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Abstract: A numerical method is presented for the computation of spacing error bounds in
vehicle platoons. The resulted bounds can be applied to evaluate performance of specific platoon
control algorithms. The upper bound calculation is based on the computation of worst-case
induced L2-gains of systems defined between the disturbance inputs to the leader vehicle and
the spacing errors of the follower vehicles. The worst-case is defined subject to heterogeneity in
the vehicle dynamics. The method is applicable both in the frequency- and the time-domain.
The latter enables the extension of robustness analysis to a wider class of uncertainties and
communication topologies. The method is illustrated on a numerical example with leader and
predecessor following control architecture.

1. INTRODUCTION

A challenge of our times is to handle the capacity overload
of the road transportation infrastructure. One solution is
to exploit the available capacities more efficiently. In order
to increase road capacity and avoid congestions on high-
ways the vehicles can be organized in automated platoons
(Sheikholeslam and Desoer (1990),Bender (1991)). In this
paper the focus is placed on the longitudinal control of
vehicles where the control objective is to keep the distances
between the vehicles small, while guaranteeing a high
level of safety and performance. Performance and safety
are closely related terms. Disturbances and change in the
reference speed induce transients in the spacing which are
propagated along the platoon. An important condition of
scalability (the property that any number of vehicles may
join the platoon) is string stability, Swaroop and Hedrick
(1996), Shaw and Hedrick (2007), Xiao and Gao (2011)
and Ploeg et al. (2014).

Whenever string stability is established, the performance
of the automated platoon controllers can be characterized
in terms of worst-case spacing error bounds. The worst-
case is defined subject to all possible disturbances, uncer-
tainties in the modeling and heterogeneity in the set of
vehicles that constitute the platoon.

A possible choice for measuring errors is the L∞ signal
norm. A bound on the spacing error peaks may help de-
termining the safe gaps between the vehicles. A numerical
method to determine the induced L∞ norm of vehicle
platoons are presented in Rödönyi et al. (2014). They
evaluated three different controllers subject to model un-
certainty, platoon heterogeneity and communication delay,
? This paper was supported by the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences.

however the computational cost explodes exponentially as
the number of vehicles grows.

In this paper induced L2 gains are computed for the
systems defined between leader vehicle disturbances and
spacing errors. The heterogeneity in vehicle dynamics is
represented by a time-invariant uncertainty plus a common
nominal vehicle model. Since the size of the uncertainty
is fixed a priory a skew-µ analysis method is applied.
The advantage of this approach as compared to previous
results, Rödönyi et al. (2014), is that longer platoon can be
examined. The prise to pay is that the calculated bounds
are only upper-bounds (Meinsma et al. (1997)). The upper
bounds are compared to lower-bounds. It is illustrated
with the help of a numerical example that the upper-
bounds computed based on the skew-µ method are tight.

The paper is organized as follows. In Section 2 the hetero-
geneous vehicle platoon model is described with a leader
and predecessor control architecture. The skew-µ analysis
and the lower bound of the induced L2 norm are discussed
in Section 3 and tested in Section 4.

1.1 Notations

Let Ln2 denote the space of square integrable signals with
norm defined by ‖x‖22 =

∫∞
0
‖x(t)‖2dt, where ‖x(t)‖

denotes the Euclidean norm, i.e. Ln2 = {x ∈ Ln :
‖x‖2 < ∞}. The induced L2-gain of a system G is
denoted by ‖G‖∞. For linear time-invariant (LTI) stable
systems ‖G‖∞ = supω σ̄(G(jω)), where σ̄(.) denotes the
largest singular value of a matrix. In denotes the n × n
identity matrix. The state-space representation of a system

denoted by M =

[
A B
C D

]
, and the transfer function of

M is M(jω) := C(jωI − A)−1B + D. The upper linear
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fractional transformation is defined by FU (M,∆) = M22+

M21∆(I −M11∆)−1M12, where M =

[
M11 M12

M21 M22

]
. The

ith element of vector x is denoted by xi, the ith row
(column) of matrix M is denoted by Mi∗ (M∗i), the ij
element by Mij . Matrix inequality M > 0 denotes that
M is symmetric and positive definite. The transpose of a
matrix M is denoted by MT and the conjugate transpose
by M∗.

2. HETEROGENEOUS VEHICLE PLATOON MODEL

2.1 Vehicle platoon model

The basic concept of the vehicle platoon in consideration
is that the lead vehicle (indexed with i = 0) is driven by
a human driver, and the motion of the follower vehicles
(i = 1, . . . , n) are determined by on-board controllers.

The mathematical model of the ith vehicle longitudinal
dynamics is the following continuous time state-space
model (Rödönyi et al., 2014)

ṗi(t) = vi(t), (1a)
v̇i(t) = ai(t), (1b)

ȧi(t) = − 1

τi
ai(t) +

gi
τi
ui(t), (1c)

where pi, vi and ai denote position, velocity and accel-
eration, respectively. u0 denotes the acceleration demand
computed from the pedal signals of the lead vehicle, ui,
i = 1, 2, ..., n for the follower vehicles denote the acceler-
ation demand generated by the controllers. The spacing
errors between the vehicles are defined by

ei(t) = pi(t)− pi−1(t) + Li, i = 1, . . . , n (2)

where Li denotes the prescribed constant gap between the
vehicles. Without loss in generality Li can be set to zero
in the analysis.

Using the definition of spacing errors the vehicle dynamics
(1) is reformulated using state variables x0 = a0 and
xi = [ei δi ai]

T , i = 1, . . . , n, where δi = ėi,
ẋi(t) = Aixi(t) +Ai,i−1xi−1(t) +Bui ui(t), i = 0, 1, . . . , n,

(3)
where

A0 =− 1

τ0
, Bu0 =

g0

τ0
,

Ai =

 0 1 0
0 0 1

0 0 − 1

τi

 , Ai,i−1 =

[
0 0 0
0 0 −1
0 0 0

]
,

Bui =

 0
0
gi
τi

 , i = 1, . . . , n.

The open-loop platoon model with vehicle dynamics (3)
reveals the form

ẋ(t) = Ax(t) +Buu(t) +Bdu0(t), (4)
where x = [x0, x

T
1 , . . . , x

T
n ]T and u = [u1, . . . , un]T and

A=


A0 0 . . . 0
A1,0 A1 . . . 0
...

. . . . . .
...

0 . . . An,n−1 An


Bu = diag{0, Bu1 , . . . , Bun}
Bd = [Bu0 0 . . . 0]

T
.

The closed-loop vehicle platoon with the following con-
troller with constant spacing policy and leader and prede-
cessor following architecture proposed by Swaroop (1994)
is analyzed in the paper

u1(t) = −k1δ1(t)− k2e1(t) + a0(t) (5a)
ui(t) = −k1βδi(t)− k2βei(t) + ka0a0(t) + ka1ai−1(t)

− k1αδ
0
i (t)− k2αe

0
i (t), i = 2, ..., n, (5b)

where k∗ are constant parameters and

e0
i (t) := pi(t)− p0(t) =

i∑
j=0

ej(t)

δ0
i (t) := vi(t)− v0(t) =

i∑
j=0

δj(t).

The controller utilizes information from local radars and
receives acceleration information through a V2V commu-
nication network, which assumed to be lossless (no delay,
no pocket loss). Controllers (5) can be expressed as

u(t) = Kx(t) (6)
where

K =


0 −k2 −k1 0 0 0 0 . . . 0 0 0
ka0 −k2α −k1α ka1 k2η k1η 0 . . . 0 0 0
...

...
...

...
...

...
...
. . .

...
...

...
ka0 −k2α −k1α 0 −k2α −k1α 0 . . . k2η k1η 0


k1η = −k1α − k1β , k2η = −k2α − k2β .

Inserting controller (6) into the platoon model (4) the
closed-loop platoon system, denoted by Gn can be derived
in the form

ẋ(t) = (A+BuK)x(t) +Bdu0(t)

en(t) =Cx(t), (7)

where C = [ 0 0 0 0 . . . 1 0 0 ].

2.2 Platoon heterogeneity

In a heterogeneous platoon the vehicle parameters τi, gi
may be different for every i = 0, 1, . . . , n. Shaw and
Hedrick (2007) proposed an informal definition of hetero-
geneous string stability as "A heterogeneous vehicle string
is string stable if the propagating errors stay uniformly
bounded for all string lengths and vehicle type orderings."
If the platoon is heterogeneous string stable, a vehicle can
join the platoon at any location without the need for re-
considering the analysis for string stability. The number of
the possible vehicle type orderings explodes as the number
of vehicles in the platoon grows, therefore it can not be
tested efficiently.
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It is assumed that every parameter value τ̂i, ĝi is uncertain
with constraint

τ̂i ∈ [τ , τ̄ ], ĝi ∈ [g, ḡ], (8)

where τ = mini τi, τ̄ = maxi τi and g, ḡ are defined
similarly. It was shown in Rödönyi et al. (2014) that the
peak to peak gains of the platoon from u0 to ei i > 0 are
convex functions over the reasonable range of parameters,
thus it is sufficient to test the parameter vertices of the
polyhedron.

The platoon model (7) is reformulated into linear frac-
tional transformation (LFT) form for later L2-gain analy-
sis. Let uncertainty set (8) be written as

τ̂i = rτ + sτδτi (9a)
ĝi = rg + sgδgi , i = 0, 1, . . . , n, (9b)

where rτ =
τ̄+τ

2 , sτ =
τ̄−τ

2 and δτi ∈ [−1, 1], rg, sg and δgi
defined similarly. Using these equations the uncertainties
are equal to

ĝi = FU (Mg, δgi) (10a)
1

τ̂i
= FU (Mτ , δτi), (10b)

where

Mg =

[
0 sg
1 rg

]
(11a)

Mτ =

[
−sτ −sτ

1 1

]
1

rτ
. (11b)

In vehicle model (1) the uncertainties appear only in the
derivative of ai, which can be written using the uncertainty
description (9) and (10) as

ȧi = −FU (Mτ , δτi)ai + FU (Mτ , δτi)FU (Mg, δgi)ui, (12)

which equals to a single LFT defined by

ȧi = − 1

pτ
ai +

pg
pτ
ui +

1

pτ
wτi +

1

pτ
wgi ,

wτi = δτizτi ,

wgi = δgizgi ,

zτi = −sτ
pτ
wτi +

sτ
pτ

(ai − wgi − pgui),

zgi = sgui.

Using these equations the system description (7) leads to
the following LFT form

en = FU (Mn,∆n)u0, (13)

where ∆n = diag{δτ0 , . . . δτn , δg0 , . . . , δgn} and

Mn =

AM B∆ Bp
C∆ D∆ Dp∆

Cp D∆p Dp

 :=

A+ (Bu +Bb)K Bτ Bτ Bd +Bl
Cτ +DτuK Dτ Dτ Dτu0

DguK 0 0 Dgu0

C 0 0 0

 ,

Bb =



0 0 . . . 0
0 0 . . . 0
0 0 . . . 0

0
pg
pτ

. . . 0

...
...

. . .
...

0 0 . . . 0
0 0 . . . 0

0 0 . . .
pg
pτ


, Bτ =



1

pτ
0 . . . 0

0 0 . . . 0
0 0 . . . 0

0
1

pτ
. . . 0

...
...

. . .
...

0 0 . . . 0
0 0 . . . 0

0 0 . . .
1

pτ


,

Bl =

[
pg
pτ
| 0 0 0| . . . |0 0 0

]T
,

Cτ =



sτ
pτ

0 0 0 . . . 0 0 0

0 0 0
sτ
pτ

. . . 0 0 0

...
...
...

...
. . .

...
...

...
0 0 0 0 . . . 0 0

sτ
pτ


,

Dτ = diag{−sτ
pτ
,−sτ

pτ
, . . . ,−sτ

pτ
},

Dτu = diag{−sτpg
pτ

,−sτpg
pτ

, . . . ,−sτpg
pτ
},

Dτu0
=

[
−sτpg

pτ
0 . . . 0

]T
, Dgu = diag{sg, sg . . . , sg},

Dgu0
= [sg 0 . . . 0]

T
.

In matrices A and Bu, all τi and gi, i ≥ 0, are replaced
respectively by nominal values pτ and pg.

3. L2-GAIN BOUNDS

We want to compute the L2-gain of the heterogeneous
vehicle platoon: γi := ‖FU (Mi,∆i)‖∞. An upper bound
of the induced L2 norm can be computed by the skew-µ
analysis. As the number of uncertainties are increasing the
conservatism of this method is increasing too (Meinsma
et al., 1997). In order to evaluate the upper bound a
method for lower bound computation is presented.

3.1 Polytopic method for computing a lower bound of the
L2-gain

The vehicle parameter constraints (8) determine a poly-
hedron. A specific vehicle platoon j, which is a vertex of
the polyhedron, characterized by defining the sequence of
parameters λj(i) = [τj0 , τj1 , . . . , τji , gj0 , gj1 . . . . , gji ]. Let
Λ(i) denote the set of all possible sequences of param-
eters. Clearly the number of possible sequences is 4i+1.
Let the platoon system with parameters λj(i) denoted by
Gi(λj(i)). A lower bound of the L2-gain can be computed
as
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γPMi
:= max

λj(i)∈Λ(i)
‖Gi(λj(i))‖∞. (14)

3.2 Frequency-domain skew-µ analysis

For skew-µ computation the following lemma from Doyle
et al. (1982) is applicable.
Lemma 1. For all ‖∆i‖∞ ≤ 1 the LFT FU (Mi,∆i) is well-
posed, internally stable and for all ω ∈ R:

σ̄(FU (Mi(jω),∆i(jω))) ≤ γi(jω) (15)
if and only if

µ∆(Mi(jω) diag{γi(jω), I2i+2}) < γi(jω). (16)

For structured singular value computation integral quadratic
constraints (IQC) are used.
Lemma 2. (Scherer (2001)). Suppose there exist Hermi-

tian Πi and Πi
p =

[
−γ2

i 0
0 1

]
for all ‖∆i‖∞ ≤ 1 such that

∫ ∞
−∞

 ŵi(jω)
ẑi(jω)
û0(jω)
êi(jω)


∗ [

Πi(jω) 0
0 Πi

p(jω)

] ŵi(jω)
ẑi(jω)
û0(jω)
êi(jω)

 ≥ 0 (17)

holds, where wi = [wτ0 , wτ1 , . . . , wτi , wg0 , wg1 , . . . , wgi ]
T ,

zi = [zτ0 , zτ1 , . . . , zτi , zg0 , zg1 , . . . , zgi ]
T , ˆ denotes the

Fourier-transform of the signal and

[ ∗ ]
∗


Πi

11(jω) 0 Πi
12(jω) 0

0 −γ2
i (jω) 0 0

Πi
21(jω) 0 Πi

22(jω) 0
0 0 0 1

[ I
Mi(jω)

]
< 0

(18)
for all ω ∈ R. Then µ∆(Mi(jω) diag{γi(jω), I}) is less than
γi.

In case of vehicle platoon the ∆i contains real uncer-
tainties, which can be described with the following IQC
(Scherer and Weiland, 2000)

Πi(jω) =

(
−Di(jω) jGi(jω)
−jGi(jω) Di(jω)

)
(19)

and Di = D∗i > 0, Gi = −G∗i , both diagonal.

Inequality (18) is reformulated according to (19) as

[ ∗ ]
∗

 −Di(jω) 0 jGi(jω) 0
0 −γ2

i (jω) 0 0
−jGi(jω) 0 Di(jω) 0

0 0 0 1

[ I
Mi(jω)

]
< 0.

(20)
Then the induced L2 norm of system FU (Mi∆i) can be
computed as γFSMi

:= maxω{min γi(jω) subject to (20)}.

3.3 Time-domain skew-µ analysis

In this subsection the index i, which denotes the number
of the follower vehicles, is omitted for simplicity. The
frequency-domain skew-µ analysis described in Section 3.2
can be reformulated in the time-domain with the Kalman-
Yakubovich-Popov (KYP) lemma. First the dynamical
multiplier Π(jω) has to be factorized as

Π(jω) = Φ(jω)∗PΦ(jω), (21)

where P is a constant real symmetric matrix and Φ is
real rational proper stable function. The columns of Φ as
[Φ1 Φ2] have minimal state-space realizations

Φ1 =

[
A1 B1

C1 D1

]
, Φ2 =

[
A2 B2

C2 D2

]
. (22)

With this multiplier factorization the following KYP
lemma (Veenman and Scherer (2014)[Thm. 1]) is appli-
cable.
Lemma 3. Suppose that the LFT representation (13) is
well-posed. Then (13) is stable and the L2-gain is less than
γ, if there exist X,P symmetric real matrices such that

[ ∗ ]
T

 0 X 0 0
X 0 0 0
0 0 P 0
0 0 0 Πp

×


I 0 0
A1 0 B1C∆ B1D∆ B1Dp∆

0 A2 0 B2 0
0 0 AM B∆ Bp
C1 C2 D1C∆ D1D∆ +D2 D1Dp∆

0 0 Cp D∆p Dp

0 0 0 0 I


< 0 (23)

holds.

Veenman and Scherer (2014) suggested the following mul-
tiplier factorization in case of real uncertainty. Let the fac-
torization matrices Φ and P have the following structure

Φ(jω) =

[
φν(jω) 0

0 φν(jω)

]
, P =

[
−P1 P2

PT2 P1

]
, (24)

where φν = diag{φν0 , . . . , φν2i+1
}, P1 = diag{P10

, . . . ,
P12i+1

}, P2 = diag{P20
, . . . , P22i+1

}. For every uncertainty
block search separately for an appropriate φνk , k =
0, . . . , 2i+ 1 as a basis function

φνk(jω) =

[
1

1

jω − ρk
. . .

1

(jω − ρk)νk

]T
, (25)

where ρk < 0, νk ∈ N0 are the tuning parameters for
a good approximation of the dynamic multiplier. With
appropriate parameters the LMI (23) is solvable, and an
upper bound of the L2-gain is computable in the time-
domain.

To determine the parameters νk, ρk the resulting multi-
pliers from the frequency-domain analysis is used. Let
ωm m = 1, . . . , N denote the grid points of the ω inter-
val on which the inequality (20) is solved and Πk(jωm)
k = 0, 1, . . . , 2n + 1 the obtained multiplier at ωm for the
kth uncertainty block. To measure the goodness of the fac-
torization the difference Fk(m) = Φk(jωm)∗PkΦk(jωm)−
Πk(jωm) is introduced. A weighting function W (jωm) can
be applied to penalize the error of the fit at the important
frequencies where the gain, γm, is high. For a fixed ρk, νk
the following optimization problem with variables λk, Pk
is applicable to determine the goodness of the tuning
parameters
minλk (26a)[

λkI Fk(m)W (jωm)
W ∗(jωm)Fk(m) I

]
> 0, m = 1, . . . , N.

(26b)
This inequality is equivalent to σ̄(Fk(m)W (jωm)) <

√
λk,

then if λk sufficiently small an appropriate IQC factor-
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ization has been found. To determine IQC factorization
for a fixed νk parameter the optimization problem (26) is
solved, which is nonlinear in variable ρk.

4. NUMERICAL RESULTS

The vehicle platoon with n + 1 vehicles is tested. The
controller parameters are k1 = 0.7, k2 = 0.1127, k1α =
0.4642, k2α = 0.0564, k1β = 0.2358, k2β = 0.0564,
ka1 = 0.0449, ka0 = 0.9551 from Rödönyi et al. (2012).
In the numerical analysis the effect of u0 is considered
separately for every spacing error ei, i = 1, . . . , n.

Three different case of vehicle heterogeneity will be exam-
ined:

(P1) only parameter τi may differ with nominal value
rτ = 0.7 and gi = 1, i = 0, . . . , n;

(P2) only parameter gi may differ with nominal value
rg = 1 and τi = 0.7, i = 0, . . . , n;

(P3) both parameters may differ with nominal values
rτ = 0.7 and rg = 1.

Three different deviation from the nominal value of the
uncertain parameters is tested sτ = sg = 0.05, 0.1
and 0.2 (on the figures with black, red and blue color,
respectively).

The polytopic method (PM) in Section 3.1, the frequency-
domain skew-µ analysis (FSM) in Section 3.2 and the time-
domain skew-µ analysis (TSM) in Section 3.3 are tested
in the three case of uncertainties. The LFT reformulation
of the vehicle platoon system in Section 2.2 and the L2-
gain bound computation in Section 3 were presented in
case when both parameters are uncertain (P3), however
the other two cases P1 and P2 can be derived from these
easily.

i
1 2 3 4 5 6 7 8 9 10

γ
 (

u 0
→

 e
i)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Worst-case gain bounds in case of uncertain τ

PM
FSM
TSM-I
TSM-II

s
τ
=0.2

s
τ
=0.05

s
τ
=0.1

Fig. 1. L2-gain in case of uncertain τi parameters (P1)
from input u0 to the ith spacing error.

In the time-domain skew-µ analysis two different ap-
proach are considered: (i) The nonlinear optimization
problems (26) are solved with weighting functionW (jω) =
jω+1
jω+0.1 and parameter νk = 5 using Matlab function
patternsearch (on the figures denoted by TSM-I). (ii)

i
1 2 3 4 5 6 7 8 9 10

γ
 (

u 0
→

 e
i)

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Worst-case gain bounds in case of uncertain g

PM
FSM
TSM-I
TSM-II

sg=0.2

sg=0.1

sg=0.05

Fig. 2. L2-gain in case of uncertain gi parameters (P2)
from input u0 to the ith spacing error. The four
different method approximately coincide in this case.

i
1 2 3 4 5 6 7 8

γ
 (

u 0
→

 e
i)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Worst-case gain bounds in case of uncertain τ and g

PM
FSM
TSM-II

s*=0.05

s*=0.1

s*=0.2

Fig. 3. L2-gain in case of uncertain τi, gi parameters (P3)
from input u0 to the ith spacing error.

Using a fix ρk parameter the number of the basis functions
νk has to be increased for a better approximation of the
IQC (on the figures denoted by TSM-II). In the numerical
analysis for ρk = −1 the number of the basis function is
chosen as νk = 5, which is still computationally tractable.
Clearly, the first method is more time-consuming, because
to find good tuning parameters a comprehensive search is
necessary separately for every uncertainty parameter.

The L2-gain bounds from u0 to spacing errors ei are
compared on Figure 1, 2, 3, in case of P1, P2 and P3,
respectively. It can be concluded:

• The skew-µ analysis and the polytopic method is
nearly the same in case of a few vehicle, and differ
more at backward positions, i > 4. The number of
uncertainty blocks is increasing with the number of
vehicles, however, the upper bounds remain tight.
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• The vehicle platoon is more sensitive to the parameter
gi than τi.
• In case of P3 the number of the uncertainty blocks
are increasing with two by adding a new vehicle to
the platoon, therefore the skew-µ analysis is more
conservative compared to the case when only one
parameter is uncertain (P1 and P2).
• The two different time-domain skew-µ approach is
nearly coincide, however using fix tuning parameters
the computation time is much shorter.
• Both of the time-domain methods provide similar
results to the frequency-domain skew-µ method.
• The spacing errors stay bounded, therefore hetero-
geneous string stability can be deduced for this au-
tonomous vehicle platoon.

5. CONCLUSIONS

For induced L2 norm computation of heterogeneous vehi-
cle platoons a skew-µ analysis is presented in frequency-
and time-domain. The skew-µ analysis with one full com-
plex block (performance channel) and more than one real
uncertainty block is not accurate. In order to evaluate the
tightness of the upper bound, a polytopic method for lower
bound computation of the induced L2 norm is presented.

On a vehicle platoon with leader and predecessor following
control strategy the polytopic method, frequency and time
domain skew-µmethods are compared. It is shown that the
frequency-domain skew-µ analysis gives a good approxima-
tion of the L2-gain even with many uncertainty blocks, and
that using fix tuning parameters with appropriate number
of basis function the time-domain method provides nearly
the same results as the frequency-domain method with
tolerable computation time.

The time-domain skew-µ method can be extended to com-
pute the worst-case gain of a time-varying delay system
which occurs when the communication network is imper-
fect in the vehicle platoon.
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