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Stability of towed wheels in cornering manoeuvre
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ABSTRACT: A simple mechanical model of a towed rigid wheel isistoucted in which the
elasticity of the king pin is considered in both the longihad and the lateral directions. The
equations of motion are derived and presented for the gotlase. The cornering manoeuvre of the
towed wheel is investigated with respect to the linear stglind the non-linear vibrations. Linear
stability boundary of the uniform motion is determined fdifetent cornering radii. The sense
of the related Hopf bifurcation is determined by numeriaahtinuation technique. Bifurcation
diagrams are composed to show the basin of attraction otalidesuniform motion.

1 INTRODUCNTION

The shimmy motion of the towed wheel is a well-known phenomesfeeveryday life. The swiv-
elling wheels of shopping trolleys and baby strollers otbow this motion that strongly reduces
the manoeuvrability of these vehicles. But shimmy is alsauawanted vibration of bicycles,
motorcycles (Sharp et al., 2004; Cossalter, 2006) and airepyjears (Besselink, 2000; Terkovics
et al., 2012). The simplest mechanical models of these \&hidtems, which can be efficiently
used to capture shimmy, are very similar to each other. Ngnttie¢ different combinations of
rigid/elastic wheel and rigid/elastic suspension in lowme-of-freedom mechanical models are
commonly used to analyse shimmy, and there are both arellyic numerical results that can
help to eliminate shimmy (see, for example, Pacejka (200&Kacs et al. (2008)). The majority
of these analyses focuses on the vibration around theineetilmotion of the wheel.

It can be observed in practice that shimmy can be induceeéredsiing cornering. On the one
hand, large perturbations of the towed wheel can emergesdigbinning stage of the cornering
when the cornering radius is suddenly changed. These laryeripetion can lead to unwanted
self-excited vibration even in linearly stable parametemdin if an unstable limitcyle is also
present. On the other hand, the cornering is generally a disagdvantageous manoeuvre relative
to the rectilinear motion due to the enhanced lateral fot¢keawheel/ground contact.

In this study, a low degree-of-freedom mechanical modebistructed based on Taés et al.
(2008). Here, the longitudinal elasticity of the suspensalso considered, which provides an
extra degree of freedom for the system. The linear stabilitthe uniform circular motion is
analysed and stability charts are presented for the differaues of the cornering radius. Numer-
ical continuation technique is applied to determine thessaf the Hopf bifurcation at the linear
stability boundary.

2 MECHANICAL MODEL

The mechanical model is shown in Figure 1. A rigid wheel of radiuis attached to a rigid
caster of lengtli. The distance between the centre of gravity C of the castettankiling pin A

is characterized b¥.. The mass of the caster and the mass moment of inertia of ther cd®ut
thez axis at C are denoted by. and.J.., respectively. Similar notations with the subscript w are
introduced for the mass and mass moments of inertia paresradtthe wheel.
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Figure 1. The mechanical model

The king pin A is driven by an elastic suspension system batassumed that the king pin axis
is kept normal to the ground by the suspension. Elasticitiesaly considered in the lateral and in
the longitudinal directions with the uniform spring stiéfssk. The suspension system is towed by
constant speed on a circular orbit with radius. The lateral and the longitudinal displacements
of the king pin are described hy(t) andu(t), respectively. The caster angle is denoted/ij¥)
while the revolution of the wheel around its axis of rotatismalefined byp(t).

The pure rolling of the wheel is considered, i.e. the wheeltattnpoint P has zero velocity
relative to the groundv(p = 0). This kinematic constraint of rolling can be formulated as

qti—hbcosz/J—Rgbsinw—&—%(u—ZCOS@ZJ):O, (1)
U+ 1Y siny + Rpcosp — 2(q +Isiney) +v = 0.

The equations of motion of the so-formed non-holonomic systan be efficiently derived
by using the Lagrange-equation of the second kind with amthli Lagrange multipliers for the
constraining forces that relates to the kinematic conggsaAnother possibility, which is applied
here, is the use of the Appell-Gibbs equations, which reguine introduction of properly chosen
pseudo velocities. In our case, two pseudo velocitieand g, have to be chosen since the differ-
ence of the number of the generalized coordinates and théewoh the kinematic constraining
equations is two. An appropriate choice for the pseudo u&saan be:

fr=¢ and fr=1d. (2)
By means of the definitions in Eqn. (2) together with the kinecnednstraining equations in

Eqgn. (1), one can express the generalized velocities asrtlsgdus of the generalized coordinates
and the pseudo velocities:

0= goep (2 =Bl = (v + 2q + B2) sinep) — Lu,
U= 52 )
: 3
b =B, ®)
= —qrep (V= L+ Bo— (£ — By)lsing).
The Appell-Gibbs method gives the governing equation of ftetesn in the form of a system of
first order ordinary differential equations (ODES), wherdestpace coordinates abe, 52, ¢, u,

1 andyp. Due to the fact that the derivation of the equation of mopoovides extensive formulas
for our mechanical model, we only present the main stepseofiéinivation process.




The Appell-Gibbs equations can be formulated as

0A
= FT 9 (4)
P,
wherer = 1, 2. The so-called energy of acceleratidircan be calculated as
A= %mcac ac —|— 1T I e +s Tlwe x (Jewe))
(5)
+2mwao ao+ J Ew + &y ( x(waW))+....
Here,ac andag are the accelerations of the centres of gravity of the castdrwheel, respec-
tively. The notationg. ande,, refer to the angular accelerations while andw,, refer to the
angular velocities of the caster and the wheel, respegtiVéle mass moment of inertia matrices
of the caster and the wheel are denotedpyndJy,, respectively. Based on Eqn. (3), the energy

of acceleration can be calculated as the function of thequsaacelerationsi and ), pseudo
velocities (3; and ;) and the general coordinateg:(,:> and).

The pseudo force$’; andI’» can be calculated via the virtual power of the active fortes.
our case, the spring forces at the king ping have only noo-zietual power, namely:

6P =Fova =T16B1 + 260, (6)

whered denotes virtual quantitie®, 5 is the force that acts on the king pin and is the velocity
of the king pin. The pseudo forces can be calculated as

I'y = klg/ cosp,
F;:k(qtanw—u). (7)

Based on Eqgn. (4), the following equations can be obtained safime algebraic manipulation:
<ch + Jw( + mc(l - lc)2> /81
+mUl) (6120 sin g — (v+ ¢ (g + 2Asin ) — 5a)B1)
—%% (v — 2(q — lsiny) + ﬂz) — Kkl (gcostp +usiny) =0,
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2me(l=l)  Jyet(mytm)R2 . Jwe+(my+me)R? :
(2 (Brell) - et tmal® iy ) 4 Lot (5 — 1By)sing ) By
—%%62 tan®y) + 3 % (gtant) —u) + k(g tanty — u)
2 (me(3l—lc)+2myl4+mc(I—l.) cos 2 Juel Jw wtme) R?
+% (m ( ) n;co:;Z ( )COS L + R2coi3¢ - §+](%7;:o:37£ ) 7 sin ¢) =

These coupled to Egn. (3) describe the motion of our mechamigdél uniquely. Since the wheel
rotation anglep does not appear in the equations, which meansghiata cyclic coordinatey
can be eliminated. Thus, the system can be investigated ie difivensional state space.

3 LINEAR STABILITY ANALYSIS

The equations of motion Egns. (3) and (8) can be rearrange&d-ad(x), and the fix points of
the system can be calculated by mean$(af)) = 0. In engineering point of view, we can say
that we look for the uniform motion of the towed cornering whevhich motion is characterized
by q(t) = qo, u(t) = up andyy(t) = 1y while the wheel rotation angle can be givengg) =
wot. After the substitution of these into the governing equai¢Eqgns. (3) and (8)), we obtain
transcendent algebraic equations with respegg tag, 1o andwg. Thus, the uniform motion can
be determined numerically only.

Let us consider the parameters of a realistic swivelling Whee, = 0.3519kg, m. =
0.0668 kg, Jye = 4.63 x 107 kgm?, Jy¢ = 2.38 x 107" kgm?, J., = 3.48 x 10 6 kgm?,
R =0.04m, [, = 0.012m andk = 100 N/m.

In Figure 2, the coordinates characterizing the uniform amtre plotted against the towing
speedv for the caster lengthh = 0.08 m and turning radius: = 1m. As it can be seen the
longitudinal displacement, of the king pin is practically zero, which suggests that tegree
of freedom of our mechanical model can be neglected. On thegany, it can be shown that the
longitudinal degree of freedom has qualitative effect anlihear stability of the towed wheel.
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Figure 2. The variation of the uniform motion with respectthe towing speed fof = 0.08 m and
r=1m.

In order to investigate the linear stability of the unifornotion, the equations of motion are
linearised around this motion, and the eigenvalues of tbehlan are calculated. A stability chart
is shown in Figure 3. The stability boundaries are construictéide plane of the towing speed
and caster lengthfor different cornering radi. The stability chart is shaded for= 1m, the
shaded domain is linearly stable. In case of the rectilineation (- — o), there exist a critical
caster length over it the uniform motion is stable for anyesh@see in Takcs et al. (2008)). In case
of cornering, there always exists a critical speed overdtuhiform motion is linearly unstable
independently of the caster length. The smaller the turradgus, the smaller this critical speed.
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Figure 3. Linear stability chart in the plane of the towingsgdv and caster lengthfor different cornering
radii r

In our study, we consider the pure rolling of the wheel withany restriction to the contact
force at the contact point P. In order to check that the deterthuniform motion can exist in
practice, the contact force that emerge in case of the umifaotion is calculated. The friction
force I+ and the normal forc&/ are

2

J2 m. mele .
Fr = (LS% \/<I§f(u0 + (r — qo) tantp — Cosle)Q 4 ¢ WZJ;Q cle)? (go —r+ lsmdjo)2> , )

N:_FAz+(mw+mc)gv

respectively, wherd’, , is the vertical force that acts on the king pin due to the gattioad of
the towed wheel. The acceleration of gravityjis= 9.81 m/s?. Using these formulas we marked
the boundary of the rollingp = 0 and F; < usN) and the sliding cases in Figure 4 for the
static coefficient of frictionus = 1 and for different values of the vertical force. The curves are
constructed for the turning radists= 1 m. As it can be observed, the calculated uniform motion
can exist for realistic vertical loads of the wheel.
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Figure 4. The boundary between the rolling and the slidingaia illustrated in the linear stability chart
for different vertical loads

4 NUMERICAL BIFURCATION ANALYSIS

The governing equation of the system are implemented in timeenoal bifurcation software
AUTO (Doedel et al., 1997) and the behaviour of the towed Wisaavestigated in the non-linear
domain too.
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Figure 5. Linear stability chart with a bifurcation diagram

The linear stability boundary of uniform motion correspotala Hopf bifurcation, which sense
is determined numerically in our study. Figure 5 shows therbiition diagram together with the
linear stability chart. The towing speed is used as bifuocaparameter and the amplitude of
the caster angldmp,, is used to characterize the uniform motion and the periodigti®ns.

In the bifurcation diagram, stable and unstable solutiorgp#otted by solid (green) and dashed
(red) curves, respectively. As it can be seen, the sensedfldipf bifurcation is subcritical (i.e.
unstable limitcycle exists), which means that large enopgtturbation can lead to unwanted
vibrations even in the linearly stable domain. The upper amet bifurcation branches refers to
the maximal and minimal caster angles that correspondstariktable periodic solution.

Let us investigate the effect of the cornering radius on tretalsle periodic solution. Figure 6
shows bifurcation diagrams for the caster lengte 0.08 m. Bifurcation branches are plotted
for different cornering radii. In order to make the companisaasier, the angle of the caster is
calculated relative to the uniform motion, i.&mp,,_ o is calculated and illustrated in these
bifurcation diagrams. Thus, the basins of the attractiomefuniform motion can be compared.
As it can be observed in the figure, the cornering radius doefhaee relevant effect on the
amplitude of the unstable periodic solutions at low speedréan the linear stability boundary.
A small asymmetry of the periodic solution can also be ol=#rmamely, perturbations that have
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Figure 6. Bifurcation diagrams for different corneringirad

the same magnitude and different directions may lead tdtqtieély different motions. But this
asymmetry is practically not relevant in the investigatathmeter domain.

5 CONCLUSIONS

It can be established that the cornering manoeuvre of thedawid wheel is a worse scenario
than the rectilinear motion at least with respect to lingabiity. Former studies also showed
that linear stability analyses can not discover all the irtgpt dynamical behaviour of towed
wheels. Bifurcation analyses (see, for example,ataket al. (2008)) can unhidden parameter
ranges, where the linear stability is guaranteed but langglitude vibrations coexist too. The
non-linear analysis of the cornering manoeuvre does natigeasimilar properties of the towed
wheels without considering any damping or the sliding ofilnieel.
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