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The Preisach function is considered as a product of two special one dimensional functions, which allows the closed form evaluation of 

the Everett integral. The deduced closed form expression is included in static and rate dependent hysteresis models. The applicability 

and accuracy of the models are discussed and demonstrated fitting measured data. The developed hysteresis models, which are freely 

available for research and educational purpose, proved to be fast enough to be incorporated in electromagnetic software. 
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I. INTRODUCTION 

he hysteresis of various magnetic materials has been widely 

investigated and several hysteresis models have been 

proposed [1]-[4]. In spite of this fact the application of the 

developed theory to actual engineering problems is challenging 

and most of the nowadays widespread commercial software 

cannot handle hysteresis. Electromagnetic simulations of 

devices with soft magnetic materials require the solution of 

nonlinear partial differential equations involving the update of 

many hysteresis models at each iteration step. Therefore 

computationally inexpensive hysteresis model is required to 

obtain solution within reasonable time [2]. 

In this paper Preisach type hysteresis models are described, 

with the Everett integral expressed in closed form [5], [6]. 

Therefore the magnetization can be expressed with a formula 

for arbitrary hysteresis loops in case of the classical Preisach 

model. The closed form Everett expression can be conveniently 

utilized in moving type [1] and rate dependent Preisach type 

hysteresis models [7]. The parameters of the models are 

identified fitting measured hysteresis loops. The applicability 

and accuracy of the models is discussed. 

II. A CLOSED FORM EXPRESSION OF THE EVERETT FUNCTION 

The macroscopic hysteresis of magnetic materials can be 

modelled as a superposition of elementary rectangular hystere-

sis operators [1]. Integrating the contribution of all rectangular 

operators the classical Preisach model provides the magnetic 

flux density B  as 
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where H  is the magnetic field intensity at instant t , the hyste-

resis operator   with 2h  switching up and 1h  switching down 

field can take the values 1  or 1 , T denotes the Preisach tri-

angle and 1 2( , )h h  is the Preisach function. Introducing the 

Everett function 
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where ,x y  is a turning point of the staircase line [1], instead of 

(1), the magnetic flux density can be calculated by addition of 

Everett functions. The Everett function can be measured [1, 7], 

however it is common to approximate the Preisach function an-

alytically and perform the integration (2) numerically [8]. In 

this paper the following expression is introduced 
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With the assumption that he switching up and down fields are 

uncorrelated, the Preisach function can be approximated as 
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which allows the evaluation of the integral (2) resulting in the 

closed form expression 
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where 
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/b ce  . When 0b  , then 1   and the Everett function (5) 

has undetermined form, which can be removed with the 

l’Hopital rule, resulting in  
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The advantage of this formulation compared to other 

mathematical expressions derived for the Everett function [9] is 

that it results in closed form expression, which includes only 

the basic arithmetic operations (addition, subtraction, 

multiplication, and division), exponentiation to a real exponent 

and logarithms. Therefore the evaluation of (5) and (6) can be 

performed without the utilization of complex mathematical 

libraries and it is fast enough to allow the incorporation of this 

model in electromagnetic field calculations software.  
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III. STATIC, MOVING AND RATE DEPENDENT HYSTERESIS 

MODELS WITH CLOSED FORM EVERETT FUNCTION 

In this section Preisach type hysteresis models, which utilize 

the closed form expression of the Everett function are presented 

and the parameters required to simulate the measured hysteresis 

loops [10] are identified. A reversible component in the form of  
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is added to the Preisach model to take into account the 

reversible part of the magnetization process. The parameters 

obtained for the classical Preisach model are summarized in 

Table I, where the fitting is performed only for the exterior 

hysteresis loop. Fig. 1 presents the measured and simulated 

hysteresis loops marked with blue and red. When all concentric 

loops are included in the optimization the fitting results in larger 

overall error. It can be observed that the outer loops fit well, 

however there is a considerable deviation in case of inner loops, 

which are closer to the demagnetized state. 

TABLE I 

THE PARAMETERS OF THE CLASSICAL PREISACH MODEL 

ia  
ib  

ic  
ik  

0.113  56.468 6.035 39.521 10  

32.224 10  30.197 284.54 0.241 

21.812 10  86.148 38.842 365.86 

 
Fig. 1. The measured and simulated hysteresis loops with the Preisach model 

The moving model improves the classical Preisach model 

through a feedback mechanism [1]. The effective magnetic field 

intensity [3] is defined with two additional parameters 

3

1 2mH H m B m B   ,  (8) 

which is passed to the classical Preisach model as input. The 

moving model leads to a more accurate fitting of all measured 

concentric hysteresis loops as it is shown in Fig. 2. The 

identified parameters are summarized in Table II. 

To take into account the frequency dependence of the 

hysteresis phenomena (e.g. the ’’fattening’’ of the hysteresis 

loops with the increase of the frequency), a rate dependent 

hysteresis model with three additional parameters ma , mb  and 

mc  is introduced [8], where the effective magnetic field 

intensity is defined with the following differential equation  
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m m m m

dH dB dH
a H H b c

dt dt dt
    . (8) 

Applying the chain rule of the differentiation, the rate of change 

of the magnetic flux density for increasing effective magnetic 

field intensities can be expressed as 
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The dynamic permeability can be expressed in closed form 

resulting in 
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where  2 /i i i i    . Similar expression is obtained when 

the effective magnetic field intensities is decreased. The full 

paper will discuss more details of the presented hysteresis 

models, which are freely available online [11]. 

TABLE II 

THE PARAMETERS OF THE MOVING MODEL 

ia  
ib  

ic  
ik  

im  

24.37 10  46.78 12.141 30.12 10  25.43 

33.16 10  0.11 236.5 0.24 11.8 

21.86 10  62.44 42.54 359.3 - 

 
Fig. 2. The measured and simulated hysteresis loops with the Moving model 
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