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Abstract 

 

Nowadays removal of hydrogen sulphide from gaseous streams by biological 

treatments is a promising alternative procedure, among them biotrickling reactor 

seems a reliable and efficient system. To maximize the performance, strains should 

have high hydrogen sulphide elimination efficiency; excellent carriers should be 

selected where the microbes can be immobilized. In this study various carriers were 

used as the support medium for the immobilization of Thiobacillus thioparus and a 

continuous biotrickling reactor was constructed and operated for H2S removal. We 

found that our systems with Mavicell and Kaldnes supports are able to remove H2S 

from the gas mixture with high efficiency (95-100 %), and the specific removal 

capacity was calculated as a high as 30-40 g S/m
3
h. 
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1. Introduction 

Biological techniques for hydrogen sulphide elimination can be applied in wide 

range and seem quite promising in certain circumstances where the aim is to remove 

„smelly” compounds. Among these components hydrogen sulphide is one of the 

most important substances, since its smelling limit value is rather low, 0.5-2.0 ppb 

[1]. 

 

Nowadays the biological removal of air pollutants has been studied intensively [2]. 

One of the intensification methods of these biosystems is the immobilization of the 

microbes in a form of biofilm, which exploits the natural bounding capability of 

certain microorganisms on a given surface, thus the pollutants can be eliminated with 

higher effectiveness [3]. The performance of an immobilized film bioreactor can be 

enhanced by selection of a proper support material for the given microorganism [4]. 

The suitable supports provide optimal conditions for the microbes, having high 

specific surface area [5].  

 

Currently natural support materials including soil, compost, peat ...etc. are often used 

as media for biofiltration [6]. Although these materials are considered as rather cost 

effective media, their practical application is still limited [7] mainly due to their 

aging which causes declining effectiveness. Therefore the novel research tendency 

leads towards the synthetic materials [8-10], including ceramic saddles polyethylene 

pall rings, synthetic foams, activated carbon, extruded diatomaceous earth pellets, 

glass beads and Ca-alginate.  
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In our experiments Mavicell-B cellulose beads, activated carbon, polyethylene rings 

(Kaldnes-K1) and alginate beads were used as support materials. All of these 

supports are synthetic materials, two of them (activated carbon and alginate) have 

already been studied, but no literature reports on application of Kaldnes-K1 and 

Mavicell-B have been found so far.  

 

The microbes can be grown onto the surface of the activated carbon, Mavicell and 

Kaldnes, thus the affinity of the bacteria to the surface area influenced highly the 

quality and thickness of the biofilm. In case of alginate, however, microbes are 

entrapped into the alginate beads (known amount of bacteria), thus it does not 

depend on the surface of the support. Hence the two different immobilization 

methods can be compared. 

 

Bacteria belonging to the Thiobacillus strains have higher hydrogen sulphide 

elimination efficiency than other sulphide oxidising microorganisms [9, 10]. In our 

preliminary experiments two colourless sulphur bacteria were studied in a batch 

system (Thiomonas intermedia, Thiobacillus thioparus). They were immobilized on 

three different supports and the operational stabilities were compared [12]. The 

results have shown that the degradation ability of immobilised Thiobacillus 

thioparus was higher both in soluble and immobilised forms. Therefore the 

experiments were continued with this bacteria aiming to construct a biotrickling 

reactor and accomplish a successful continuous system for hydrogen sulphide 

elimination from gas streams.  

 

2. Materials and methods 
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2.1. Microorganism  

 

The strain Thiobacillus thioparus was purchased from the strain collection of DSMZ 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany). It 

was grown on a special Thiomonas intermedia broth, its composition is as follows 

(g/L): NH4Cl 0.1, KH2PO4 3.0, MgCl2*6 H2O 0.1, CaCl2 0.1, Na2S2O3*5 H2O 5.0, 

yeast extract 1.0, and 1000 ml distilled water [13]. 33 °C temperature and 120 rpm 

shaking were maintained for incubation under sterile condition. The bacterium used 

sulphide as an energy source in the multistep oxidation procedure, thus oxidised 

sulphur compounds are formed, causing acidification of the system [15][16]. To 

avoid it phosphate buffer was applied to maintain pH at 5.8 (adding 0,356 g K2HPO4 

to every l broth). 

 

2.2. Immobilisation of the bacteria 

 

50 ml concentrated inocula (its total solid substance, TSS was 0.38 g/L) and 140 ml 

sterile broth were added to 70 ml sterilized support and it was incubated for 2-3 days. 

The immobilization was followed by protein determination. The bacteria 

immobilized on the support was filled into a glass column, thus the experiments were 

carried out from this point under non-sterile conditions. A “blind” column was used 

for comparison purposes, its infection was prevented by using 1.5 % sodium 

benzoate solution.  

 

2.3. Supports used 
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The first support used was alginate beads, widely used in biotechnology for 

immobilization of cells and enzymes (Figure 1) by the so called entrapment 

technique. During jellification small hollows are formed in alginate where 

biocatalysts (enzymes and cells) can be entrapped. The structure of the gel is 

compatible with the biocatalysts, thus no chemical modification is needed [16, 17].  

 

The second support, the granulated activated carbon (GAC)  was purchased from 

Airwatec s.a. (Belgium) (Figure 2). Due to its high surface area it seems also a 

promising support material for immobilisation of microorganisms [18]. The features 

are listed in Table 1. 

 

MAVICELL-B (Table 2)  is cellulose beads, purchased from Magyar Viscosagyár, 

(Nyergesújfalu, Hungary) widely used for immobilization of various microbes, 

having large adsorption surface area, thus a highly suitable support, moreover it can 

withstand to the corrosive effect of hydrogen sulphide. The cells can be bound on the 

surface of the support by adsorption. 

 

Finally Kaldnes K1 polyethylene rings (Evolution Aqua, Lancashire, UK) were used 

as supports (Figure 3), which is often applied in waste water treatment technologies, 

where biofilms are needed. its length is 7 mm, diameter 10 mm. Since the diameter 

of the column planned to use as reactor is similar, the rings were splitted into two 

halves. 

 

2.4. Designing the continuous reactor system 
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Experiments were carried out in two parallel, same volume columns (Table 3 and 

Figure 4). The columns can be divided into three parts: the first one is a thermostated 

(jacketed) reactor space containing the bacteria immobilized on the support; the 

second part is chilled by a cryostat to remove the water vapour by condensation, 

while the third part is a thermostated one again. The feed stream (model gas to be 

separated) is introduced in the bottom of the first part of the column. The hydrogen 

sulphide concentration was followed by a gas sensor, placed on the top of the column 

reactors. It is a sensitive sensor, thus it is important to maintain the temperature of 

the gas stream in the same level, moreover to remove moisture, that’s why were the 

two upper parts built in the system. 

 

Similar gas mixture (same inlet rate: 360 ml/min and H2S concentration: 80-100 

ppm) was introduced to both columns, while a broth was trickling (rate 0.7 ml/min) 

onto the support packed in the column, which was collected in the bottom of the 

column and recirculated by a peristaltic pump.  

 

The column was characterized by numerous data, summarized in Table 3. The 

average reaction time was 200-220 hours.  

 

2.5. Gas mixture used 

 

In the experiments a model gas mixture was used containing 40-44% (v/v) CO2, 1-2 

% (v/v) O2, 80-100 ppm H2S and 54-58 % (v/v) N2.  

 

2.6. Analysis 
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2.6.1. Following the gas composition 

 

The gas was introduced in the bottom of the column and went through the active 

support, thus its H2S concentration decreased. This reduction was followed by a 

FIGARO TGS 825 sensor placed on the top of the column. These TGS (Taguchi Gas 

Sensor) type sensors are based on a metal oxide, which are contaminated by some 

noble metal. These metals – upon heating – can react with the de-oxidising gases 

present (e.g.: H2S), which gives a signal in the resistance of the cell. The higher the 

gas concentration, the lower is the resistance [19]. The measuring range of the sensor 

is 0-100 ppm and it was calibrated by a Drager X-am 7000 type mobile gas analyzer.  

 

2.6.2. Protein determination 

 

Protein content was determined by the modified Folin method, which gives a blue 

colour reaction with proteins in alkali media. The reaction took 30 min and the 

solutions were measured at 720 nm. Calibration was carried out by using BSA 

protein. 

 

3. Results  

 

3.1. Alginate 

 

As a result of the immobilization procedure, Thiobacillus thioparus bacteria were 

successfully entrapped in the alginate beads, and finally 6.5-7 mg protein / g support 
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was measured. Alginate beads with the bacteria were packed into the column and 

experiments were carried out to study the H2S reduction in the gas stream. However, 

the H2S level did not decline, though the protein level has not decreased, indicating 

that the microbes were still there. It seemed that the structure of the beads has 

changed, somehow they have lost their water content and the mechanical stability. 

The volume of the beads decreased and the support was shrinking due to its own 

weight, losing the majority of the surface area. That’s why it did not work properly. 

 

Chang and co-authors have carried out similar experiments [20] with alginate where 

Thiobacillus thioparus was entrapped. They saturated the gas stream with water 

vapour before introducing it, thus the support packed did not lose its water content 

and the stability was maintained during operation. In industrial applications, 

however, the aim is to prepare a stabile, easy-to-handle and mechanically strong 

support and alginate does not seem sturdy enough here. 

 

3.2. Activated carbon 

 

The next support was activated carbon, where the bacteria were immobilized. The 

results of the experiments in the column are shown in Figure 5. As it can be seen the 

H2S was not eliminated properly, the H2S content in the gas fluctuated randomly 

(Figure 5a), the operation was not satisfactory, though the presence of the microbes 

were proven by checking the protein content (Figure 5b). It seemed again that the 

structure of the support caused the problem. The activated carbon granules were 

sticking together, they formed plugs (Figure 6) which hindered gas flowing in the 
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column. These plugs started to rise up slowly, up to the sensor. Thus we found that 

the support was not suitable for H2S elimination from the gas. 

 

3.3. Mavicell 

 

Our next support was Mavicell where the bacteria were immobilized. The beads were 

packed to the reactor and experiments were carried out with circulating the model 

gas mixture. The results are presented in Figure 7. Starting the gas introduction into 

the column, the H2S concentration in the gas stream leaving the trickling bioreactor 

was declining sharply, and finally it was stabilized at the level of 5 ppm. It means 

that in the reactor 90-95 % of the H2S was removed compared to the control column 

where no microbes were present. The bacteria on the Mavicell support worked 

effectively, their amount was slightly increased according to the data on protein 

determination (Figure 7b).  

 

During the steady state operation period the specific removal capacity (productivity) 

of the column (related to the reactor volume) was calculated as 30 g H2S/m
3
h, which 

is a similar value as Oyarzu´n et al. reported [21] using Thiobacillus thioparus 

immobilized on peat, while Ramírez et al [22] achieved lower specific capacity (14.9 

g S/m
3
h) using polyurethane foam as support, with similar removal efficiency (99,8 

%). 

 

3.4. Kaldnes K1 media 
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In case of Kaldens K1 support the experimental results were similar to the Mavicell 

(Figure 8). H2S concentration in the gas was reduced by the bacteria from the initial 

90 pm down to 0-5 ppm, which means 95-100% removal efficiency. The amount of 

microbes on the Kaldnes support was 20 % higher than in Mavicell beads (Figure 

8b). 

The specific removal capacity during the steady state operation was calculated as 35-

40 g H2S/m
3
h, which is slightly higher than it was in Mavicell. This value is even 

higher than the result of Eliasa et al. [23], who used a mixture of pig manure and 

sawdust as support, and reported 28.5 g H2S/m
3
h specific capacity with  >95% 

removal efficiency and 40.5 H2S/m
3
h specific capacity with  >90% removal 

efficiency. 

 

4. Conclusions  

 

A continuous biotrickling column reactor was designed and operated packed with 

Thiobacillus thioparus bacteria immobilized on various supports (Alginate, activated 

carbon, Mavicell and Kaldnes) for H2S elimination from gaseous streams. 

Application of Mavicell cellulose beads and Kaldnes K1 polyethylene rings as 

supports for this colourless sulphur oxidising bacteria has not been reported so far, 

hence the results obtained were compared to other supports 

 

Our experiments have proven that Thiobacillus thioparus bacteria can be 

immobilized onto these supports, among them Kaldnes K1 was found the best. We 

believe that our systems with Mavicell and Kaldnes supports are able to remove H2S 

from the gas mixture with high efficiency (95-100 %), and the specific removal 
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capacity was calculated 30-40 g S/m
3
h, which is similar to the literature data. 

Therefore we think that these biotrickling systems are suitable for H2S elimination 

from gases. Now the aim is to carry out long-term experiments (operation stability, 

reliability) using controlled oxygen concentration. Although oxygen should be 

present in these systems (since the bacteria need it), but its high level is not desirable 

(methane – oxygen mixture!), therefore in the next set of experiments we will try to 

lower its level to reach a minimum value where the systems still work properly. 
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Figure  1: Alginate beads  

 

 

 
 

Figure 2: Activated carbon granules used 

 

 

Table 1: The parameters of activated carbon 

 

Parameter Value 

Total surface area (BET) (m
2
/g) 1080 

pH 7 

Water content (%) 1,1 

Ash content (%) 8,6 

Granules Diameter (mm) 1 
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Table 2:Features of MAVICELL-B  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Kaldnes K1 polyethylene rings 

 

Table 1: Features of the bioreactor 

Feature Value 

Height of each column (mm) 250 

Diameter of each column (mm) 20 

Volume of each media (ml) 70 

Porisity of Mavicell-B (ml) 25 

Gas retention time in Mavicell-B (s) 4,1 

Porisity of activated carbon (ml) 15 

Gas retention time in activated carbon (s) 2,45 

Porisity of beads of alginat (ml) 35 

Gas retention time in beads of alginat (s) 5,7 

Porisity of Kaldnes K1 media (ml) 36 

Gas retention time in Kaldnes K1 media (s) 5,9 

Gas flow rate (ml/min) 366 

Recirculation of substrate (ml/hour) 36  

Surface loading (m
3
/m

2
h) 70 

 

Feature Value 

Regenerated cellulose content (%) 45-55 

Ash (%) 35-40 

Particle size (mm) 2-3,5  

Aggregate thickness (g/dm
3
) 250-300 

water uptake at 25 C (%) 150-200 

Special pore volume (cm
3
/g) 1.5-2  

Special pore surface area (m
2
/g) 8-10  

Swelling  

increase in diameter 1,5 fold 

increase in volume 3 fold 
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Figure 4: Set-up of the continuous biotrickling column reactor  
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(a) 

 
(b) 

Figure 5: H2S elimination by Thiobacillus thioparus immobilized on activated 

carbon (a), amount of protein on the surface of the support (b)  

 

 
 

Figure 6: The picture of the activated carbon plug in the column 
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(a) 

 
(b) 

Figure 7: H2S removal by the bacteria immobilized on Mavicell B (a), amount of 

protein on the surface of the support (b)  

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

R
e
m

o
v

a
l 
e
ff

ic
ie

n
c
y

 [
%

]

H
y

d
r
o

g
e
n

-s
u

lp
h

id
e
  

c
o

n
c
e
n

tr
a

ti
o

n
 [

p
p

m
]

E
li

m
in

a
ti

o
n

 c
a

p
a

c
it

y
 [
g

 H
2

S
 /

m
3

h
1

] 
 

Time [hour]

Thiobacillus thioparus

Control

Removal efficiency

Elimination capacity [g H2S /m3h]

0

1

2

3

4

5

6

7

8

9

10

0 72 120 216

P
r
o

te
in

 c
o

n
c
e
n

tr
a

ti
o

n
 [

m
g

/g
 s

u
p

p
o

r
t]

Time [hour]



19 

 

 
(a)  

 
(b) 

Figure 8: H2S elimination by Thiobacillus thioparus immobilized on activated 

carbon (a), amount of protein on the surface of the support (b) 
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