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Abstract Diophantine sets, i.e. sets of positive integers A with the property
that the product of any two distinct elements of A increased by 1 is a perfect
square, have a vast literature, dating back to Diophantus of Alexandria. The
most important result states that such sets A can have at most five elements,
and there are only finitely many of them with five elements. Beside this, there
are a large number of finiteness results, concerning the original problem and
some of its many variants. In this paper we introduce the notion of, and prove
finiteness results on so called (F,m)-Diophantine sets A, where F is a bivariate
polynomial with integer coefficients, and instead of requiring ab + 1 to be a
square for all distinct a, b ∈ A, the numbers F (a, b) should be full m-th powers.
The particular choice F (x, y) = xy + 1 and m = 2 gives back the original
problem.
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1 Introduction

A set A of positive integers is called a Diophantine set if the product of any
two of its distinct elements increased by 1 is a perfect square. There are many
interesting results in the literature concerning Diophantine sets and its gener-
alizations. The first Diophantine quadruple, the set {1, 3, 8, 120}, was found by
Fermat. Baker and Davenport [2] proved that Fermat’s set cannot be extended
to a Diophantine quintuple. A folklore conjecture is that there does not exist a
Diophantine quintuple. Dujella [9] proved that there are no Diophantine sex-
tuples and only finitely many Diophantine quintuples. Bugeaud and Dujella
[5] considered sets of positive integers with the property that the product of
any two of its distinct elements increased by 1 is an m-th power, where m ≥ 2
is an integer, and they obtained absolute upper bounds for the size of such
sets (e.g. there are no quadruples with this property for m ≥ 177). Several
authors considered also the sets where the products plus 1 are (arbitrary) per-
fect powers (see e.g. [3,15,18]). For other generalizations of Diophantine sets
and corresponding references see [10] and [11, Section D29].

There are some other classical problems of similar shape. Erdős and Moser
asked whether for every n there exist n distinct integers such that the sum
of any two is a perfect square. There is no known upper bound for the size
of such sets, and, on the other hand, several examples of sextuples with that
property are known [13,7] (see also [11, Section D.15]). We also mention that
Bugeaud and Gyarmati [6] considered the problem of finding upper bounds
for the sets A of integers such that a2 + b2 is a perfect square for all distinct
a, b ∈ A. In all mentioned problems, it is known that the corresponding sets
are finite (in some cases we even know an explicit upper bound for the size of
these sets). However, there are some obvious variants which allow infinite sets
(e.g. sets for which ab is a perfect square for all a, b ∈ A).

In this paper, we deal with the following extension of the problem. Let
F ∈ Z[x, y] and m be an integer with m ≥ 2. A set A ⊆ Z is called an
(F,m)-Diophantine set if F (a, b) is an m-th power for any a, b ∈ A with a 6= b.
Further, we call a set A ⊆ Z an (F, ∗)-Diophantine set if F (a, b) is a perfect
power for any a, b ∈ A with a 6= b. Note that in the latter case the exponents
of the powers are allowed to be different. Note that in this generality the
assumption A ⊆ Z instead of A ⊆ N is natural. However, as one can easily
see, the results concerning the classical case F (x, y) = xy+ 1 and m = 2 after
obvious modifications would remain valid in this context, too.

In the paper we provide various finiteness results for (F,m)-Diophantine
sets. First we give general, but non-effective finiteness results for the size of
such sets. In fact we give a complete qualitative characterization of all poly-
nomials F for which there exist infinite (F,m)-Diophantine sets. In the case
where F is a binary form not of special shape, we provide effective (though
not explicit) results for the size of F -Diophantine sets, too. Finally, when F
is a quartic polynomial of certain type, we give explicit and numerical results
for (F, 2)-Diophantine sets A.
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2 Results

As it is well-known, Z[x, y] is a unique factorization domain (shortly UFD).
This follows from a classical theorem of Gauss, saying that a polynomial ring
over a UFD is also a UFD.

Let F (x, y) ∈ Z[x, y] and write

F (x, y) = P1(x, y)t1 . . . Pk(x, y)tk ,

where the polynomials Pi(x, y) (i = 1, . . . , k) are distinct irreducible elements
of Z[x, y], and t1, . . . , tk are positive integers. Throughout the paper, we shall
write Fm(x, y) for the m-free part of F (x, y), defined as

Fm(x, y) = P1(x, y)t
′
1 . . . Pk(x, y)t

′
k

where m ≥ 2 is an arbitrary integer, and the exponents t′i are integers with
0 ≤ t′i < m and t′i ≡ ti (mod m) (i = 1, . . . , k). Further, the power-free part
F ∗(x, y) of F (x, y) is the product of those Pi(x, y) for which ti = 1. Finally,
rad(F (x, y)) will denote the radical of F , that is, the product of distinct irre-
ducible divisors of F .

Theorem 2.1. Let F (x, y) ∈ Z[x, y].

(i) Put Gm(x, y) = rad(Fm(x, y)). Assume that

max(degx(Gm(x, y)),degy(Gm(x, y))) ≥ 3. (1)

Then every (F,m)-Diophantine set is finite.
(ii) Assume that

max(degx(F ∗(x, y)),degy(F ∗(x, y))) ≥ 3. (2)

Then every (F, ∗)-Diophantine set is finite.

In the next theorem we give a complete characterization of the possible
shapes of pairs (F,m) for which an infinite (F,m)-Diophantine set exists.

Theorem 2.2. Let F (x, y) ∈ Z[x, y] be a non-constant polynomial, and m be
an integer with m ≥ 2. Assume that there exists an infinite (F,m)-Diophantine
set A. Then we have one of the following cases:

(i) m is even, and Fm(x, y) = (ax2 + bx + c)m/2(ay2 + by + c)m/2, where
a, b, c ∈ Z with a 6= 0;

(ii) m is even, and Fm(x, y) = (ax2 + bx+ c)m/2 or (ay2 + by + c)m/2, where
a, b, c ∈ Z with a 6= 0;

(iii) m is even, and Fm(x, y) = (ax + b)m/2(cx + d)m/2(ay + b)m/2 or (ax +
b)m/2(ay + b)m/2(cy + d)m/2, where a, b, c, d ∈ Z with ac 6= 0;

(iv) m is even, and Fm(x, y) = (ax+ b)m/2(cy+d)m/2, where a, b, c, d ∈ Z with
ac 6= 0;

(v) Fm(x, y) = s(ax+ b)t
′
1(ay + b)t

′
2 , where s, a, b ∈ Z with sa 6= 0;

(vi) Fm(x, y) = s(ax+ b)t
′
1 or s(ay + b)t

′
1 , where s, a, b ∈ Z with sa 6= 0;.
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Remark. We note that for every case (i) - (vi) above, one can construct infinite
(F,m)-Diophantine sets. This is demonstrated by the following examples.

(i)-(ii) Let m be an arbitrary even integer and a, b, c be arbitrary such that the
equation ax2 + bx+ c = z2 has infinitely many solutions. Writing A for the
set of solutions in x, we clearly obtain an infinite (F,m)-Diophantine set
in both cases (i) and (ii).

(iii)-(iv) Let m be arbitrary even integer, and a = b = d = 1, c = 2. As it is
well-known, there exist infinitely many integers z such that both z+ 1 and
2z + 1 are squares. Then the set A of these integers z is clearly an infinite
(F,m)-Diophantine set in both cases (iii) and (iv).

(v)-(vi) Let m, t′1, t
′
2 be arbitrary, and s = a = b = 1. Then the set A = {zm − 1 :

z ∈ N} is clearly an infinite (F,m)-Diophantine set in both cases (v) and
(vi).

Observe that Theorem 2.1 does not give a bound for the size of an (F,m)-
Diophantine (or (F, ∗)-Diophantine) set A, it provides only finiteness of such
sets A. In the case when F (x, y) is a binary form, we can give an explicit
version of Theorem 2.1.

Theorem 2.3. Let m ≥ 2 be an integer and F ∈ Z[x, y] be a binary form,
whose m-free part is not of the form

(i) c(x− αy)a(x− βy)b;
(ii) cg(x, y)m/2, where g(x, y) has at most four distinct roots;

(iii) cg(x, y)m/3, where g(x, y) has at most three distinct roots;
(iv) c(x− αy)m/2g(x, y)m/4, where g(x, y) has at most two distinct roots;
(v) c(x− αy)ag(x, y)m/2, where g(x, y) has at most two distinct roots;

(vi) c(x− αy)m/2(x− βy)am/3(x− γy)bm/r where r ≤ 6;

where α, β, γ and c are integers, a, b and r are non-negative integers such that
the exponents im/j are always integers, and g(x, y) is a binary form with
integer coefficients. Then for any (F,m)-diophantine set A we have

|A| < C(F,m),

where C(F,m) is a constant depending only on F and m.

Finally, we deal with quartic polynomials of certain types. For stating our
results in this direction, we need to introduce some notation. Let

F (x, y) = (f1x
2 + f2xy + f3y

2 + f4x+ f5y + f6)2 + f7x+ f8y + f9, (3)

where fi ∈ Z, i = 1, 2, . . . , 9. We define

P1(x, y) = 2(f1x
2 + f2xy + f3y

2 + f4x+ f5y + f6)

−(f7x+ f8y + f9) + 1,

P2(x, y) = 2(f1x
2 + f2xy + f3y

2 + f4x+ f5y + f6)

+(f7x+ f8y + f9)− 1.
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We assume that the equations P1(x, y) = 0 and P2(x, y) = 0 define non-
degenerate ellipses, that is

∆1 :=

∣∣∣∣∣∣
2f1 f2

2f4−f7
2

f2 2f3
2f5−f8

2
2f4−f7

2
2f5−f8

2 2f6 − f9 + 1

∣∣∣∣∣∣ 6= 0,

∆2 :=

∣∣∣∣∣∣
2f1 f2

2f4+f7
2

f2 2f3
2f5+f8

2
2f4+f7

2
2f5+f8

2 2f6 + f9 − 1

∣∣∣∣∣∣ 6= 0

and∣∣∣∣2f1 f2
f2 2f3

∣∣∣∣ > 0, (2f1 + 2f3)∆1 < 0, (2f1 + 2f3)∆2 < 0.

(4)

Szalay [19] characterized the structure of the integral solutions of the Dio-
phantine equation

F (x, y) = z2. (5)

He proved the following result.

Lemma 2.1. If (x, y, z) ∈ Z3 is a solution of equation (5), then P1(x, y) > 0
and P2(x, y) > 0 implies f7x+ f8y + f9 = 0.

That is he showed that if (x, y, z) ∈ Z3 is a solution of equation (5), then
either (x, y) is an inner point of the ellipse defined by P1, that is P1(x, y) ≤ 0,
or (x, y) is an inner point of the ellipse defined by P2, that is P2(x, y) ≤ 0, or
(x, y) is a point on the line f7x + f8y + f9 = 0. In our theorem we need the
equations of the horizontal and vertical tangent lines to the ellipses defined by
P1(x, y) = 0 and P2(x, y) = 0. The horizontal tangent lines to P1 are defined
by

y = h1 and y = h2,

where h1, h2 are the roots of the polynomial

4
(
f22 − 4 f1f3

)
x2 + 4 (2 f2f4 − 4 f1f5 − f2f7 + 2 f1f8)x

+4 f24 − 16 f1f6 − 4 f4f7 + f27 + 8 f1f9 − 8 f1.

Similarly, the horizontal tangent lines to P2 are defined by

y = h3 and y = h4,

where h3, h4 are the roots of the polynomial

4
(
f22 − 4 f1f3

)
x2 + 4 (2 f2f4 − 4 f1f5 + f2f7 − 2 f1f8)x

+4 f24 − 16 f1f6 + 4 f4f7 + f27 − 8 f1f9 + 8 f1.

The vertical tangent lines to P1 are given by

x = v1 and x = v2,
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where v1, v2 are the roots of the polynomial

4
(
f22 − 4 f1f3

)
x2 − 4 (4 f3f4 − 2 f2f5 − 2 f3f7 + f2f8)x

+4 f25 − 16 f3f6 − 4 f5f8 + f28 + 8 f3f9 − 8 f3.

In case of P2 the vertical tangent lines are given by

x = v3 and x = v4,

where v3, v4 are the roots of the polynomial

4
(
f22 − 4 f1f3

)
x2 − 4 (4 f3f4 − 2 f2f5 + 2 f3f7 − f2f8)x

+4 f25 − 16 f3f6 + 4 f5f8 + f28 − 8 f3f9 + 8 f3.

Define

H1 = min{h1, h2, h3, h4},
H2 = max{h1, h2, h3, h4},
V1 = min{v1, v2, v3, v4},
V2 = max{v1, v2, v3, v4}.

Now we state our theorem for (F, 2)-Diophantine sets in case of the quartic
polynomial (3).

Theorem 2.4. If A is an (F, 2)-Diophantine set, where F is defined by (3),
then

|A| ≤ max{bH2 −H1c, bV2 − V1c}+ 2.

Based on the previous theorem we provide some numerical results, too.

Theorem 2.5. Let F (x, y) be a quartic polynomial defined by (3) satisfying
conditions given by (4) such that F (x, y) = F (y, x), f1 > 0 and |fi| ≤ 5 for
i = 1, 2, . . . , 9. If A is an (F, 2)-Diophantine set having at least four elements
then we have

[f1, f2, f3, f4, f5, f6, f7, f8, f9] A [f1, f2, f3, f4, f5, f6, f7, f8, f9] A

[1, 0, 1,−2,−2,−4, 4, 4,−4] {0, 1, 3,−2} [1, 0, 1,−2,−2,−2,−4,−4, 4] {0, 1, 2,−1}
[1, 0, 1,−2,−2, 0, 4, 4,−4] {0, 1, 2,−1} [1, 0, 1,−1,−1,−4, 4, 4, 0] {1, 2,−1,−2}

[1, 0, 1, 0, 0,−4,−4,−4,−4] {0, 1,−1,−2} [1, 0, 1, 0, 0,−4, 4, 4,−4] {0, 1, 2,−1}
[1, 0, 1, 0, 0,−2,−4,−4, 4] {0, 1, 2,−1} [1, 0, 1, 0, 0,−2, 4, 4, 4] {0, 1,−1,−2}
[1, 0, 1, 1, 1,−4,−4,−4, 0] {1, 2,−1,−2} [1, 0, 1, 2, 2,−4,−4,−4,−4] {0, 2,−3,−1}

[1, 0, 1, 2, 2,−2, 4, 4, 4] {0, 1,−1,−2} [1, 0, 1, 2, 2, 0,−4,−4,−4] {0, 1,−1,−2}
[1, 1, 1,−4,−4,−3, 4, 4, 0] {2, 3, 4,−2} [1, 1, 1,−2,−2,−4,−4,−4, 1] {0, 2, 4,−2}

[1, 1, 1, 2, 2,−4, 4, 4, 1] {0, 2,−4,−2} [1, 1, 1, 4, 4,−3,−4,−4, 0] {2,−4,−3,−2}
[2, 0, 2,−3,−3,−4,−4,−4, 4] {0, 1, 2,−1} [2, 0, 2,−3,−3,−2, 4, 4,−4] {0, 1, 2,−1}
[2, 0, 2,−1,−1,−4,−4,−4, 4] {0, 1, 2,−1} [2, 0, 2, 1, 1,−4, 4, 4, 4] {0, 1,−1,−2}

[2, 0, 2, 3, 3,−4, 4, 4, 4] {0, 1,−1,−2} [2, 0, 2, 3, 3,−2,−4,−4,−4] {0, 1,−1,−2}
[2, 2, 2,−5,−5,−4, 4, 4,−4] {0, 1, 3,−1} [2, 2, 2, 5, 5,−4,−4,−4,−4] {0, 1,−3,−1}
[3, 0, 3,−4,−4,−4, 4, 4,−4] {0, 1, 2,−1} [3, 0, 3, 4, 4,−4,−4,−4,−4] {0, 1,−1,−2}



Finiteness results for F -Diophantine sets 7

3 Proofs

3.1 Proof of Theorem 2.1

To prove Theorem 2.1 we need three lemmas. The following result is in fact
well-known, however, for the convenience of the reader we indicate the main
steps of its proof, as well.

Lemma 3.1. Let H(x, y) be a square-free polynomial in Z[x, y], of degree n ≥
1 in x. Then apart from finitely many integers u, the polynomials H(x, u) ∈
Z[x] have n distinct roots.

Proof. Write

H(x, y) = an(y)xn + · · ·+ a1(y)x+ a0(y)

with ai(y) ∈ Z[y] for i = 0, 1, . . . , n with an(y) not identically zero. Excluding
finitely many possibilities, we may clearly assume that u is not a root of
an(y). Let T := Q(y) be the rational function field in y (field of fractions of
polynomials in Z[y]). Then Z[x, y] can be embedded into T [x] in a natural way.
Suppose that for some u ∈ Z the polynomial H(x, u) has multiple roots. Then
u is obviously a solution to the equation

D(y) := Discx(H(x, y)) = 0. (6)

This is equivalent to saying that

Resx(H(x, y), H ′(x, y)) = 0.

Thus D(y) is identically zero if and only if H(x, y) and H ′(x, y) have a com-
mon root over T . (For details about this and certain forthcoming facts about
polynomials in two variables, see e.g. [12].) Here L′(x, y) denotes the deriva-
tive of L(x, y) ∈ Z[x, y] with respect to x. This, in a standard way, yields that
H ′(x, y) and H(x, y) have a common factor in Z[x, y]. Since H(x, y) is square-
free in Z[x, y], we can write H(x, y) = P1(x, y) · · ·Pr(x, y) for some irreducible
polynomials in Z[x, y]. Then we have

H ′(x, y) =

r∑
i=1

P ′i (x, y)

r∏
j=1

j 6=i

Pj(x, y).

Thus one can easily check that H(x, y) and H ′(x, y) have no common factors
in Z[x, y], which means that D(y) is not identically zero. Hence our claim
follows.

The next result is a classical theorem of LeVeque [14]. Note that an effective
version follows from a result of Brindza [4].
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Lemma 3.2. Let f(x) ∈ Z[x], m ≥ 2, and let α1, . . . , αr be the (distinct)
roots of f , with multiplicities e1, . . . , er, respectively. Write mi = m/ gcd(m, ei)
(i = 1, . . . , r), and assume that the roots are ordered such that m1 ≥ · · · ≥ mr.
Suppose that (m1, . . . ,mr) is neither of the form (t, 1, . . . , 1), nor of the shape
(2, 2, 1, . . . , 1). Then the superelliptic equation

f(x) = zm

has only finitely many solutions in integers x, z.

Our last lemma needed to prove Theorem 2.1 is due to Schinzel and Tijde-
man [16].

Lemma 3.3. Let f(x) ∈ Z[x] with at least two distinct roots. Suppose that
the integers x, z,m with |z| > 1 and m ≥ 0 satisfy

f(x) = zm.

Then m is bounded by a constant depending only on f .

Now we are ready to give the proof of our first result.

Proof of Theorem 2.1. (i) Assume first that m = 2. Note that in this case we
have Gm(x, y) = F2(x, y). Without loss of generality, we may assume that
n := degx(F2(x, y)) ≥ 3. Let Y be the set of integers u for which F2(x, u) has
less than n distinct roots. Then, by Lemma 3.1, we know that Y is finite. Let
A be an (F, 2)-Diophantine set, having at least |Y | + 1 elements. Then there
is a y0 in A which is not in Y . Now using a classical theorem of Baker [1], we
know that the equation F2(x, y0) = z2 has at most N solutions in integers x,
where N is an explicitly computable constant depending only on F and y0.
Thus A has at most N + 1 elements, and the theorem follows.

Let now m ≥ 3. Without loss of generality we may assume that r :=
degx(Gm(x, y)) ≥ 3. Let again Y denote the set of integers y such that
Gm(x, y) has less than r roots (in x). Assume that |A| > |Y |. Then there exists
a y0 ∈ A which is not in Y . Consider the polynomial Fm(x, y0). Obviously,
it has r ≥ 3 distinct roots, α1, . . . , αr, say, having multiplicities e1, . . . , er,
respectively, with ei < m (i = 1, . . . , r). Thus, since r ≥ 3, from Lemma 3.2
we get that the equation

Fm(x, y0) = zm

has at most finitely many solutions. This clearly implies the statement also in
this case.

(ii) Suppose that A is an infinite (F, ∗)-Diophantine set. Without loss of
generality we may also assume that degx(F ∗(x, y)) ≥ 3. By Lemma 3.1, we
may choose a y0 ∈ A such that the polynomial F (x, y0) has at least three
distinct roots. Then, for infinitely many x ∈ A we have

F ∗(x, y0) = zm

with |z| > 1. This by Lemma 3.3 implies that here m is bounded by a constant
depending only on F and y0. However, then we get a contradiction by Lemma
3.2, and the statement follows.
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3.2 Proof of Theorem 2.2

Now we give the proof of our second theorem.

Proof of Theorem 2.2. Theorem 2.1 implies that both degx(Gm(x, y)) ≤ 2 and
degy(Gm(x, y)) ≤ 2, where Gm(x, y) is the radical of Fm(x, y), the m-free part
of F (x, y). We distinguish several cases, according to the shape of

Fm(x, y) = sP1(x, y)t
′
1 . . . Pk(x, y)t

′
k . (7)

Here s is an m-th power free non-zero integer, and we assume that Pi(x, y)
(i = 1, . . . , k) is non-constant. We may further assume that the polynomial
Pi(x, y) (i = 1, . . . , k) is also primitive (i.e. the gcd of its coefficients is one).
By the degree condition on Gm(x, y) we clearly have k ≤ 4.

In our arguments we shall frequently use the obvious fact that any (F,m)-
Diophantine set A is also an (F̂ ,m)-Diophantine set, where

F̂ (x, y) = F (x, y)F (y, x). (8)

Further, throughout the proof we shall assume that A is an infinite (F,m)-
Diophantine set.

Suppose first that k = 4. Then we may assume that

P1(x, y) = a1x+ b1, P2(x, y) = a2x+ b2,

P3(x, y) = a3y + b3, P4(x, y) = a4y + b4

with integers ai, bi, such that (a1, b1) 6= (a2, b2), (a3, b3) 6= (a4, b4) and gcd(ai, bi) =
1, ai > 0 (i = 1, 2, 3, 4). Further, in a similar manner as in the proof of The-
orem 2.1, by Lemma 3.2 we immediately get that m is even and t′1 = t′2 =
t′3 = t′4 = m/2 is also necessarily valid, otherwise every (F,m)-Diophantine
set is finite. Further, using (8), and applying the same argument to F̂ (x, y),
by Lemma 3.2 without loss of generality we may write (a1, b1) = (a3, b3) and
(a2, b2) = (a4, b4). Hence (7) can be written as

Fm(x, y) = s(ax2 + bx+ c)m/2(ay2 + by + c)m/2,

with a > 0. Here obviously s2 is an m-th power, so we can write s = rm/2 with
some integer r. For X ∈ A, write uX for the square free part of aX2 + bX + c.
Then by the shape of Fm(x, y) we have that

ruXuY , ruY uZ , ruXuZ

are all squares, for any X,Y, Z ∈ A. Taking the product of these numbers,
we obtain that r3 is also a square. This yields that r is also a square, whence
s is an m-th power. However, since s is assumed to be m-th power free, this
implies s = ±1. As a > 0, we have that up to finitely many exceptions,
aX2 + bX + c > 0. Recalling that m is even, this implies that s = 1 must be
valid, and we are in case (i).
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Suppose next that k = 3. Here we have two subcases to distinguish. Assume
first that we have

P1(x, y) = a1xy + a2x+ a3y + a4, P2(x, y) = a5x+ a6, P3(x, y) = a7y + a8,

where a1, . . . , a8 are integers with gcd(a1, a2, a3, a4) = gcd(a5, a6) = (a7, a8) =
1, a5 > 0, a7 > 0, and one of a1, a2, a3 is non-zero. Similarly as before, we
readily get again that m is even and t′1 = t′2 = t′3 = m/2. Further, if a1 6= 0,
then one can easily show that there exist three distinct y1, y2, y3 ∈ A\{−a8/a7}
such that a1xyi + a2x+ a3yi + a4 have distinct roots (in x) for i = 1, 2, 3, and
none of these roots equals −a6/a5. Then using Lemma 3.2 we get that the
equation

F (x, y1)F (x, y2)F (x, y3) = z2

has only finitely many solutions in x, which contradicts the assumption that
A is infinite. Hence we may assume that a1 = 0. Further, a similar argument
shows that a2a3 = 0 must also be valid. Assume that a3 = 0, the case a2 = 0
is similar. Using now (8), in the usual way we get that (a7, a8) is one of
(a2, a4), (a5, a6). So we obtain that Fm(x, y) is of the form

s(ax+ b)m/2(cx+ d)m/2(ay + b)m/2.

Here we may assume that a and c are positive. Since s must obviously be an
m/2-th power, merging s into the term (cx+ d)m/2, we are in the case (iii).

The other case with k = 3 is when

P1(x, y) = a1x+ a2, P2(x, y) = a3x+ a4, P3(x, y) = a5y
2 + a6y + a7,

with integers a1, . . . , a7 such that a1, a3, a5 are positive, (a1, a2) 6= (a3, a4)
and gcd(a1, a2) = gcd(a3, a4) = gcd(a5, a6, a7) = 1. Note that here the role of
x and y could be interchanged. As previously we obtain that m is even and
t′1 = t′2 = t′3 = m/2. Now using (8), as P3(x, y) is assumed to be irreducible,
we get a contradiction.

Suppose next that k = 2. Then we need to distinguish several possibilities.
Note that in all cases the roles of x and y could be switched.

If P1(x, y) = a1xy+a2x+a3y+a4 and P2(x, y) = a5xy+a6x+a7y+a8 with
integers a1, . . . , a8 under the usual assumptions, then we have two options.
Similarly as earlier, we obtain that either m is even, t′1 = t′2 = m/2, and
a1 = a3 = a5 = a7 = 0, or a1 = a3 = a5 = a6 = 0. In the first case
we are in case (ii). In the latter case we distinguish two subcases. Using (8),
either m is even and t′1 = t′2 = m/2, and we are in case (iv), or we have
(a, b) := (a2, a4) = (a7, a8). Now we have

F (x, y) = s(ax+ b)t
′
1(ay + b)t

′
2 ,

and we are in case (v).
In the case P1(x, y) = a1x

2 + a2x + a3 and P2(x, y) = a4y + a5 we easily
get that m is even and t′1 = m/2. Then using (8) we get a contradiction.
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Finally, in the case P1(x, y) = a1x
2+a2x+a3 and P2(x, y) = a4y

2+a5y+a6
with a1 > 0 and a4 > 0, using (8) by a simple calculation we get that we are
in case (i).

When k = 1 then similarly as above, using (8), we easily get that we are
in case (ii) or (vi).

3.3 Proof of Theorem 2.3

To prove our third theorem we need the following lemma, which is a simple
consequence of a deep result due to Darmon and Granville [8].

Lemma 3.4. Let m ≥ 2 be a fixed integer, and let f(x, y) be a binary form
with integral coefficients, whose m-free part is not of the form

(i) c(x− αy)a(x− βy)b;
(ii) cg(x, y)m/2, where g(x, y) has at most four distinct roots;

(iii) cg(x, y)m/3, where g(x, y) has at most three distinct roots;
(iv) c(x− αy)m/2g(x, y)m/4, where g(x, y) has at most two distinct roots;
(v) c(x− αy)ag(x, y)m/2, where g(x, y) has at most two distinct roots;

(vi) c(x− αy)m/2(x− βy)am/3(x− γy)bm/r where r ≤ 6;

where α, β, γ and c are integers, a, b and r are non-negative integers such that
the exponents im/j are always integers, and g(x, y) is a binary form with
integer coefficients. Then the equation

f(x, y) = zm

has only finitely many solutions in coprime integers x, y.

Now we are ready to give the

Proof of Theorem 2.3. Since F is not of the shape (i) through (vi), by Lemma
3.4 the equation

F (x, y) = zm (9)

has only finitely many solutions in x, y, z ∈ Z with gcd(x, y) = 1. Let n :=
n(F,m) denote the number of co-prime solutions of (9). Then n is a constant
which depends exclusively on F and m. Let (xi, yi) for i = 1, . . . , n denote the
co-prime solutions of (9).

Let A be an (F,m)-Diophantine set. Then for each (a, b) ∈ A we have
(a, b) = (txj , tyj) with some t ∈ Z and j = 1, . . . , n. In this case we shall say
that the solution (a, b) belongs to the co-prime solution (xj , yj).

Now we fix the co-prime solution (x1, y1), and we start to list all the pairs
(a, b) with a, b ∈ A, belonging to (x1, y1), and then we exclude the elements
a, b from the set A. We repeat this procedure until either we have excluded
m ≥ 2n+ 1 pairs, or the remaining set does not contain a pair (a, b) anymore
which belongs to (x1, y1). Thus we shall get a finite sequence (tjx1, tjy1) for
j = 1, . . . ,m consisting of solutions of equation (9), with tix1, tiy1 ∈ A for
i = 1, . . . ,m, and with distinct ti ∈ Z for i = 1, . . . ,m.
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In the next step we prove that m < 2n+1. Indeed, assume that m ≥ 2n+1.
Then since tix1 ∈ A for i = 1, . . . ,m thus the pair (t1x1, tix1) for i = 2, . . . ,m
is a solution of equation (9). Thus it has to belong to one of its co-prime
solutions, i.e. we have for i = 2, . . . ,m{

t1x1 = δ(i)u(i)

tix1 = δ(i)v(i),

where δ(i) ∈ Z and either (u(i), v(i)) or (v(i), u(i)) is a co-prime solution of (9).
Since we assumed m ≥ 2n + 1 thus by the pigeonhole principle we have two
distinct integers i, j ∈ {2, . . . ,m} such that (u(i), v(i)) = (u(j), v(j)). For these
values of i and j we get the system

t1x1 = δ(i)u(i)

tix1 = δ(i)v(i)

t1x1 = δ(j)u(i)

tjx1 = δ(j)v(i),

which shows that ti = tj , a contradiction. Thus we have m < 2n+ 1.
So for each co-prime solution (xj , yj) of (9), the set A can contain at most

2n elements which may be an entry of a solution (a, b) belonging to (xj , yj). So
taking in account the possibility 0 ∈ A altogether we have |A| ≤ 2n2 + 1.

3.4 Proof of Theorem 2.4

To prove our results concerning quartic polynomials, we do not need any fur-
ther preparation.

Proof of Theorem 2.4. Let A = {a1, a2, . . . , an} be an (F, 2)-Diophantine set
with a1 < a2 < . . . < an. So we have that

F (ai, aj) = �

for all distinct ai, aj ∈ A. The solutions of the Diophantine equation F (x, y) =
z2 are characterized by Szalay’s result [19]. If the line f7x + f8y + f9 = 0 is
such that f7 6= 0 and f8 6= 0, then it has one intersection point with a line
defined by x = ai or y = ai for ai ∈ A, i = 1, 2, . . . , n. The number of points
(x, y) ∈ Z2 contained in the ellipses P1 and P2 and lying on the line x = ai is
at most bV2 − V1c. The number of points (x, y) ∈ Z2 contained in the ellipses
P1 and P2 and lying on the line y = ai is at most bH2 −H1c. Therefore the
elements of A correspond to points of the form (ai, r), where r ∈ [V1, V2] and
(s, ai), where s ∈ [H1, H2] and possibly an intersection point with the line
f7x+ f8y + f9 = 0. Thus we have that

|A| ≤ min{bH2 −H1c, bV2 − V1c}+ 2.
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If f7 = 0 or f8 = 0, then the equation f7x + f8y + f9 = 0 may define a
horizontal or a vertical line. We consider the horizontal case only, the vertical
is analogous. In this case the elements of A correspond to points of the form
(ai, r), where r ∈ [H1, H2]. Clearly, all the points of the form (r, ai) are lying
on the horizontal line y = ai, hence we have that

|A| ≤ bH2 −H1c+ 1.

In any case we have the following bound for the cardinality of A

|A| ≤ max{bH2 −H1c, bV2 − V1c}+ 2.

3.5 Proof of Theorem 2.5

Proof of Theorem 2.5. From the URL

http://www.math.unideb.hu/∼tengely/PDioph.sage.

one can download a Sage [17] procedure which determines all non-trivial F -
Diophantine sets corresponding to [f1, f2, f3, f4, f5, f6, f7, f8, f9]. One can use
it as follows. One can determine the solutions of the equation F (x, y) = z2

for which (x, y) is an inner point of the ellipse P1(x, y) = 0 or the ellipse
P2(x, y) = 0 using

w=Epoints([f1, f2, f3, f4, f5, f6, f7, f8, f9]).

After that

PDset(w)

determines the non-trivial F -Diophantine sets. We provide some details of the
computation in two cases.

Let [f1, f2, f3, f4, f5, f6, f7, f8, f9] = [1, 1, 1, 2, 2,−4, 4, 4, 1]. The two ellipses
and the line 4x+4y+1 = 0 can be seen in the following figure, also the points
(x, y) corresponding to solutions of F (x, y) = z2 are indicated (see below).
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There are only finitely many integral solutions of the equation F (x, y) = z2

since 4x+ 4y + 1 is odd for all (x, y) ∈ Z2. These solutions are as follows

(x, y) ∈ {(−4,−2), (−4, 0), (−4, 2), (−2,−4), (−2, 0),

(−2, 2), (0,−4), (0,−2), (0, 2), (2,−4), (2,−2), (2, 0)}.

There are several non-trivial (F, 2)-Diophantine sets, e.g. {−4,−2, 0, 2}.
Now we consider the case

[f1, f2, f3, f4, f5, f6, f7, f8, f9] = [1, 1, 1, 3, 3,−5, 2, 2,−3].

The set of the solutions can be seen in the figure below.

There exists no integral point lying on the line 2x + 2y − 3 = 0, hence there
are only finitely many solutions. These are given by

(x, y) ∈ {(−5,−1), (−5, 2), (−3,−3), (−3, 0), (−3, 1), (−1,−5),

(−1, 2), (0,−3), (0, 1), (1,−3), (1, 0), (2,−5), (2,−1)}.

We obtain two disjoint non-trivial (F, 2)-Diophantine sets, namely

{−5,−1, 2} and {−3, 0, 1}.

Acknowledgement. We are grateful to the Referee for the helpful comments
and remarks.
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(1981), 91–96.
14. W. J. LeVeque, On the equation ym = f(x), Acta Arith. 9 (1964), 209–219.
15. F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40 (2005), 13–20.
16. A. Schinzel and R. Tijdeman, On the equation ym = P (x), Acta Arith. 31 (1976),

199–204.
17. W. A. Stein et al., Sage Mathematics Software (Version 6.0), The Sage Development

Team, 2013, http://www.sagemath.org.
18. C. L. Stewart, On sets of integers whose shifted products are powers, J. Combin.

Theory Ser. A 115 (2008), 662–673.
19. L. Szalay, Algorithm to solve certain ternary quartic Diophantine equations, Turk. J.

Math. 37 (2013), 733–738.


