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Abstract

Dividing a Boolean formula into smaller independent sub-formulae can be a useful tech-

nique for accelerating the solution of Boolean problems, including SAT and #SAT. Neverthe-

less, and despite promising early results, formula partitioning is hardly used in state-of-the-art

solvers. In this paper, we show that this is rooted in a lack of consistency of the usefulness

of formula partitioning techniques. In particular, we evaluate two existing and a novel par-

titioning model, coupled with two existing and two novel partitioning algorithms, on a wide

range of benchmark instances. Our results show that there is no one-size-�ts-all solution: for

di�erent formula types, di�erent partitioning models and algorithms are the most suitable.

While these results might seem negative, they help to improve our understanding about for-

mula partitioning; moreover, the �ndings also give guidance as to which method to use for

what kinds of formulae.

1 Introduction

Dividing a problem into smaller sub-problems that can be solved independently is a technique
that works well for many hard problems [7]. Accordingly, it has been suggested to use this idea to
accelerate solving of the Boolean satis�ability (SAT) problem [5, 24, 26, 9, 17, 20, 30, 27, 28, 13]
as well as some other related problems like #SAT [4] and MAX-2-SAT [11].

Despite several promising preliminary results, formula partitioning has not become a main-
stream technique. We attribute this to the following. Most previous attempts were focusing on a
speci�c family of Boolean formulae and managed to achieve good results on those formulae. How-
ever, there are huge di�erences between di�erent formula types and therefore there is no guarantee
that the same method will work well on other formulae as well. For example, a random formula
with 200 variables and 1,000 clauses may be similarly di�cult for a state-of-the-art SAT solver
as a formula encoding a veri�cation problem with 10,000 variables and 1,000,000 clauses, but a
partitioning algorithm that can partition one of them well may not at all be appropriate for the
other. Hence, the aim of this paper is to develop a better understanding of the success factors of
formula partitioning: when is it useful at all and which partitioning method works best? As we
will see, there are several ways to partition a Boolean formula into independent sub-formulae: the
partitioning model determines what kinds of cuts will be considered (e.g., partitioning the primal
or dual hypergraph representation of the formula) and how a cut can be used to let the formula
fall into pieces; and the partitioning algorithm selects the actual variables or clauses that form a
cut.

In contrast to most previous work, we evaluate several di�erent partitioning models and par-
titioning algorithms on a wide range of benchmark instances, with the aim of an objective and
unbiased comparison. We consider two existing and a novel partitioning model, combined with two
existing and two novel partitioning algorithms (altogether 12 combinations). Ideally, we would
like to �nd a method that works well on all investigated benchmarks. However, according to

∗This paper was published in Proceedings of the 5th Pragmatics of SAT Workshop (POS-14), EasyChair Pro-
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our empirical results, none of the investigated methods yields consistently good results across the
whole range of benchmarks. This is in contrast to the success stories reported previously in the
literature; we believe that this is because using a more heterogeneous set of benchmarks, we get a
more accurate and more realistic picture than previous studies. This is also probably the reason
why formula partitioning has not found wide-spread application in state-of-the-art solvers. On
the positive side, our �ndings give an indication about which methods work well on what kinds of
benchmarks; this insight might pave the way for more successful application of partitioning-based
methods in SAT in the future.

The contributions of the paper are as follows: (i) a new partitioning model for using cuts
of the primal hypergraph representation of the formula; (ii) two new partitioning algorithms
that clearly outperform previous algorithms for partitioning the dual hypergraph representation
of large problem instances; (iii) an empirical comparison of 8 partitioning methods on a wide
range of di�erent instances, leading to a much better understanding of the capabilities of formula
partitioning than any previous study; and (iv) recommendations resulting from the empirical
results on which method to use for what kind of instances.

2 Previous work

Biere and Sinz showed that, if the formula consists of multiple disconnected parts, this can be
taken advantage of with a small change in a modern SAT solver [5]. They also showed that,
even without explicitly aiming for this, it occurs during the run of a SAT solver that the formula
becomes disconnected; if the solver recognizes this, it can make the search more e�cient.

Several researchers devised algorithms for explicitly partitioning the input formula. One of
the �rst such approaches is due to Park and Gelder: they use partitioning heuristics borrowed
from VLSI design (the Fiduccia-Mattheyses algorithm), applied to the so-called dual hypergraph
representation of the formula, meaning that the set of clauses is partitioned by the removal of
variables [26]. Their empirical results con�rm the usefulness of this approach; however, the in-
vestigated problem instances that were hard to solve at that time can be meanwhile considered
very easy. Similar methods were suggested later by Durairaj and Kalla [9] and Torres-Jimenez et
al. [30]. Other researchers also used similar techniques to de�ne a variable ordering for a SAT
solver that will lead to a divide-and-conquer behaviour [17, 20]. The primal hypergraph repre-
sentation of the problem, in which the set of variables is partitioned by the removal of clauses,
has also been considered [28, 24]. Amir and McIlraith used a graph representation similar to the
primal hypergraph, and searched for a vertex separator in it [1]. The community structure (i.e.,
a decomposition into highly connected parts with few connections among them) of SAT formulae
has also been investigated [2].

If the idea of partitioning the input formula is recursively applied to the received sub-formulae
as well, and so on, then we get a tree decomposition. Some researchers considered to generate the
whole tree decomposition, and then use this information for variable ordering during the search
[17, 24, 6]. The di�culty of this approach is that �nding an optimal tree decomposition is in itself
a tough problem.

All the above works focused on one speci�c decomposition method. Heule and Kullmann
presented a comprehensive review and comparison of multiple methods [13]. Their goal was
similar to ours; however, while their work is mostly of theoretical nature, our aim is to �nd out
what works well in practice.

It is also worth mentioning that several parallel SAT solvers are based on the idea of partitioning
the search space between the search instances [15, 23]. However, search space partitioning is not
the same as formula partitioning: e.g., for partitioning the search space into 8 parts, it is su�cient
to choose 3 variables and assign values to them in all possible ways, leading to 8 disjoint parts of
the search space. Formula partitioning is much more complex.
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3 Preliminaries

We are given n Boolean variables. A literal is a variable or its negation. A clause is the dis-
junction of literals. A formula (in conjunctive normal form) is the conjunction of clauses. An
interpretation of the variables is a function that assigns to each variable one of its two possible
values {true, false}. A solution is an interpretation which makes the formula evaluate to true.

A hypergraph is a pair (V,F), where V is a �nite, non-empty set and the elements of F are
subsets of V . The elements of V are called vertices, the elements of F are called hyperedges.

A hypergraph (V,F) is disconnected, if there is a partition V1 ∪V2 = V , V1 ∩V2 = ∅, such that
there is no hyperedge E ∈ F with E ∩ V1 6= ∅ and E ∩ V2 6= ∅. A cut in a hypergraph (V,F) is a
set of hyperedges F ′ ⊆ F , such that (V,F \ F ′) is disconnected.

In the primal hypergraph of a formula, each variable is represented by a vertex and each clause
is represented by a hyperedge. The hyperedge representing a clause c contains the vertices that
represent variables occurring (with or without negation) in c.

In the dual hypergraph of a formula, each clause is represented by a vertex and each variable
is represented by a hyperedge. The hyperedge representing a variable x contains the vertices that
represent clauses containing x (with or without negation).

Assume that the set of variables X is partitioned: X = X1∪X2, X1∩X2 = ∅. Let c be a clause
that contains variables from both X1 and X2. Let c1 denote the part of c with variables from X1

and let c2 denote the part of c with variables from X2. Then, splitting c means introducing a new
auxiliary variable zc and replacing c with the two new clauses c1 ∨ zc and c2 ∨ zc. It can be seen
easily that this transformation does not change the satis�ability of the problem instance.

4 Partitioning methods

4.1 Partitioning model

The underlying idea of all partitioning-based methods is to identify a part f of the input formula
F such that removing f would cause the formula to fall into independent pieces. Of course, f
cannot be simply removed, but the solver can be guided in such a way that it �rst assigns values
to (some of) the variables in f , so that afterwards, the formula will indeed fall into pieces that
can be solved independently. There are multiple options for choosing f and for its �removal.�
Speci�cally, we will investigate the following partitioning models:

• Dual: Find a cut of the dual hypergraph, corresponding to a set of variables, such that
removing these variables would cause the formula to fall into pieces. The SAT solver is
guided such that it assigns values to these variables �rst.

• Primal / model generation: Find a cut of the primal hypergraph, corresponding to a
set of clauses, such that removing these clauses would cause the formula to fall into pieces.
Take all variables appearing in these clauses. The SAT solver is guided such that it assigns
values to these variables �rst.

• Primal / auxiliary variables: Find a cut of the primal hypergraph, corresponding to
a set of clauses C0, such that removing these clauses would cause the formula to fall into
pieces with variable sets X1 and X2, respectively. Split all clauses in C0 with respect to the
partition (X1, X2) by introducing |C0| new auxiliary variables. The SAT solver is guided
such that it assigns values to these variables �rst.

It can be seen easily that all three methods will indeed lead to a partitioned formula. The
�rst two methods have already been used by other researchers to partition Boolean formulae. The
third method is, to our knowledge, new.
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4.2 Partitioning algorithms

In all three partitioning models, we need to �nd a cut in a hypergraph. In order for this cut to
be useful, it should ful�l two requirements: (i) its size (i.e., the number of hyperedges in the cut)
should be as small as possible and (ii) it should be a balanced cut, i.e., the two sub-hypergraphs
resulting after removal of the cut hyperedges should be of similar size. More speci�cally, each of
the two resulting sub-hypergraphs should contain at most βN vertices, where N is the number of
vertices of the original hypergraph and 1/2 < β < 1 is a given constant.

Unfortunately, �nding a balanced cut of minimal size is an NP-hard problem [21]. On the
other hand, there are well-known heuristics for this problem that have proven to be very suc-
cessful in VLSI netlist partitioning and other related applications, including the Kernighan-Lin
(KL) heuristic [19], its improved version, the Fiduccia-Mattheyses (FM) heuristic [10] and further
improvements to FM [22]. In this work, we used the FM heuristic and some of its variants because
it is a well-established method in netlist partitioning and its use in Boolean formula partitioning
has also been advocated in the literature (e.g. in [26]).

The FM heuristic works in passes. In each pass, the algorithm starts with a balanced partition
of the vertices, and makes changes to this partition in a series of steps. In each step, a vertex is
moved from one part to the other. A vertex can be moved if (i) it has not yet been moved in
the current pass and (ii) moving it to the other part will not violate the balance criterion. The
algorithm is greedy in the sense that, in each step, it selects from the vertices that can be moved
the one whose moving will most decrease the cut size. However, it makes this move even if it is
a worsening move, i.e. when even the best move will actually increase the cut size. This way,
the algorithm can escape local optima. At the end of the pass, the partition with the smallest
cut that was observed during the pass is selected and used as starting partition for the next pass.
The algorithm terminates if either a pre-de�ned number of passes have been made or the last pass
failed to decrease the cut size. By using a sophisticated data structure called gain bucket array,
one pass of the FM algorithm can be performed in linear time.

In this work, we used the following partitioning algorithms:

• FM: The original FM algorithm.

• Multi-move: An extended version of the FM algorithm, in which each vertex is allowed to
be moved k times per pass, instead of just once as in the original algorithm. Approaches of
this kind have been suggested in the literature to improve the e�ectiveness of FM [14, 8].

• Soft gain: In each step, the FM algorithm chooses the vertex with the highest gain from the
vertices that can be moved. In the original algorithm, the gain of a vertex is de�ned as the
decrease in cut size achieved by moving the given vertex to the other part. In the soft-gain
version, the gain of a vertex can be positive if, although moving it to the other part will not
decrease the cut size, but it is a move �in the right direction.� We de�ne some thresholds
0.5 < t1 < t2 < . . . < t` = 1 and corresponding soft gains 0 < g1 < g2 < . . . < g` = 1. For
a given hyperedge E with r vertices, if less than tir of its vertices are in the same part but
moving vertex v to the other part results in at least tir of the vertices of E being in the
same part, then v gets a gain of gi.

• Hyperedge moving: In this version of the algorithm, each step consists of moving all
vertices of a hyperedge to the same part. A hyperedge can be moved if it has not been
moved in the current pass and moving it does not violate the balance criterion. From the
hyperedges that can be moved, we select randomly, where the selection probability of a
hyperedge is proportional to the number of its vertices in the target part.

The �rst two algorithms are well-known and widely used hypergraph partitioning methods
[22]. The third and fourth have been developed by us in the course of this work, because our
empirical results suggested that the �rst two algorithms are not appropriate for partitioning the
dual hypergraphs of large formulae. In such hypergraphs, the number of vertices is huge (it can
easily be in the range of 105 . . . 107) compared to the number of hyperedges (usually in the range
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of 102 . . . 104), and the average size of hyperedges is also quite big (102 . . . 103). In such cases,
the gain of most vertices is zero, and thus the FM heuristic becomes meaningless. The third and
fourth algorithms above are ideas to overcome this problem. Speci�cally, the soft gain approach
helps by di�erentiating between the vertices whose �hard� gain would be all zero by encouraging
moves that will likely be useful together with other moves; whereas hyperedge moving enforces
this in a more drastic way by moving, in a single step, all vertices that are necessary for the given
hyperedge not to be cut.

Finally, it should be noted that the primal partitioning combined with model generation leads
actually to a dual cut: the variables that occur in the cut clauses build a cut in the dual hypergraph.
Thus, we can either search for a dual cut directly or �nd a primal cut and then use model generation
to identify the corresponding dual cut. One could argue that it is more e�ective to search for a
good dual cut directly in the dual hypergraph; however, because of the above-mentioned di�culties
of �nding good cuts in the dual hypergraphs, it may be better to make the detour through the
primal hypergraph. We will come back to this question later on.

5 Empirical results

We implemented the partitioning methods described above in C++. Although our implementation
does not contain any low-level optimization, we did use the gain bucket array data structure for FM
and also adapted it to the other methods to ensure a reasonable level of e�ciency. Furthermore,
instead of explicitly creating the hypergraph representations of the formulae, our methods work
directly on the formulae themselves, thus avoiding the conversion overhead.

Our aim is to compare the e�ciency and e�ectiveness of the di�erent partitioning methods on
a wide range of benchmark instances. The measurements that we describe next were carried out
on a PC with Intel Core i7 CPU Q720, 2x1.60GHz, 4 GB RAM, running Windows 7. In order to
ensure reproducibility of the results, we made available the source code of our implementations as
well as the detailed results under http://www.cs.bme.hu/~manusz/data/SAT_partitioning.

5.1 Comparison using di�erent families of benchmarks

For the �rst experiments, we used several di�erent families of benchmark instances: inductive
inference problem instances [18]; board-level routing problem instances [29]; SAT-encodings of
graph coloring problem instances, random 3-SAT instances with controlled backbone size, and
logistics and blocks world instances, from SATLIB [16] (see Table 1).

Table 1: Characteristics of the used benchmarks

Category Number of
instances

Average number
of variables

Average number
of clauses

Controlled backbone size 10 100 403
Inductive inference / big 10 1,240 16,479
Inductive inference / small 14 412 7,372
Graph coloring 12 600 2,237
Board-level routing / small 9 237 16,103
Board-level routing / big 6 418 133,802
Logistics 4 1,881 11,682
Blocks world 3 668 8,500

Our experience is that the partitioning methods give similar results on instances of the same
problem family, but may behave quite di�erently on di�erent problem families; therefore, in the
following, we give the results as averages over the investigated problem families.

First, we analyze the e�ectiveness of the primal methods. Table 2 shows the results of the four
investigated algorithms in terms of the obtained cut sizes, and Table 3 shows the corresponding
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Table 2: Average cut sizes resulting from partitioning the primal hypergraph, as percentage of the
number of all clauses

FM Multi-move Soft gain Hyperedge moving

Controlled backbone size 36.23% 36.38% 36.38% 65.38%
Inductive inference / big 0.90% 0.90% 0.90% �
Inductive inference / small 0.87% 0.87% 1.07% 24.81%
Graph coloring 8.80% 8.80% 8.80% 36.58%
Board-level routing / small 2.87% 3.00% 2.86% �
Board-level routing / big 1.40% 1.27% 1.87% �
Logistics 7.00% 6.99% 6.57% 45.05%
Blocks world 5.48% 5.71% 5.34% 43.56%

Table 3: Average runtimes of partitioning the primal hypergraph (in milliseconds)

FM Multi-move Soft gain Hyperedge moving

Controlled backbone size 10 256 108 94
Inductive inference / big 722 2,581 2,084 �
Inductive inference / small 282 2,007 390 4,853
Graph coloring 36 2,187 725 1,514
Board-level routing / small 353 3,698 470 �
Board-level routing / big 3,984 21,521 3,496 �
Logistics 1,491 3,380 1,842 23,411
Blocks world 799 2,453 1,337 25,711

runtimes. We used a timeout of 1 minute; ��� in the table means that the algorithm did not
terminate during this time. As can be seen, the hyperedge moving algorithm is useless on the
primal hypergraphs. The other three algorithms achieve very similar results, but the plain FM
algorithm is clearly better than the other two in terms of speed.

The primal hypergraphs of the investigated formulae have between 100 and 5,000 vertices
and between 400 and 140,000 hyperedges; the average size of a hyperedge is between 2 and 6.
Such hypergraphs are similar to the ones that occur in netlist partitioning for which the FM
algorithm was originally devised. This explains why the plain FM algorithm performs well on
these hypergraphs, and the other variants add only overhead without signi�cant gain. In particular,
even for the biggest problems (over 130,000 clauses), FM �nds a relatively small cut; probably,
the structured nature of these application instances contributes to this good result.

Table 4: Model generation: number of variables in the cut clauses, as percentage of the number
of all variables

Benchmarks Variables in primal cut

Controlled backbone size 97.10%
Inductive inference / big 77.39%
Inductive inference / small 43.39%
Graph coloring 48.14%
Board-level routing / small 99.09%
Board-level routing / big 99.73%
Logistics 28.55%
Blocks world 39.03%
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However, if the primal partition is used with the model generation approach, then the total
number of variables in the cut clauses is actually more important than the number of cut clauses.
Table 4 shows these numbers for the FM method (the results of the Multi-move and Soft gain
algorithms are very similar). As can be seen, even a small number of cut clauses can lead to a large
set of variables that need to be assigned values before the formula falls into pieces. This is the
case most notably for the board-level routing problems and the random instances with controlled
backbone size. On other benchmarks, e.g. the logistics instances, the model generation method
seems to work quite well.

It may be surprising that a small number of cut clauses can lead to such a high number of
variables in the cut clauses, given that the clauses are usually not big. This is explained by the
fact that the number of cut clauses is only small relative to the total number of clauses, which
can be quite high. For example, in the big board-level routing instances, the average number of
clauses is 133,802, so that the cut of size 1.40% delivered by FM means that the number of cut
clauses is 1,873 on average. Since such instances have 418 variables on average, it is no surprise
that the 1,873 cut clauses contain practically all variables.

Table 5: Auxiliary variables: growth of the formulae

Benchmarks Increase of the
nr. of variables

Increase of the
nr. of clauses

Controlled backbone size 146.00% 36.23%
Inductive inference / big 12.82% 0.90%
Inductive inference / small 13.70% 0.87%
Graph coloring 32.81% 8.80%
Board-level routing / small 147.92% 2.87%
Board-level routing / big 521.75% 1.40%
Logistics 53.75% 7.00%
Blocks world 68.07% 5.48%

When the method of auxiliary variables is used, then the issue of too many variables in the cut
clauses does not apply. However, this method su�ers from a growth of the formula, which can be
substantial in some cases, as shown in Table 5. In particular, the number of variables increases by
the number of auxiliary variables, which is equal to the number of cut clauses; thus, the resulting
percentage increase is high if the number of cut clauses is high relative to the number of variables.
Consequently, the relative increase in the number of variables is high in the same cases where
the model generation approach resulted in a high number of variables in the cut clauses: the
board-level routing and the controlled backbone instances. On the other hand, the increase in the
number of clauses (which is due to the fact that the cut clauses are split in two in this method),
is relatively small in most cases. Also, it is important to mention that an increase in the size of
the formula does not necessarily make it harder.

Having assessed the two approaches working with the primal hypergraph, let us now turn to
the dual methods.

Tables 6 and 7 show the results and runtime of the dual partitioning methods, respectively. As
can be seen, the FM and Multi-move algorithms have again very similar performance. However,
this time, the Soft gain and Hyperedge moving algorithms perform signi�cantly better: for each
problem family, the best result is achieved by either of these two. As mentioned earlier, the
dual hypergraphs of typical CNF formulae have a huge number of vertices and relatively few
but big hyperedges. As a result, the FM algorithm does not �nd non-trivial cuts in most cases.
The Soft gain and Hyperedge moving algorithms were designed speci�cally for coping with such
hypergraphs, and they can indeed �nd signi�cantly better cuts. The Hyperedge moving algorithm
�nds non-trivial cuts in all cases, even when none of the others do.

It is di�cult to make a meaningful comparison between primal and dual methods. Comparing
the primal results in Table 2 and the dual results in Table 6, one could state that the primal
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Table 6: Average cut sizes resulting from partitioning the dual hypergraph, as percentage of the
number of all variables

FM Multi-move Soft gain Hyperedge moving

Controlled backbone size 60.70% 61.30% 52.50% 71.40%
Inductive inference / big 99.79% 99.79% 64.46% 34.97%
Inductive inference / small 100.00% 100.00% 96.65% 15.14%
Graph coloring 23.96% 23.85% 22.65% 37.88%
Board-level routing / small 100.00% 100.00% 100.00% 44.31%
Board-level routing / big 100.00% 100.00% 100.00% 69.09%
Logistics 76.43% 76.65% 19.44% 37.28%
Blocks world 98.63% 98.62% 52.66% 50.52%

Table 7: Average runtimes when partitioning the dual hypergraph (in milliseconds)

FM Multi-move Soft gain Hyperedge moving

Controlled backbone size 160 191 30 8
Inductive inference / big 1,650 1,802 3,230 9,441
Inductive inference / small 180 164 172 211
Graph coloring 2,594 2,232 105 844
Board-level routing / small 687 2,123 736 152
Board-level routing / big 21,292 21,467 22,451 1,723
Logistics 2,321 1,828 4,481 3,621
Blocks world 2,523 1,508 2,797 2,173

methods yield smaller relative cuts. However, a primal cut is not used directly, but either through
model generation or with auxiliary variables, and � as we have seen before � both of these methods
incur a penalty; on the other hand, dual cuts can be used directly. It is a better idea to compare
the results of primal model generation with dual partitioning results because, as mentioned earlier,
the set of variables that appear in the clauses of the primal cut is actually a dual cut. Hence,
the results in Table 4 should be compared to the ones in Table 6. According to this comparison,
searching directly for a good dual cut is in most cases better than the dual cut induced by primal
model generation: for 4 benchmark families, Hyperedge moving yields the best dual cut, for 3
benchmark families, Soft gain is the winner, and for only one benchmark family is the dual cut
induced by primal model generation superior.

5.2 Impact on SAT solver performance

In a next set of experiments, we investigated how a SAT solver can make use of partitioning. We
used our own experimental solver, which is a simple implementation of the CDCL (constraint-
driven clause learning) approach [12], underlying most of the state-of-the-art solvers. The advan-
tage of using this solver is that it is very easy to modify and since it uses the same principles
as today's best solvers, the results obtained with this solver are likely to transfer to other CDCL
solvers as well, making it ideal for experimentation. On the other hand, the choice of the solver is
also a limitation: lacking the low-level optimization techniques of top solvers, its runtime on big
instances is prohibitively high. In the future, we de�nitely want to try the investigated partitioning
techniques also in conjunction with a state-of-the-art solver.

We extended the solver to handle partitioned formulae. For this purpose, the solver receives
as input � beside the CNF formula � three sets of variables: the cut variables (X1) and the sets
of variables of the two sub-formulae remaining after removal of the cut variables (X2, X3). The
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solver sets the priorities of the variables so that �rst the variables in X1, then the variables in X2,
and �nally the variables in X3 are assigned values. This is done using three distinct queues for
the three sets of variables. Within Xi, the VSIDS heuristic is used [25].

This way of using the partitioning information in the solver is similar to the method used by
Huang and Darwiche [17]. There is an important di�erence though: while Huang and Darwiche
use decompositions recursively to derive the whole ordering of the variable assignments, we use
only one decomposition on the top level, and leave everything else to the VSIDS heuristic. Since
VSIDS is a very successful heuristic [12], we prefer to minimize the interference on it.

Table 8: Improvement of SAT solver performance by means of partitioning
Best partition-
ing method

Improvement w.r.t.
base solver

Controlled backbone size Dual � FM 28%
Inductive inference / big Primal � model generation � FM 92%
Inductive inference / small Dual � Soft gain 35%
Graph coloring Dual � Soft gain 55%
Board-level routing / small Base solver �
Board-level routing / big Primal � model generation � FM 36%
Logistics Primal � model generation � FM 16%
Blocks world Base solver �

We compared the performance of the solver on the investigated benchmarks with the presented
partitioning methods as preprocessor and also without partitioning. The results are summarized
in Table 8. As can be seen, in most cases, one of the partitioning methods helps to reduce solver
runtime, sometimes even quite signi�cantly. In particular, the primal model generation and the
dual soft gain methods were quite e�ective. Looking also at the results on each individual instance,
not only the instance families, reveals that also several other partitioning methods (primal � model
generation � soft gain, primal � auxiliary variables � FM, dual � multi-move, dual � hyperedge
moving) proved useful in some cases. Altogether, there is no clear winner among the partitioning
methods in terms of their impact on SAT solving.

An important assumption behind formula partitioning is that we aim at small cuts. Although
our results are limited by the solver and benchmarks, they show that in most cases there is indeed
a correlation between cut size and the resulting speedup. However, there are some benchmark
families where smaller cuts do not seem to lead to higher speedup; in particular, this is the case
for the small board-level routing problems and the blocks world problems, where partitioning was
not helpful at all. This is an important area for further research.

Another important detail is that clauses learned while processing the variables in X1 may
connect variables in X2 and X3, thus corrupting the cut. Our experience is that this phenomenon
does sometimes happen, but its impact is marginal: such clauses are used for propagation in less
than 1% of the cases.

5.3 Comparison on SAT competition instances

In order to further diversify the set of investigated problem instances, we ran another series
of experiments with a subset of the problem instances from the 2013 SAT competition (http:
//www.satcompetition.org/2013/)1.

The competition benchmark instances are grouped into three categories: Application, Hard
combinatorial, and Random. Some of the competition instances (especially in the Application
category) are really huge, containing hundreds of thousands of variables and tens of millions of

1Because of the above-mentioned limitations of our solver, we tested only the partitioning algorithms, not the

solver. Testing with a state-of-the-art solver on competition benchmarks is a topic for future research.

9



clauses, and are still relatively easy to solve because of their intrinsic structure and the substantial
optimizations in state-of-the-art CDCL solvers. We did not include such huge instances in our
experiments because (i) our partitioning algorithms are not optimized for handling such large
amounts of data e�ciently and (ii) the basic idea of formula partitioning is to help exponential-time
solvers by reducing the problem size, but in such cases, solution time is certainly not exponential
in the size of the instance, making partitioning super�uous. Hence, we chose the instances from
the Application and Hard combinatorial series using the following methodology. We �rst ordered
the instances in ascending order according to their size, where size is measured as the total number
of literals in all clauses. We grouped the instances in groups of �ve, and included these groups
of instances until we encountered a group in which at least half of the investigated partitioning
methods timed out (using a timeout of 60 seconds) on at least 4 of the 5 instances. This way,
we included 70 Application instances and 60 Hard combinatorial instances. (There would have
been more Hard combinatorial benchmarks in the desired range; we reduced their number to 60
in order to avoid a bias of the results.)

Table 9: Characteristics of the used competition benchmarks

Category Number of
instances

Average number
of variables

Average number
of clauses

Average size

Application 70 11,462 50,275 159,565
Hard combinatorial 60 8,704 40,114 116,291
Random 40 801 7,848 37,732

There are two kinds of Random instances among the SAT competition benchmarks: (i) in-
stances that are relatively small but still di�cult to solve because their clauses-to-variables ratio
is near the satis�ability threshold and (ii) instances that are much bigger but their clauses-to-
variables ratio is far from the satis�ability threshold [3]. For reasons similar to the ones described
above, we included only instances of the �rst kind in our experiments. These are k-SAT instances
with k = 3, 4, 5, 6, 7; we sampled 4 satis�able and 4 unsatis�able instances from each family,
altogether 40 instances.

The characteristics of the used competition benchmarks are summarized in Table 9.

Table 10: Results on Application instances

Size of primal cut Size of dual cut
Runtime of parti-
tioning (ms)

Primal FM 5.07% 19.47% 5,881
Primal Multi-move 4.83% 18.79% 9,417
Primal Soft gain 5.08% 19.57% 6,741
Primal Hyperedge moving 84.30% 88.34% 47,489
Dual FM 63.40% 23,912
Dual Multi-move 61.87% 22,477
Dual Soft gain 40.26% 27,602
Dual Hyperedge moving 53.22% 30,808

The results on the competition benchmarks are presented in Tables 10-12. In these tables,
�Size of primal cut� refers to the number of clauses in the cut delivered by the primal partitioning
methods, relative to the number of clauses of the formula; �Size of dual cut� refers to the number
of variables in the primal cut in the case of primal methods, or the number of variables forming
the cut found by the dual methods, both relative to the number of variables of the formula. As
mentioned before, the number of variables in a primal cut is of high importance if model generation
is used; furthermore, it allows a direct comparison between primal and dual methods.
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Table 11: Results on Hard combinatorial instances

Size of primal cut Size of dual cut
Runtime of parti-
tioning (ms)

Primal FM 16.48% 60.73% 4,744
Primal Multi-move 16.66% 61.11% 6,188
Primal Soft gain 18.05% 61.60% 5,691
Primal Hyperedge moving 71.93% 92.90% 34,591
Dual FM 73.32% 12,779
Dual Multi-move 73.32% 12,542
Dual Soft gain 43.84% 13,724
Dual Hyperedge moving 61.50% 21,907

Table 12: Results on Random instances

Size of primal cut Size of dual cut
Runtime of parti-
tioning (ms)

Primal FM 64.71% 99.51% 1,427
Primal Multi-move 64.75% 99.50% 3,024
Primal Soft gain 64.75% 99.50% 1,479
Primal Hyperedge moving 89.11% 97.84% 31,991
Dual FM 91.72% 4,904
Dual Multi-move 91.72% 4,588
Dual Soft gain 90.21% 10,715
Dual Hyperedge moving 87.61% 8,246

Based on Tables 10-12, the following observations can be made:

• Primal Hyperedge moving is not a competitive method. (This is no wonder, since Hyperedge
moving was developed with speci�cally dual hypergraphs in mind.)

• The other three primal methods yield very similar results on all benchmark categories.

• Among the dual methods, Soft gain and Hyperedge moving usually outperform the other
two. Dual FM and dual Multi-move yield almost identical results.

• Similarly to our earlier experiments, the number of variables in a small primal cut can be
relatively high. This phenomenon is most apparent for Hard combinatorial benchmarks.

• Although Random benchmarks do not exhibit structure, the best dual methods can still �nd
non-trivial cuts in them.

• For Application benchmarks, primal methods work signi�cantly better than dual methods,
probably due to the large size of these benchmarks. For Hard combinatorial benchmarks,
primal and dual methods yield comparable results, but the winner seems to be the dual Soft
gain method. On the Random benchmarks, dual methods are clearly superior.

5.4 Summary of the empirical results

Our experiments show that there is no clear winner among the investigated methods. Fortunately,
the results give some indication about which method works well for what kind of formulae. Figure
1 contains the results for all 68 instances of the �rst set of experiments as well as the 170 used
competition instances, except for 4 where none of the investigated partitioning methods found
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Figure 1: The best partitioning method, as a function of the size of the instance and the number
of variables. The abbreviations are: MM: Multi-move, SG: Soft gain, HM: Hyperedge moving

a cut smaller than 100%. For each instance, the best partitioning method is de�ned as the one
yielding the smallest dual cut (for primal methods, this is the number of variables that appear in
the clauses of the primal cut); in case of ties, the method with lower runtime is the winner. The
�gure shows the winning partitioning method for each instance, as a function of the size of the
instance and the number of variables. Table 13 shows an aggregated view: it contains for each
method the number of instances on which it was best.

Table 13: Number of instances for which a given partitioning method was best

Nr. of wins

Primal FM 14
Primal Multi-move 8
Primal Soft gain 15
Primal Hyperedge moving 2
Dual FM 5
Dual Multi-move 12
Dual Soft gain 78
Dual Hyperedge moving 100

For most instances, the best method is either dual Hyperedge moving or dual Soft gain. Which
of the two works better depends on L/n, where L is the size of the formula and n is the number of
variables. This is because L/n is the average number of clauses that a variable appears in, which
is exactly the average hyperedge size in the dual hypergraph. If L/n is high (lower-right part
of the diagram), then the hyperedges of the dual hypergraph are big; for such hypergraphs, the
Hyperedge moving algorithm is indeed the most e�cient because it moves complete hyperedges in a
single step. On the other hand, if L/n is low (upper-left part of the diagram), then the hyperedges
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in the dual hypergraph are smaller, so that the more precise moves and gain calculation of the Soft
gain algorithm become better. Furthermore, if L/n is extremely low, then the dual Multi-move
method becomes even better than dual Soft gain.

There is a single region, in which primal methods clearly outperform the dual methods: when
both n and L are high (n > 5, 000, L > 200, 000). In this region, the dual methods time out
because of the extreme size of the dual hypergraph. Hence, in this region, the primal FM, primal
Multi-move and primal Soft gain methods are best.

The auxiliary variables approach is missing from this plot because it cannot be compared
directly with the other methods. However, our experience shows that this approach is only useful
if both n and L are relatively small.

6 Conclusions and future work

We presented a study of di�erent methods to partition Boolean formulae. We investigated three
partitioning models (primal � model generation, primal � auxiliary variables, dual) and four par-
titioning algorithms (FM, Multi-move, Soft gain, Hyperedge moving). We evaluated them on a
wide range of di�erent formulae. The empirical results reinforced our conjecture that none of the
methods is a clear winner. For primal partitioning, FM, Multi-move and Soft gain perform simi-
larly well. However, model generation may lead to a large set of variables that need to be assigned
a value, even if the cut clause set is small; and auxiliary variables can considerably increase for-
mula size. For dual partitioning, the Soft gain and Hyperedge moving algorithms proved best, but
even these methods result sometimes in quite big sets of cut variables. We also found that for six
of the eight benchmark families, partitioning could improve the performance of a CDCL solver,
but in those six cases, three di�erent partitioning methods were best. Using SAT competition
benchmarks, we saw a clear di�erence between the e�ectiveness of primal vs. dual methods on the
di�erent benchmark categories. We also presented a summary of the strengths and weaknesses of
the investigated methods, giving insight to predict which one(s) of the presented methods would
work best on instances of given size and number of variables.

We see several opportunities for extending this work in the future. Further algorithmic ideas
can be used to improve the presented partitioning methods or to come up with new ones. We
also plan to extend our experiments to further benchmarks, with the aim of re�ning the rules for
deciding automatically which partitioning method to use, from a portfolio of available partitioning
methods, for a given problem instance. Alternatively, multiple partitioning methods can also be
run in parallel. Also, when the formula falls into independent pieces, those pieces can be solved
in parallel. Moreover, we will investigate how a state-of-the-art SAT solver can be accelerated by
means of partitioning.
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