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ABSTRACT: A simple mechanical model of a towed rigid wheel is constructed in which the
elasticity of the king pin is considered in both the longitudinal and the lateral directions. The
equations of motion are derived and presented for the rolling case. The cornering manoeuvre of the
towed wheel is investigated with respect to the linear stability and the non-linear vibrations. Linear
stability boundary of the uniform motion is determined for different cornering radii. The sense
of the related Hopf bifurcation is determined by numerical continuation technique. Bifurcation
diagrams are composed to show the basin of attraction of the stable uniform motion.

1 INTRODUCNTION

The shimmy motion of the towed wheel is a well-known phenomenon of everyday life. The swiv-
elling wheels of shopping trolleys and baby strollers oftenshow this motion that strongly reduces
the manoeuvrability of these vehicles. But shimmy is also anunwanted vibration of bicycles,
motorcycles (Sharp et al., 2004; Cossalter, 2006) and air-plane gears (Besselink, 2000; Terkovics
et al., 2012). The simplest mechanical models of these vehicle systems, which can be efficiently
used to capture shimmy, are very similar to each other. Namely, the different combinations of
rigid/elastic wheel and rigid/elastic suspension in low degree-of-freedom mechanical models are
commonly used to analyse shimmy, and there are both analytical and numerical results that can
help to eliminate shimmy (see, for example, Pacejka (2002);Takács et al. (2008)). The majority
of these analyses focuses on the vibration around the rectilinear motion of the wheel.

It can be observed in practice that shimmy can be induced easier during cornering. On the one
hand, large perturbations of the towed wheel can emerge at the beginning stage of the cornering
when the cornering radius is suddenly changed. These large perturbation can lead to unwanted
self-excited vibration even in linearly stable parameter domain if an unstable limitcyle is also
present. On the other hand, the cornering is generally a moredisadvantageous manoeuvre relative
to the rectilinear motion due to the enhanced lateral force at the wheel/ground contact.

In this study, a low degree-of-freedom mechanical model is constructed based on Takács et al.
(2008). Here, the longitudinal elasticity of the suspension is also considered, which provides an
extra degree of freedom for the system. The linear stability of the uniform circular motion is
analysed and stability charts are presented for the different values of the cornering radius. Numer-
ical continuation technique is applied to determine the sense of the Hopf bifurcation at the linear
stability boundary.

2 MECHANICAL MODEL

The mechanical model is shown in Figure 1. A rigid wheel of radius R is attached to a rigid
caster of lengthl. The distance between the centre of gravity C of the caster andthe king pin A
is characterized bylc. The mass of the caster and the mass moment of inertia of the caster about
thez axis at C are denoted bymc andJcz, respectively. Similar notations with the subscript w are
introduced for the mass and mass moments of inertia parameters of the wheel.
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Figure 1. The mechanical model

The king pin A is driven by an elastic suspension system but it is assumed that the king pin axis
is kept normal to the ground by the suspension. Elasticities are only considered in the lateral and in
the longitudinal directions with the uniform spring stiffnessk. The suspension system is towed by
constant speedv on a circular orbit with radiusr. The lateral and the longitudinal displacements
of the king pin are described byq(t) andu(t), respectively. The caster angle is denoted byψ(t)
while the revolution of the wheel around its axis of rotationis defined byϕ(t).

The pure rolling of the wheel is considered, i.e. the wheel contact point P has zero velocity
relative to the ground (vP = 0). This kinematic constraint of rolling can be formulated as

q̇ + lψ̇ cosψ −Rϕ̇ sinψ + v
r
(u− l cosψ) = 0 ,

u̇+ lψ̇ sinψ +Rϕ̇ cosψ −
v
r
(q + l sinψ) + v = 0 .

(1)

The equations of motion of the so-formed non-holonomic system can be efficiently derived
by using the Lagrange-equation of the second kind with additional Lagrange multipliers for the
constraining forces that relates to the kinematic constraints. Another possibility, which is applied
here, is the use of the Appell-Gibbs equations, which requires the introduction of properly chosen
pseudo velocities. In our case, two pseudo velocitiesβ1 andβ2 have to be chosen since the differ-
ence of the number of the generalized coordinates and the number of the kinematic constraining
equations is two. An appropriate choice for the pseudo velocities can be:

β1 = ψ̇ and β2 = u̇ . (2)

By means of the definitions in Eqn. (2) together with the kinematic constraining equations in
Eqn. (1), one can express the generalized velocities as the functions of the generalized coordinates
and the pseudo velocities:

q̇ = 1
cosψ

(

(v
r
− β1)l − (v + v

r
q + β2) sinψ

)

−
v
r
u ,

u̇ = β2 ,

ψ̇ = β1 ,
ϕ̇ = −

1
R cosψ (v −

v
r
q + β2 − (v

r
− β1)l sinψ) .

(3)

The Appell-Gibbs method gives the governing equation of the system in the form of a system of
first order ordinary differential equations (ODEs), where state space coordinates areβ1, β2, q, u,
ψ andϕ. Due to the fact that the derivation of the equation of motionprovides extensive formulas
for our mechanical model, we only present the main steps of the derivation process.



The Appell-Gibbs equations can be formulated as

∂A

∂β̇r
= Γ r , (4)

wherer = 1, 2. The so-called energy of accelerationA can be calculated as

A = 1
2mc aC · aC + 1

2ε
T
c Jc εc + ε

T
c (ωc × (Jcωc))

+1
2mw aO · aO + 1

2ε
T
w Jw εw + ε

T
w(ωw × (Jwωw)) + . . . .

(5)

Here,aC andaO are the accelerations of the centres of gravity of the casterand wheel, respec-
tively. The notationsεc andεw refer to the angular accelerations whileωc andωw refer to the
angular velocities of the caster and the wheel, respectively. The mass moment of inertia matrices
of the caster and the wheel are denoted byJc andJw, respectively. Based on Eqn. (3), the energy
of acceleration can be calculated as the function of the pseudo accelerations (̇β1 andβ̇2), pseudo
velocities (β1 andβ2) and the general coordinates (q,u,ψ andϕ).

The pseudo forcesΓ1 andΓ2 can be calculated via the virtual power of the active forces.In
our case, the spring forces at the king ping have only non-zero virtual power, namely:

δP = F
T
A δvA ≡ Γ1 δβ1 + Γ2 δβ2 , (6)

whereδ denotes virtual quantities,FA is the force that acts on the king pin andvA is the velocity
of the king pin. The pseudo forces can be calculated as

Γ1 = klq/ cosψ ,
Γ2 = k(q tanψ − u) .

(7)

Based on Eqn. (4), the following equations can be obtained after some algebraic manipulation:
(

Jcz + Jwζ +mc(l − lc)
2
)

β̇1

+mc(l−lc)
cosψ

(

β1
2l sinψ − (v + v

r
(q + 2l sinψ)− β2)β1

)

−
v
r

mc(l−lc)
cosψ

(

v − v
r
(q − l sinψ) + β2

)

− kl (q cosψ + u sinψ) = 0 ,

−
Jwξ+(mc+mw)R2

R2cos2ψ

(

β̇1l sinψ + β̇2

)

+
(

mc(l−lc)
cosψ −

Jwξ+(mw+mc)R2

R2cos3ψ l
)

β1
2

+
(

v
r

(

2mc(l−lc)
cosψ −

Jwξ+(mw+mc)R2

R2cos3ψ sinψ
)

+ Jwξ+(mw+mc)R2

rR2cos3ψ (vq − rβ2) sinψ
)

β1

−
v
r

Jwξ+(mc+mw)R2

R2cos2ψ β2 tanψ + v2

r2
Jwξ+(mw+mc)R2

R2cos2ψ (q tanψ − u) + k(q tanψ − u)

+v2

r2

(

mc(3l−lc)+2mwl+mc(l−lc) cos 2ψ
2cos3ψ + Jwξl

R2cos3ψ −
Jwξ+(mw+mc)R2

R2cos3ψ r sinψ
)

= 0 .

(8)

These coupled to Eqn. (3) describe the motion of our mechanicalmodel uniquely. Since the wheel
rotation angleϕ does not appear in the equations, which means thatϕ is a cyclic coordinate,ϕ
can be eliminated. Thus, the system can be investigated in a five dimensional state space.

3 LINEAR STABILITY ANALYSIS

The equations of motion Eqns. (3) and (8) can be rearranged asẋ = f(x), and the fix points of
the system can be calculated by means off(x0) = 0. In engineering point of view, we can say
that we look for the uniform motion of the towed cornering wheel, which motion is characterized
by q(t) ≡ q0, u(t) ≡ u0 andψ(t) ≡ ψ0 while the wheel rotation angle can be given asϕ(t) =
ω0t. After the substitution of these into the governing equations (Eqns. (3) and (8)), we obtain
transcendent algebraic equations with respect toq0, u0, ψ0 andω0. Thus, the uniform motion can
be determined numerically only.

Let us consider the parameters of a realistic swivelling wheel: mw = 0.3519 kg, mc =
0.0668 kg, Jwξ = 4.63 × 10−5 kgm2, Jwζ = 2.38 × 10−5 kgm2, Jcz = 3.48 × 10−6 kgm2,
R = 0.04m, lc = 0.012m andk = 100N/m.

In Figure 2, the coordinates characterizing the uniform motion are plotted against the towing
speedv for the caster lengthl = 0.08m and turning radiusr = 1m. As it can be seen the
longitudinal displacementu0 of the king pin is practically zero, which suggests that thisdegree
of freedom of our mechanical model can be neglected. On the contrary, it can be shown that the
longitudinal degree of freedom has qualitative effect on the linear stability of the towed wheel.
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Figure 2. The variation of the uniform motion with respect tothe towing speed forl = 0.08m and
r = 1m.

In order to investigate the linear stability of the uniform motion, the equations of motion are
linearised around this motion, and the eigenvalues of the Jacobian are calculated. A stability chart
is shown in Figure 3. The stability boundaries are constructedin the plane of the towing speedv
and caster lengthl for different cornering radiir. The stability chart is shaded forr = 1m, the
shaded domain is linearly stable. In case of the rectilinearmotion (r → ∞), there exist a critical
caster length over it the uniform motion is stable for any speed (see in Taḱacs et al. (2008)). In case
of cornering, there always exists a critical speed over it the uniform motion is linearly unstable
independently of the caster length. The smaller the turning radius, the smaller this critical speed.
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Figure 3. Linear stability chart in the plane of the towing speedv and caster lengthl for different cornering
radii r

In our study, we consider the pure rolling of the wheel without any restriction to the contact
force at the contact point P. In order to check that the determined uniform motion can exist in
practice, the contact force that emerge in case of the uniform motion is calculated. The friction
forceFf and the normal forceN are

Ff =
v2

r2 cosψ0

√

(

J2

wξ

R4 (u0 + (r − q0) tanψ0 −
l

cosψ0
)2 + (mwl+mclc)2

l2
(q0 − r + l sinψ0)2

)

,

N = −FAz + (mw +mc)g ,

(9)

respectively, whereFAz is the vertical force that acts on the king pin due to the vertical load of
the towed wheel. The acceleration of gravity isg = 9.81m/s2. Using these formulas we marked
the boundary of the rolling (vP = 0 andFf < µsN ) and the sliding cases in Figure 4 for the
static coefficient of frictionµs = 1 and for different values of the vertical force. The curves are
constructed for the turning radiusr = 1m. As it can be observed, the calculated uniform motion
can exist for realistic vertical loads of the wheel.
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Figure 4. The boundary between the rolling and the sliding domain illustrated in the linear stability chart
for different vertical loads

4 NUMERICAL BIFURCATION ANALYSIS

The governing equation of the system are implemented in the numerical bifurcation software
AUTO (Doedel et al., 1997) and the behaviour of the towed wheel is investigated in the non-linear
domain too.
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Figure 5. Linear stability chart with a bifurcation diagram

The linear stability boundary of uniform motion correspondsto a Hopf bifurcation, which sense
is determined numerically in our study. Figure 5 shows the bifurcation diagram together with the
linear stability chart. The towing speed is used as bifurcation parameter and the amplitude of
the caster angleAmpψ is used to characterize the uniform motion and the periodic solutions.
In the bifurcation diagram, stable and unstable solutions are plotted by solid (green) and dashed
(red) curves, respectively. As it can be seen, the sense of the Hopf bifurcation is subcritical (i.e.
unstable limitcycle exists), which means that large enoughperturbation can lead to unwanted
vibrations even in the linearly stable domain. The upper and lower bifurcation branches refers to
the maximal and minimal caster angles that corresponds to the unstable periodic solution.

Let us investigate the effect of the cornering radius on the unstable periodic solution. Figure 6
shows bifurcation diagrams for the caster lengthl = 0.08m. Bifurcation branches are plotted
for different cornering radii. In order to make the comparison easier, the angle of the caster is
calculated relative to the uniform motion, i.e.Ampψ−ψ0

is calculated and illustrated in these
bifurcation diagrams. Thus, the basins of the attraction of the uniform motion can be compared.
As it can be observed in the figure, the cornering radius does not have relevant effect on the
amplitude of the unstable periodic solutions at low speed far from the linear stability boundary.
A small asymmetry of the periodic solution can also be observed, namely, perturbations that have
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Figure 6. Bifurcation diagrams for different cornering radii

the same magnitude and different directions may lead to qualitatively different motions. But this
asymmetry is practically not relevant in the investigated parameter domain.

5 CONCLUSIONS

It can be established that the cornering manoeuvre of the towed rigid wheel is a worse scenario
than the rectilinear motion at least with respect to linear stability. Former studies also showed
that linear stability analyses can not discover all the important dynamical behaviour of towed
wheels. Bifurcation analyses (see, for example, Takács et al. (2008)) can unhidden parameter
ranges, where the linear stability is guaranteed but large amplitude vibrations coexist too. The
non-linear analysis of the cornering manoeuvre does not provide similar properties of the towed
wheels without considering any damping or the sliding of thewheel.
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