necessary analytical and dynamical

input information for the GP pressure (10). On the other way around, the
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lattice pressure14 is a main numerical input information to use in order

to fix the functions L(T ) and H(T ) in Eq. (10). Our general method6,10

how to merge analytical and lattice approaches in order to understand the

physics of YM quantum gauge theories at non-zero temperature is described

in some general terms below. We proposed and developed a method of

analytical simulations which allows one to express such introduced auxiliary

functions L(T ) and H(T ) in terms of basic known functions Pg(T ) and

PSB(T ), multiplied by the so-called simulating functions ϕl(T ), ϕh(T ) and

fl(T ), fh(T ), respectively. They are to be necessary represented by the

corresponding asymptotics of the gluon mean number (7) in the low and

high temperature limits. This makes it possible to reproduce lattice data

in any requested temperature interval and to ensure the correct SB limit

for all the thermodynamic obsrvables/quantities as well.

Then we have performed the numerical simulation of the GP pressure

(1) above Tc in order to fix the function ϕh(T ) in accordance with the lattice

pressure14 in this region by using the Least Mean Square (LMS) method.20

Our procedure makes it also possible to continue the lattice pressure to the

region of very high temperatures. As a next step, we have performed the

numerical simulation of the GP pressure (1) below Tc in order to fix the

three free fitting parameters, which necessarily appear in the simulating

function fl(T ). This has been done in accordance with lattice data14 in

this region, but only very close to Tc. Our procedure makes it also possible

to continue the calculation of the GP pressure to very low temperatures,

where convincing lattice data does not exists at all. Thus, we can predict

the behavior of the lattice pressure curve up to zero temperature, knowing

only its behavior very close to Tc.

”Sewing” together such obtained two parts with the help of the relation

(11), we are coming to the analytical expression reproducing the lattice

pressure14 in the whole temperature range [0,∞) as a function of the mass

gap ∆2 as follows:

PGP (T ) = Pg(T )

+ Θ

(
Tc

T
− 1

)[
(0.015732e−µ1((Tc/T )−1) + 0.003884e−µ2((Tc/T )−1))PSB(T )− e−µ(Tc/T )Pg(T )

]
+ Θ

(
T

Tc
− 1

)
[(1− αs(T ))PSB(T )− ϕh(T )Pg(T )] , (12)

where
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µ = 0.0001, µ1 = 39.1, µ2 = 3.4, (13)

while

αs(T ) =

(
0.22037

1

t
− 0.033

ln t

t2

)
, (14)

t = 1 + 0.1929 ln(T/Tc), T ≥ Tc = 266.5 MeV, (15)

and

ϕh(T ) = 1.55 + 0.8482

(
Tc

T

)3

, ϕh(Tc) = 2.3982. (16)

The GP pressure (12) is completely known now, since the SB pressure is

PSB(T ) = (8π2/45)T 4 and the gluon pressure Pg(T ) is also exactly known,

Eq. (1). For the numerical evaluation of the GP pressure (12) in detail

see.10 For simplicity, in what follows we will omit the subscript ”GP” in

the GP pressure (12), i.e., we will put PGP (T ) ≡ P (T ). The same will be

done in the notation for the trace anomaly relation below. According to

such obtained analytical expression, the corresponding lattice pressure is

exponentially suppressed at low temperatures, it is continuous across Tc

and approaches its SB limit at high temperatures, i.e., satisfying thus to all

thermodynamics limits. In other words, the GP pressure (12) is, in fact, the

lattice pressure14 analytically expressed as a function of the mass gap and

temperature and properly continued to the regions of very low and high

temperatures, see Fig. 2.

3.1. Trace anomaly relation

A thermodynamic quantity of special interest is the thermal expectation

value of the trace of the energy momentum tensor. Equivalently, it is known

as the interaction measure and defined as follows:

I(T ) = ϵ(T )− 3P (T ), (17)

where ϵ(T ) is the energy density, which in its turn defined as ϵ(T ) =

T (∂P (T )/∂T ) − P (T ). So knowing the GP pressure (12), one can calcu-

late any other thermodynamic quantity/observable, see our works.6,10 The

importance of this thermodynamic observable is that it is very sensitive to
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Fig. 2. The GP pressure (12) is shown as a function of a = T/Tc (solid curve). The
lattice curve14 for SU(3) pressure is also shown (dashed curve). The horizontal dashed
line is the general SB constant. Both pressures are scaled in the same way, i.e., divided

by T 4/3.

the NP effects, since the corresponding pure PT contributions are exactly

cancelled in the composition (17). This can be explicitly shown by using

the GP pressure (12) above Tc, and the relation 3PSB(T ) = ϵSB(T ), see

below. Properly scaled it is shown in Fig. 3. The rapid rise of the peak (due

to the latent heat (LH) in the energy density) is exactly placed at Tc, and it

is about 2.5. In all lattice calculations it peaks at about 1.1Tc!,
14,15,17,18,21

and it is about 2.6, and almost coincides with our value in.18 The wrong

position of the lattice trace anomaly peak can be due to an ultraviolet cut-

off, the finite volume effects, etc. In this connection let us indeed remind

that in lattice simulations at any temperature it is necessary finally to go

to the continuum (physical) limit, namely lattice spacing goes to zero and

then the infinite volume limit should be taken. These are nothing else but

the removal of the ultraviolet and infrared cutoffs which is the part of the

renormalization procedure.22,23 It seems to us that our analytical method

resolves this SU(3) lattice thermodynamics artefact.

Just above Tc and up to rather high temperatures (4 − 5)Tc the NP

effects due to the mass gap are still important in the trace anomaly. Fig. 3

demonstrates rather complicated dependence of the trace anomaly on the

mass gap and temperature in this interval. The trace anomaly equation

(17), divided by T 4 is
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I(T )

T 4
= −1

3
Tα′

s(T )(SB)− 0.55
[TP ′

g(T )− 4Pg(T )]

T 4
, T > Tc, (18)

where (SB) = 24π2/45 ≈ 5.2638 is the above-mentioned SB general con-

stant/limit. So, indeed the main contribution to the trace anomaly comes

from the second NP term in Eq. (18), and it is not a simple power-type

fall off. It is mainly due to the complicated dependence of the gluon pres-

sure Pg(T ) on the mass gap and the temperature in this region, where it

cannot be approximated by some simple power-type expression. However,

this is possible to do in the limit of very high temperatures, approximately

above (4− 5)Tc. Substituting the asymptotic (9) and its derivative into the

previous equation and doing some algebra, one obtains

I(T )

T 4
∼ −1

3
Tα′

s(T )(SB) + 1.1B̄2αs

(
Tc

T

)2

+ 1.65B̄3

(
Tc

T

)3

, T → ∞,

(19)

while B̄2 and B̄3 are unimportant here constants.

Concluding, let us briefly discuss the size of the discontinuity in the

energy density, the above-mentioned LH. It is

ϵLH = 1.41 (20)

in dimensionless units (for its definition and analytical/numerical evalua-

tion, respectively, see our work10). It is worth emphasizing that the same

value (20) comes from the independent calculations of the energy density

and the trace anomaly, as it should be, since the pressure itself is a continu-

ous function across Tc, i.e., ϵLH = ∆(ϵ−3P )/T 4
c = ∆ϵ/T 4

c (here, obviously,

∆ is not the mass gap). This means that the first-order phase transition

in the GP is analytically confirmed for the first time, in complete agree-

ment with thermal SU(3) YM lattice simulations14,17,18,24 (and references

therein). The reason of such sharp changes at Tc in the derivatives of the

GP pressure is that its exponential rise below Tc is changing to the polyno-

mial rise above Tc in order to reach finally the SB limit. The value (20) is

in fair agreement with lattice ones in14,18,21,25–27 (and references therein).

This agreement is not a trivial thing, since, we have adjusted our analytical

numerical simulations with those of lattice ones in14 only for the pressure.

First of all, the energy density being derivative of the pressure, nevertheless,

is an independent thermodynamic observable, having a discontinuity at Tc,

while the pressure is a continuous function across Tc. Secondly, the lattice
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results heavily depend on how the continuum limit is to be taken and on

other details of the above-cited lattice simulations. For example, the lattice

data points closest to Tc for the entropy density may still be affected by an

upward finite-volume effect27 .

Fig. 3. The trace anomaly (17) divided by T 4 is shown as a function of T/Tc.
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