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Abstract—A fundamental unsolved challenge in multipath
routing is to provide disjoint end-to-end paths, each one satisfying
certain operational goals (e.g., shortest possible), without over-
whelming the data plane with prohibitive amount of forwarding
state. In this paper, we study the problem of finding a pair
of shortest disjoint paths that can be represented by only two
forwarding table entries per destination. Building on prior work
on minimum length redundant trees, we show that the underlying
mathematical problem is NP-complete and we present heuristic
algorithms that improve the known complexity bounds from
cubic to the order of a single shortest path search. Finally, by
extensive simulations we find that it is possible to very closely
attain the absolute optimal path length with our algorithms (the
gap is just 1–5%), eventually opening the door for wide-scale
multipath routing deployments.

Index Terms—protection routing, redundant trees, independent
spanning trees, not-all-equal 3SAT, minimal path length

I. INTRODUCTION

How to provide path diversity with destination-based hop-
by-hop forwarding is among those fundamental open questions
in network research [1]. The practical motivations are to
improve end-to-end reliability, security, and latency, allow
users to avoid congested links, and provide some control to
applications to meet their performance requirements [2]–[6].
Most of the major ingredients of a multipath Internet are,
by and large, in place, like sufficient path-diversity [2], [7],
multipath rate-control protocols [5], a flexible data plane [8],
and inter-domain multipath routing protocols [9], [10], with
some even having reached large-scale test phase [11], [12].
One important blocker is the scalability barrier; provisioning
multiple custom end-to-end paths would cause forwarding
state to grow quadratically with the number of endpoints [13],
while the data plane is already struggling to scale with much
slower growth rate in the first place [14], [15].

In traditional IP forwarding packets are forwarded over a
single path, such that each router associates a default next hop
with each destination address in its forwarding table. In multi-
path routing, however, routers maintain multiple next hops for
each destination, each one corresponding to a different path
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towards the destination, and packets are mapped to one of
these paths using header hashing, packet tagging, etc.

We argue that the most important requirements a deployable
multipath routing scheme must fulfill are the following:
Scalable: the paths are such that nodes need at most two
forwarding table entries per destination. These two next-hops
will be called red and blue next hops and users will be able
to select between them by tagging their packets appropriately
(e.g., using the Differentiated Services Code Poing (DSCP)
bits in the IPv4 header).
Disjoint: the red and blue paths between any pair of nodes in
the network are maximally disjoint (i.e., do not share common
edges or nodes if possible [16]). This contributes to better
availability and resilience against single failures [2], [4] and
eliminates adverse interference between the subflows carried
by those paths [5].
Efficient centralized implementation: the algorithm for com-
puting the next hops has the same computational complexity as
traditional shortest path routing (i.e., Dijkstra’s algorithm), in
order to amortize the cost of multipath routing in comparison
to standard control plane operations1.
Short paths: the length of the paths are close to the absolute
theoretical minimum. An adequately small average path length
would improve forwarding delay and reduce the performance
gap as compared to traditional single-path routing to a tolera-
ble level [1], [11], [12].

This paper is dedicated to finding algorithmic techniques
for disjoint multipath routing. In particular, we concentrate on
the following fundamental question:
What is the price of implementing disjoint routing in a des-
tination based hop-by-hop forwarding architecture, in terms
of (i) computational complexity and (ii) the gap between the
length of the disjoint paths representable by two next hops per
destination compared to the minimum for two disjoint paths?

This question essentially boils down to finding a pair of
rooted trees under the constraint that the paths in the trees
must be disjoint. Such trees are called redundant trees (or
colored trees or independent trees) in the literature and enjoy

1For simplicity, our algorithms will be centralized, which better serves the
purpose of finding the best solution eliminating the potential sub-optimality
introduced by distributedness; distributed versions can then be bolted on
centralized algorithms [13], [17], [18] if at all necessary [8].
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Fig. 1: An illustrative example, with root r and an arbitrary positive edge weight M . All unmarked edges are of zero weight.

wide-scale use, ranging from reliable forwarding in wireless
[17] and wired networks [19], [20], robust multicasting [21],
general multipath routing [13], [22] and load-balancing [23],
to IP Fast ReRoute (IPFRR) protection2 [18], [26]. In contrast
to these works, however, our main concern is the length of the
paths within the redundant trees, as this is crucial for disjoint
multipath routing.

Building on prior work on this subject [13], [19], [22], [27],
[28], in this paper we carry out the first systematic study of
the performance penalty related to scalable multipath routing.
In particular, we make the following main contributions.
• For the first time in the literature, we settle the compu-

tational complexity of the mathematical problems related
to minimum length redundant trees.

• We classify the heuristic techniques to solve the problem,
we point out the limitations of each, and we propose a
new design concept yielding several new heuristics.

• We improve the best known heuristic complexity from cu-
bic to the same as that of Dijkstra’s algorithm without ma-
jor performance hit and we exercise the time–efficiency
trade-off to gain considerable performance improvements
at the cost of a slight running time overhead.

• In numerical evaluations we show that our algorithms find
near optimal solutions even for large networks.

The rest of this paper is structured as follows. In Section II,
we present some background on redundant trees and we pose
the minimum length redundant tree problem. In Section III
we show that the problem is NP-complete, so in Section IV
we turn to heuristics algorithms. In Section V we present an
extensive numerical study, extending to hundreds of network
topologies and edge cost settings, to evaluate the performance
gap. Finally, in Section VI we draw the conclusions.

II. BACKGROUND

Suppose we are given a 2-connected3, undirected graph
G = (V,E), where V denotes the set of nodes (|V | = n)
and E denotes the set of edges (|E| = m), with an edge

2IPFRR lends special timeliness to our work. Currently, there is a
redundant-tree-based IPFRR scheme under standardization at the IETF [24]
that is often criticized due to the length of the resultant detours [25]. A viable
algorithm to minimize the length of the paths within the redundant trees would
greatly foster standardization efforts.

3The removal of any single node/link does not disconnect the graph.

weight function w : E → R+ set according to some traffic
engineering considerations. A path P in G is then an ordered
set of k edges, P = {(s, v1), (v1, v2), . . . , (vk−1, r)}, where
s and r are called terminal nodes. For easier presentation we
often assign a direction to the path and call s the source and r
the destination node. We call two paths (node-)disjoint if they
do not have any common nodes except the terminal nodes.
A weaker property if two path are edge-disjoint when they
have no common edges. An orientation of the graph is an
assignment of a direction to each edge, turning the initial graph
into a directed graph.

A. Pairs of Shortest Disjoint Paths

Our task is now to find two short disjoint paths between
each pair of nodes. Easily, the problem can be decomposed
into independent sub-problems for each destination node r as
follows: given a root node r, find a pair of disjoint paths from
each s 6= r to r of minimum total length.

Consider the sample graph topology Fig. 1a, let r be the
root and let M be some arbitrary positive weight. Then, a
pair of minimum length disjoint paths from node v7 is given
in Fig. 1b and from node v5 in Fig. 1c. Such a pair of paths
from each source to a given root can be computed by a single
pass of the Suurballe-Tarjan algorithm, with two iterations of
the Dijkstra shortest path algorithm (yielding a complexity of
O(n log n +m)) [29] and, so it seems, this algorithm would
then readily lend itself as a multipath routing algorithm.

Alas, it does not. The reason is that this algorithm would not
satisfy all the requirements for deployability set out above, as
the resultant forwarding tables would scale superlinearly with
the number of nodes. This is demonstrated in Fig. 1: as the
red path starting at v5 diverges from the red path starting at
v7, node v5 would need to allocate a separate forwarding table
entry corresponding to v7 and for itself to correctly route to
r. Swapping the red and the blue paths for, say, v5, would
not help either, as now a similar extra forwarding table entry
would arise at node v6. Unfortunately, there does not seem to
be a simple way out of this trap [29].

Henceforth, we shall use the Suurballe-Tarjan algorithm
to produce an “ideal” pair of minimum-length disjoint paths
(ones we could use if forwarding state were not of concern)
and we shall compare our heuristic paths (now representable
by just 2 forwarding table entries per destination) to these



ideal paths. Notationwise, given some root r let the optimal
v → r paths (as computed by the Suurballe-Tarjan algorithm)
be denoted by P ∗1 (v) and P ∗2 (v) for each v 6= r. We shall
denote the length of this “ideal” path-pair as

d2(v) =
∑

e∈P∗1 (v)

we +
∑

e∈P∗2 (v)

we .

Easily d2(v) ≥ 2d1(v), where d1(v) denotes the length of
the shortest path P ∗(v) from v to r:

d1(v) =
∑

e∈P∗(v)

we .

B. Packet Forwarding Along Disjoint Paths

A trivial implementation for packet forwarding along the
minimum-length disjoint paths would require a next hop per
source-destination pair. Next, we sketch a centralized scheme
that requires only two next hops per destination.

The control plane computes a pair of rooted trees with
respect to each destination node as a root and sets two
forwarding table entries in each node corresponding to every
pair of such trees. One entry gives the next-hop along the red
tree and the other along the blue tree (for instance, node v5 in
Fig. 1d would set v9 as the next-hop for destination r along
the red tree and v6 as next-hop along the blue tree). Within
the context of this paper, we shall use the term redundant
trees to refer to such a pair of trees. This is possible owing
to the fact that both trees assign a “single” outgoing link4 as
a next-hop for each destination, which would not be the case
if the forwarding paths are not lined up into trees. Note that,
this scheme is fully compatible with the current IP hop-by-hop
routing practice (allocating e.g., one of the DSCP bits in the
header) and can also be implemented with MPLS, OpenFlow,
etc. Users simply include the destination address and set a
single bit in the header to mark whether the packet should
be forwarded along the red or the blue tree. Packets then
travel hop-by-hop to the destination along the tree assigned by
the user, according to the next-hops stored at the intermediate
hops. Note also that hosts can adapt a multipath rate control
algorithm to actively balance their load along their paths in an
end-to-end fashion [5].

C. Redundant Trees

A (spanning) arborescence T for some root r is a directed
tree rooted5 at r in which from any node v ∈ V, v 6= r there is
exactly one directed path from v to r. With a slight abuse of
terminology, we shall henceforth refer to such arborescences
simply as (rooted) trees. For a tree T rooted at r and any
v 6= r, denote by P (T , v) the unique path in T from v to r.
Then, redundant trees are a pair of spanning rooted trees with
certain strong disjointness properties [13].

Definition 1: A pair of (spanning) trees (T1, T2) with
common root r is called (a pair of) node-disjoint redundant

4We ignore multiple outgoing links and Directed Acyclic Graph (DAG)
routing. Note that if the problem formulation is generalized to allow DAGs
the optimal solutions could still be trees.

5Often in the literature the direction is just the opposite.

trees for r if for each v ∈ V, v 6= r: i ∈ P (T1, v), i 6= r ⇒
i /∈ P (T2, v).

We also define a weaker form as follows.
Definition 2: A pair of (spanning) trees (T1, T2) with

common root r is called (a pair of) edge-disjoint redundant
trees for r if for each v ∈ V, v 6= r: (i, j) ∈ P (T1, v) ⇒
(i, j) /∈ P (T2, v) and (j, i) /∈ P (T2, v).

Consider the red tree T1 and the blue tree T2 in Fig. 1d.
Here, as T1 and T2 share a common edge v3 − v6 they are
not node-disjoint redundant trees per definition. However, even
though the edge v3 − v6 is used in both trees (in opposite
directions), the paths themselves from each node to the root
are still edge-disjoint and hence T1 and T2 qualify as edge-
disjoint redundant trees.

The graph theoretical problem related to redundant trees
was widely investigated in the last decades. For 2-edge-
connected undirected graphs a pair of edge-disjoint redundant
trees for any root is guaranteed to exist and it can be found in
polynomial time [19], [21]. This was later reduced to linear
time [30] and linear time algorithms for finding maximally
edge-disjoint redundant trees were also given for the non-2-
connected case [31].

D. Minimum Length Redundant Trees

What we are concerned with in this paper is for a given
root r finding a pair of redundant trees (T1, T2) of “minimum
length”. Here, length is defined as follows. For each source
node v the redundant trees T1 and T2 define two disjoint
paths towards the root, denote these as P (T1, v) and P (T2, v).
The length of each path is then cT (v) =

∑
e∈P (T ,v) we and

the (total) length of the redundant tree pair is denoted by
c(T1, T2) = c(T1) + c(T2), where c(T ) =

∑
v 6=r cT (v).

Our task is now to find a pair of trees that minimize the total
path length. It turns out that the trees given in Fig. 1d are such
minimum-length redundant trees for the running example of
Fig. 1a. Observe that each node maintains only two forwarding
table entries (one for the red tree and one for the blue), which
gives excellent scalability. Formally, the problem is stated as
follows (see also [22] and [13]).

Definition 3: Minimum Length Redundant Trees (MLRT):
given a graph G, weights w, root r, and positive integer k, is
there a pair of redundant trees T1 and T2 so that c(T1, T2) ≤ k?

Our main concern here is the optimization version of this
problem, where the task is to minimize c(T1, T2). For this
version, an optimal Integer Linear Program (ILP) with expo-
nential worst-case solution time along with a heuristics with
O(n3) running time were given in [13], [22]. In Section IV,
we shall improve the running time to the same as Dijkstra’s
algorithm and the Suurballe-Tarjan algorithm, O(n log n+m).

So far, we have deliberately avoided to fix the disjointness
requirement for the redundant trees, i.e., whether we want the
node-disjoint (as of Definition 1) or the edge-disjoint (as of
Definition 2) property. The reason is that, as we show below,
the latter can be formulated in terms of the former6.

6Surprisingly, the situation is just the reverse for directed graphs, where the
edge-disjoint case is the more generic one.



v1 v2

v3

v4 v5

⇒

Fig. 2: An example of the graph transformation to transform
an edge-disjoint redundant trees problem onto an equivalent
node-disjoint redundant trees problem.

Lemma 1: The problem of finding edge-disjoint redundant
trees can be reduced to the problem of finding node-disjoint
redundant trees such that the length of the paths in the trees
remains the same.

Proof: Given an instance of the edge-disjoint redundant
trees problem, we convert it to an equivalent instance of the
node-disjoint redundant trees problem by the following graph
transformation. Every node v is replaced with a complete
subgraph of N(v) nodes, where N(v) denotes the number
of adjacent nodes to v. Furthermore, each adjacent node of
v is connected to a different node of the complete subgraph
corresponding to v (see Fig. 2). The cost of the new edges
is zero. Pick an arbitrary node as the root in the transformed
graph that corresponds to r in the original graph. One can ver-
ify that the cost c(T1, T2) remains the same in the transformed
graph, while the paths in the trees P (T1, v) and P (T2, v) may
not share common nodes other than v and r.

For the rest of the paper, we focus on the more generic
node-disjoint case.

E. Performance Penalty

Regrettably, the coupling between the paths brought about
by the requirement that we need these paths to make up two
trees yields that the total length will increase somewhat. In
general, it holds that the path-lengths for any pair of redundant
trees (T1, T2) will be higher than the optimum: c(T1, T2) ≥∑
v 6=r d2(v). This is the price we pay for scalability. Our aim

in this paper is to analyze this price, as measured by the
following metrics.

For a graph G with weights w and root node r, the (path)
length gap is defined as cT1(v)+cT2(v)−d2(v). We say that a
node v is perfectly covered by T1 and T2 if cT1(v)+ cT2(v)−
d2(v) = 0. Furthermore, define the (path) length ratio as:

η(G, r) = min
c(T1, T2)∑
v 6=r d2(v)

over all choices (T1, T2). (1)

For the case of our sample graph, the redundant trees on
Fig. 1d yield the total cost of 16M+62, while

∑
v 6=r d2(v) =

10M + 68 and so η(G, r) ' 1.6. A simple calculation will
lead to the following observation.

Lemma 2: Consider the graph G obtained from the sample
graph in Fig. 1a by replacing each of v8, v10, v11, and v9 by
a chain of M new nodes. Then, lim

M→∞
η(G, r) = 5/3.

See the proof in the Appendix.
Curiously, so far we have not been able to find any graph

for which the length ratio were larger. In all our theoretical
investigations, evaluations on famous difficult graph instances,

and all our simulations on hundreds of graphs with widely
varying weight functions (see Section V), we have not found
even a single instance where the ratio were above 5/3. This
is highly unexpected as, for the first sight, the restriction
that paths must reside in two trees looks daunting. It seems,
however, that in reality the penalty for scalable multipath
routing might not be that large. The rest of the paper is
dedicated to making this claim explicit.

III. COMPLEXITY

There is a substantial body of literature on various forms
of length-minimization for redundant trees, yet, as far as we
are aware of, for the exact formulation above no complexity
characterization is available. The authors in [27], [28] study
the task to find two redundant spanning trees of minimum
stretch, but for the all-pairs case (i.e., when the trees are not
rooted). Another version where the total cost of the edges in
the redundant trees (in contrast to the length of the paths) is
to be minimized is examined in [20], [30]. The exact problem
formulation for MLRT appears in [13], [22], but no complexity
analysis ensued. Next, we settle this long standing question.

Theorem 1: MLRT is NP-complete.
Refer to the Appendix for the full proof. The argument

is based on a Karp-reduction from a special form of the
Boolean Satisfiability problem called “not-all-equal” 3SAT
(NAE-3SAT). Given a Boolean expression in conjunctive nor-
mal form with 3 literals per clause, NAE-3SAT asks for an
assignment of variables so that in every clause at least one
literal is set to true and at least one literal is set to false [32].

IV. HEURISTIC ALGORITHMS

In this section we provide several heuristics for solving the
problem. We take a novel design concept for the heuristics
that takes the optimal minimum cost disjoint paths obtained
by Suurballe-Tarjan algorithm [29] and converts them into re-
dundant trees after a series of modifications. The approach was
inspired by the following observation, a direct consequence of
the data structure used in Suurballe-Tarjan algorithm [29].

Observation 1: Let A be the union of the directed edges in
the minimum cost disjoint paths from every node to a single
root. Every node other than the root is of out-degree 2 in A.

This means A is a sparse subgraph of G and so there is a
hope that it can be partitioned into two redundant trees.

In [22] a simple heuristic, called the BR algorithm, was
proposed for solving MLRT. The heuristic requires O(n2S)
steps, where n is the number of nodes and m is the number
of edges in G and S = O(n log n+m) is the complexity of a
shortest path search with Dijkstra’s algorithm. In this section,
we improve the computation time to O(n2) and we also give
an even faster O(S) algorithm without major performance hit.

A. St-Numberings and Ear-Decompositions

Most redundant tree algorithms revolve around the concepts
of st-numbering and ear-decomposition [13], [16], [18]–[23],
[30], [31]. An st-numbering is a numbering of the nodes in G
by 1, . . . , n, such that the node numbered with “1” and “n” are
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Fig. 3: A simple undirected graph demonstrating the different techniques used in the MLRT algorithms.

adjacent and each remaining node v is adjacent to two nodes
x and y such that for the respective st-numbers x < v < y
(see Fig. 3b).

Lemma 3: Given an st-numbering of G, two redundant trees
in G can be computed in linear time.

Proof: First we split the root node r into rs and rt, such
that node rs is labeled “0” and it is adjacent to only the node
having label “1”, while rt is labeled “n” and it is adjacent to
the rest of the neighbors of r. Next, we orient the edges of
G such that each (u, v) edge is directed u→ v if u < v, and
u← v otherwise. Let T1 be an out-tree from rs and T2 be an
in-tree towards rt. These can be found in linear time. Clearly,
every node can be reached from rs and every node can reach
rt. The path P (T1, v) will traverse nodes with label at most
v, while P (T2, v) will traverse nodes with label at least v;
therefore they are disjoint paths.

This means that an st-numbering is sufficient to find two
redundant trees. The question is, how to find such an st-
numbering. This can be done by a method called ear-
decomposition, which is a graph reduction technique to decom-
pose any 2-connected graph G into a sequence of 2-connected
graphs G0 ⊂ G1 ⊂ · · · ⊂ Gk. G0 is composed of a single
root r and Gk has all nodes of G, i.e., V (Gk) = V (G). For
each i = 1, . . . , k : Gi ≡ Gi−1 ∪ Pi, where Pi is a path of
length at least 2 edges, called an ear, between the root or two
distinct7 nodes xi, yi ∈ V (Gi−1), V (Pi)∩V (Gi−1) = {xi, yi}
and xi 6= yi except if xi = yi = r. For the graph in
Fig. 3a, a possible ear-decomposition would consist of the
following ears: P1 = r-v1-v3-v6-v4-r, P2 = v1-v2-v8-v3,
P3 = v6-v9-v5-v4, and P4 = v2-v7-v5.

The idea is to maintain an st-numbering through the graph
sequence G0 ⊂ G1 ⊂ · · · ⊂ Gk. The induction is that
we have an st-numbering for Gi−1 and we add an ear
Pi = xi-v1- . . . -vj-yi. If xi > yi we label the nodes as
xi > v1 > · · · > yi, otherwise xi < v1 < · · · < yi. Here
a common technique is to allow fractional labels, and thus no
relabeling is needed in the inductive step.

A slightly weaker notion than st-numbering is an st-
orientation (or bipolar orientation) of G, an assignment of
an orientation to each edge of G, so that after splitting the

7Recall, it is sufficient to deal with the node-disjoint case by Lemma 1.

root node into rs and rt such that node rs has all the out-arcs
and rt all the in-arcs of the root r, the resultant graph GD is
a DAG, rs is the only node with zero in-degree, and rt is the
only node with zero out-degree (see Fig. 3c). Note that any
topological order of GD is an st-numbering, which is sufficient
to compute two redundant trees by Lemma 3. Interestingly, not
every redundant tree pair can be obtained by an st-orientation
(see Fig. 4 for a counter-example).

This observation means that the optimal redundant trees
may not be found with searching for the best st-numbering and
ear-decomposition. Essentially all existing heuristic algorithms
use (some variant of) the above algorithmic framework: build
an ear-decomposition and maintain an st-orientation thereof.
The heuristic in [19] selects the ears basically randomly, which
was later improved to a greedy strategy to minimize some
intuitive path-length metrics in [23] and [22]. In particular,
the BR algorithm [22] selects an ear so as to minimize the
path length after the ear is added, which in worst case requires
an all-pairs shortest path calculation, in O(n2S) steps overall.
St-numbering (or complete order) is used in [20], [30], [31],
while st-orientations (or the equivalent notion of partial orders)
in [18], [22], [23]. The trade-off between the two is the usual
time vs. performance type; complete orders yield somewhat
longer paths but can be maintained in O(1) (although correct
implementation is far from trivial [16]); while partial orders
allow more liberty for the st-orientation and deliver shorter
paths, but can be maintained only in O(n) [13], [22].

Based on the above classification in the rest of the sec-
tion we propose a series of heuristics that take the optimal
minimum cost disjoint paths obtained by Suurballe-Tarjan
algorithm [29] and convert them into redundant trees. The first
heuristic does this conversion in linear time by maintaining an
st-numbering. Such an approach has overall time complexity
same as a single shortest path calculation. One could hardly
expect to go beyond that point, as at least one shortest path
calculation is needed to direct the algorithm towards short
paths. The second heuristic, in Section IV-C, has slightly
shorter paths by maintaining an st-orientation (partial order) at
the price of increasing the running time to O(n2). Finally, in
Section IV-D we give a near-optimal algorithm that, despite its
exponential worst-case running-time, gives very high quality
redundant trees in very short time even for large graphs for
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Fig. 4: An example network where the optimal redundant trees cannot be obtained by an st-orientation.

Algorithm 1: A fast MLRT algorithm
Input: Undirected graph G(V,E), root node r, edge weights w
begin

1 Find disjoint paths P ∗
1 (v) and P ∗

2 (v) for v ∈ V
2 Sort v ∈ V in ascending order of distance d2(v) into V ∗

3 i := 1; G0 := {r}; GD
0 := {s, t}

4 for v ∈ V ∗ do
5 Pi = xi-v1- . . . -vj-yi where xi (yi) is the first node

of P ∗
1 (v) (P ∗

2 (v), resp.) in Gi−1

6 if xi < yi then
7 add x← v1 ← · · · ← vj to T1 and

v1 → · · · → vj → y to T2
else

8 add y ← vj ← · · · ← v1 to T1 and
vj → · · · → v1 → x to T2

9 V ∗ = V ∗ \ {u ∈ Pi}; Gi = Gi−1 ∪ Pi

10 i = i+ 1

which the ILP of [22] does not terminate at all. For simplicity,
in the rest of this section we concentrate on input graphs G
that are 2-node-connected.

B. A Fast MLRT Algorithm

Here, the main idea is to let the Suurballe-Tarjan algorithm
drive the augmentation of the ear-decomposition. Suppose we
are given a weighted undirected graph G and a root r. First,
for each node v 6= r we compute a pair of minimum length
disjoint paths P ∗1 (v) and P ∗2 (v) to r using a single run of the
Suurballe-Tarjan algorithm. This can be done in O(S) steps
[29]. Next, we sort the nodes in V in ascending order of their
d2(v) distance. This can be done in O(n log n) steps. Denote
the sorted list by V ∗. In the third step, we iterate through
V ∗ and we generate the ear-decomposition G0, . . . , Gk, the
complete order, and the redundant trees along the way.

The first ear consists of the root: G0 = {r}. Then, in the
i-th iteration we select the node v in G \ Gi−1 that has the
smallest distance d2(v) and we add the ear through v to GDi−1.
Let xi be the first node along P ∗1 (v) that is already part of
Gi−1 and likewise let yi be the first node of Gi−1 along P ∗2 (v).
Note that if xi 6= r then xi 6= yi. Construct the ear Pi as the

concatenation of path segments xi → v of P ∗1 (v) and v → yi
of P ∗2 (v) and denote this ear by Pi = xi-v1- . . . -vj-yi.

We still need to decide the orientation for the new ear and
update GDi and the complete order. There are two cases: if
xi < yi then set the complete order accordingly, i.e., xi <
v1 < . . . < vj < yi, and finally add the “forward” chain to
T1 and the “backward” chain to T2. If xi > yi, on the other
hand, the procedure is executed in the opposite direction with
nodes yi and xi.

Algorithm 1 gives the pseudo-code. Here, instead of an st-
numbering the complete order is represented using a simple
node-potential [30] (see also [16]), while V ∗ can be main-
tained with simple node marking (observe that each node is
visited at most once). The complexity is dominated by the
Suurballe-Tarjan pass performed in the first phase, fixing the
running time at O(S) as required.

C. An Improved MLRT Algorithm over Partial Orders

It has been observed a number of times previously that a
complete order is an overkill for maintaining the st-orientation.
In fact, if we allow certain node-pairs not to be ordered with
respect to each other then this will open up more options to
set the orientation of a new ear in some cases, which we
can often exploit to reduce the length of the paths within the
trees. Unfortunately, the running time of the algorithm will be
somewhat higher in return.

In this case the operation “set x < y” means adding an arc
from x to y and the query “x < y” is substituted with checking
whether there is a directed path from x to y in GD. But what
if we find – when trying to decide the orientation of a newly
found ear – that the endpoints xi and yi are not ordered (i.e.,
no directed path exists between them)? In such cases, we are
free to choose the orientation arbitrarily. Consider we add a
new node v10 connected to v3 and v7 in Fig. 3, and suppose we
add an ear v3-v10-v7. Note that there is no v3 → v7 directed
path in the DAG of Fig. 3c nor the other way around, so any
orientation will yield an acyclic graph. If we set v3 → v10 →
v7 then the paths of v10 would be 3 + 4 = 7 hops long while
v7 → v10 → v3 would result 4 + 4 = 8 hop paths, so we
would rather go with the first choice.



TABLE I: Results on real network topologies. Columns mark the parameters of the input graphs (name, number of nodes and
edges); for the edge disjoint case the average path length ratio (η) for different algorithms; the maximum path length gap suffered
by any node (max∀v{cT1(v)+ cT2(v)−d2(v)}); and the average length of the shorter and the longer path along the redundant
trees compared to the absolute shortest path length for the MLPO algorithm (

∑
∀v

min{cT1 (v),cT2 (v)}
(|V |−1)d1(v) ,

∑
∀v

max{cT1 (v),cT2 (v)}
(|V |−1)d1(v) );

and for the node-disjoint case the average path length ratio for the MLPO and MRT algorithms (η) . Note that the results are
in percentages! For instance, a result of 1% means that the measured parameter is 1.01-times larger than the base parameter.

Network topology Edge-disjoint Avg. path length Node-disjoint
Average path length ratio Max length gap at a node Edge-disjoint MLPO Avg. path length ratio

Name |V | |E| ML MLPO MLNO BR [22] ML MLPO MLNO BR [22] the shorter the longer MLPO MRT [24]
Germany 17 25 3.39% 0.82% 0.51% 1.83% 12.6% 5.0% 4.7% 7.7% 7.41% 59.2% 6.32% 34.06%
BtEurope 17 30 3.57% 0.01% 0.17% 0.01% 15.5% 0.01% 4.9% 0.1% 37.20% 302.3% 3.24% 71.70%
AS6461 17 37 4.32% 1.93% 0.71% 1.53% 17.7% 8.7% 9.1% 10.0% 10.90% 78.2% 5.09% 46.63%
InternetMCI 18 32 1.48% 0.83% 0.67% 0.83% 10.2% 7.2% 9.5% 7.2% 3.45% 44.8% 1.98% 63.27%
AS1755 18 33 5.32% 2.51% 1.35% 3.52% 16.5% 9.2% 12.8% 12.0% 4.23% 73.2% 8.09% 42.62%
ChinaTelc 20 44 0.19% 0.15% 0.10% 0.15% 3.6% 2.9% 5.1% 2.9% 20.00% 202.0% 1.79% 118.90%
AS3967 21 36 4.90% 1.20% 1.53% 1.15% 15.1% 3.6% 10.8% 3.5% 4.17% 65.3% 6.14% 32.89%
AT&T 22 38 2.87% 2.37% 1.02% 2.06% 12.9% 10.5% 12.3% 6.8% 4.00% 52.0% 6.45% 38.36%
BICS 27 42 13.90% 1.96% 1.96% 2.69% 41.3% 9.8% 15.5% 11.0% 15.10% 129.2% 9.37% 94.82%
AS3257 27 64 3.35% 0.65% 0.25% 0.69% 17.9% 6.4% 4.7% 6.5% 6.80% 74.7% 5.14% 22.11%
AS1239 30 69 3.39% 2.01% 0.92% 2.29% 19.6% 9.5% 13.9% 10.0% 4.72% 41.7% 9.20% 61.02%
Arnes 31 47 1.91% 0.15% 0.15% 0.15% 17.5% 2.9% 7.2% 2.8% 11.90% 90.1% 0.41% 58.73%
Geant 31 49 4.05% 0.90% 0.84% 0.97% 49.6% 19.0% 20.4% 21.0% 3.45% 31.0% 5.15% 33.33%
Italy 33 56 2.80% 1.65% 1.50% 1.77% 14.5% 8.6% 17.4% 9.1% 5.56% 47.2% 4.81% 27.58%
BtNAmerica 36 76 9.68% 1.43% 1.32% 1.38% 43.0% 12.0% 57.5% 12.0% 17.40% 193.5% 4.68% 126.51%
BellCanada 39 55 8.93% 2.71% 1.07% 4.24% 32.0% 12.2% 10.9% 18.0% 75.30% 257.9% 14.47% 38.33%
Germany 50 88 8.77% 3.33% 2.62% 3.10% 30.4% 17.6% 25.8% 17.0% 5.21% 39.3% 15.00% 71.03%
Deltacom 103 151 10.90% 3.42% 3.32% 3.74% 41.2% 18.6% 23.8% 19.0% 44.00% 146.6% 10.96% 64.88%

Unfortunately, the complete order would encode just the
wrong orientation in this case. Hence, we apply a simple
optimization here; calculate c(P (T1, xi)) + c(P (T2, yi)) and
c(P (T2, xi)) + c(P (T1, yi)) and choose the orientation that
minimizes this metric. This can be done by adding a third
branch to the conditional expression on line 6 of Algorithm 1
to handle the above “endpoints of the new ear are not ordered”
case. The optimization incurs a factor-O(n) complexity tax,
setting the overall complexity to O(n2).

D. A Near-optimal MLRT Algorithm

Finally, we set off to bring the time–efficiency trade-off to
the other extreme and find the best possible redundant tree
pair (i.e., the one with shortest length). Unfortunately, during
the numerical evaluations we found that the optimal MLRT
ILP [22] very often fails to produce meaningful results in
reasonable time. Therefore, our final algorithm, while still a
heuristics, will aim for a near-optimal solution at the price of
increased (although in practice still manageable) running time.

Inspired by Lemma 3, we formulate MLRT as an optimiza-
tion problem to find an st-orientation where the average depth
of the in-tree and out-tree from the root is minimal. The idea
is to cut down the search space to such an extent that we can
use brute-force search to find the best solution.

In the first step, we orient the edges according to the
Suurballe-Tarjan algorithm. After the first step, we will have
a mixed graph, where some edges oriented and others are
not (they are oriented in both directions). The idea is to run
Algorithm 1 but orienting the edges with a different concept.
We decide a direction for each ear, but all edges along paths

P ∗1 (v) and P ∗2 (v) are oriented in a single pass, not just those
along the new ear. Note that some edges might be oriented
in both directions eventually; we call such edges conflicted
edges. In each step the direction of the ear is selected such
that a minimal number of edges becomes conflicted.

At the end of this process we set the conflicted edges
undirected to obtain a mixed graph with some directed and
undirected edges. Let EC denote the number of undirected
edges; note that the number of such undirected edges |EC | is
typically small. Next, we execute a brute-force search to obtain
the redundant trees: we orient the undirected edges in all 2|EC |

combinations and we run Dijkstra’s shortest path algorithm to
find the shortest in-tree and out-tree from the root node that
has a minimal average depth to every other node.

V. NUMERICAL EVALUATION

We carried out an extensive numerical evaluation in order
to gain further insights into the focal question of this paper:
How close redundant trees can approximate the length of the
shortest possible disjoint paths, as obtained by the Suurballe-
Tarjan algorithm? In other words, how much penalty do we
pay for scalability in disjoint multipath routing, in terms of
the path length ratio metric η as of (1)? In the rest of this
section we concentrate on the edge-disjoint case, as this is
more relevant to our subject of interest, multipath-routing.
Note that, the algorithms themselves are for the node-disjoint
case, but we used them on the transformed graphs (as defined
in Lemma 1) to obtain results for the edge-disjoint version.

The results were computed with the following algorithms.
First, we used the BR algorithm (BR) from [22]. To cut down



2

4

6

8

10

12

14

200 400

Pa
th

le
ng

th
ra

tio
[%

]

#nodes

(a) Length ratio in small world
graphs

0

1

2

3

4

5

6

200 400

R
un

ni
ng

Ti
m

e
in

[0
.0

1s
]

#nodes

(b) Running time in small world
graphs

0

5

10

15

20

25

30

200 400

Pa
th

le
ng

th
ra

tio
[%

]

#nodes

(c) Length ratio in random planar
graphs

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

200 400

R
un

ni
ng

Ti
m

e
in

[0
.0

1s
]

#nodes

(d) Running time in planar graphs

Fig. 5: Results on random small-world and planar graphs for the BR-algorithm (+), the fast MLRT algorithm ML with complete
order (�) and with partial order (MLPO, �), and the (assumed) baseline with the heuristic MLNO (◦).

the complexity of the algorithm we applied the optimization
that, when adding a new ear, we set the distances from the
previous iteration to warm-start the all-pairs shortest path
computation. We also experimented with the new algorithms
presented in Section IV, in particular, the fast MLRT heuristics
as of Algorithm 1 with complete order (ML) and the one with
partial order (MLPO). We also implemented the ILP from [13]
to seed the comparisons with a base value. However, even in
medium size problem instances the ILP could not be solved to
optimality, thus we applied the algorithm described in Section
IV-D instead (MLNO). Note that the MLNO heuristic found
the optimal solution for those problem instances whenever the
ILP successfully terminated. We also implemented the MRT
algorithm [26], currently under standardization at the IETF
to drive the MRT IP Fast ReRoute scheme. Note that this
algorithm is intended only for the node-disjoint version of the
problem, so we shall use it as a reference below for this case.

We have examined a broad family of graphs, from real ISP
network topologies [33], [34] and small-world random graphs
[35] to random planar graphs, over widely varying edge cost
settings including inferred costs [34] and uniform random
costs. All in all, we evaluated more than 20, 000 individual
problem instances, including 4, 000 small-world and 11, 000
random planar problem instances. Hence, the results are of
high statistical significance. Strikingly, amongst these 20, 000
instances not in a single case we found the path length ratio
to grow beyond 32% (with a mean of 4.3%), which is still
less than half of the hypothesized maximum as of Lemma 2.

Table I shows the results obtained on real world topologies
(note that the results are given in percentages). For small
worlds and for random planar graphs the path length ratio and
running time for the different algorithms are given in Fig. 5.

The most important observations are as follows. First, the
path length ratio between redundant trees and optimal disjoint
paths seems very small: just a couple of percents for real
graphs (half of the real networks have ratio below 1%),
roughly 3% for small-worlds, and about 5% for random planar
graphs. This was a really unanticipated outcome, as initially
we expected the requirement that paths must form a pair
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Fig. 6: Path length gap near random edge cost settings of
increasing variance in real topologies with the BR (+), the
ML (�), MLPO (�) algorithms and the heuristic MLNO (◦).

of trees to be overly restrictive. This did not end up being
the case, suggesting that scalable multipath routing might
not cause major performance hit for operators. Interestingly,
the optimal disjoint paths (d2(v)) were in turn only about
one and a half times as long as the absolute shortest paths
(d1(v)) obtained by Dijkstra’s algorithm (see, e.g., the results
for real instances in Table I), indicating that the penalty for
disjoint multipath routing itself is also small. The maximum
performance hit suffered by a single node was 100%, meaning
that there was a node whose two paths along the redundant
trees were twice as long as the shortest disjoint path-pair.

Of the algorithms, MLPO produced very much the same
results as BR but proved much faster in practice (theoretically
too, by, recall, a factor of O(n log n)) and both produce
extremely high quality paths with about 1–8% length ratio (0–
3% in real networks). Even the very fast (linear average time)
ML heuristic was within 10–25% of the absolute optimum in
terms of the path length ratio, suggesting that this algorithm is
very well suited for performance-oriented applications. Finally,
we found that the results are very robust against parameter
settings, in that the ratio does not seem to vary with, say, the
average nodal degree (results not included here) or the edge
costs (see Fig. 6).



VI. CONCLUSIONS

Transition to multipath routing in the Internet would fix
many long-standing issues related to end-to-end reliability,
security, and latency, and might also bring unexpected ben-
efits like solving network-scale load-balancing or location-
independent addressing [1]–[6]. In the paper, we laid down
four major requirements against a disjoint multipath routing
algorithm, namely scalability, path disjointness, computational
complexity, and, last but not least, path length.

An execution of the Suurballe-Tarjan algorithm [29] delivers
the shortest disjoint path pairs from a single root within the
same complexity as Dijkstra’s shortest path algorithm. Can
this algorithm be used for scalable disjoint two-path routing,
where only two next hops (associated with red and blue trees)
need to be stored in the forwarding table? In this paper, we
sought answers for this crucial question.

Complexity-wise, the immediate answer is clearly negative:
we have shown that scalable disjoint multipath routing is
intractable. And performance-wise, the naive answer would
also be negative; why would minimum-length disjoint paths
align into trees after all? Surprisingly, our results seem to
refute these expectations; we have shown both theoretical and
experimental evidence that disjoint multipath routing is clearly
viable within the same complexity as standard control plane
operations (like Dijkstra’s shortest path algorithm) for about
25% performance penalty. Furthermore, if we are willing to
take on a minor complexity hit (jumping to O(n2) complexity,
the same as that of a less clever Dijkstra implementation) then
the path length penalty reduces to just 1–8% of the optimal
case (or 1–5% with yet another jump of complexity)! We
believe that these results clearly support our main conclusion
that, in contrast to expectations, disjoint multipath routing is
indeed feasible and beneficial.

A last missing point seems to be an analytical bound on
the path length ratio. Is the ratio 5/3 observed in Lemma 2
maximal? Our future plans also include decentralising the
scheme and adapting and plugging our algorithms into real-
world applications, most probably replacing [26] in the MRT
IP Fast ReRoute framework [24] with our implementations.
Note that extending disjoint multipath routing for multiple
failures is very challenging, because it requires solving the
following long-standing open algorithmic problems: find re-
dundant trees with more than four colors [36], and compute
more than two disjoint paths with the same complexity as
shortest path search [29].
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APPENDIX

Proof of Lemma 2: First, we consider the graph G in
Fig. 1a and we show that η(G, r) → 1.6 if M grows large
enough. Then, for the modified graph of Lemma 2 (where v8,
v10, v11, and v9 are replaced by a chain of M new nodes) the
same argument will result η(G, r) = 20M2+26M+32

12M2+30M+36 and so
η → 5

3 as M tends to ∞. The details are omitted for brevity.
Consider the graph G in Fig. 1a, let edge weights be 1

except on edges (v2, v8), (v10, v2), (v11, v5), (v5, v9) that have
weight M . We show that for any ε > 0 there exists a value
Mε such that if M > Mε, the length ratio of G is greater than
1.6−ε. It is easy to check that the sum of shortest pair of paths
is 5 for nodes v1, v3, v6, v4 and M+6 for nodes v8, v2, v5, v9,
finally 2M + 8 for nodes v10, v7, v11, giving a total sum of
10M + 68.

Fig. 1d shows the pair of optimal redundant trees T1 and
T2. Assume indirectly that there exist shorter redundant trees
F1 (blue) and F2 (red). Without loss of generality we can
assume that arc r → v1 is blue. Note that then the blue tree
can only reach nodes v10, v7, v11 through node v2, otherwise
path r → v1 → v3 → v6 → v5 → v11 should be all blue,
cutting nodes v10, v7, v11 from the red tree. Also, since in T1
and T2 only nodes v10, v7, v11 have longer paths from r than
in G, the sum of the length of their corresponding path must
be shorter in F1 and F2. Assume that the blue path is shorter
in F1 than in T1. It can be checked that the only alternative is
path r → v1 → v3 → v2 → v10, decreasing at most 3M − 3
on the total sum. However, the red paths to nodes v8 and v2
must go through v5 → v11 → v7 → v10 → v2, increasing
the total sum with at least 4M , which is bigger than 3M − 3,
giving a contradiction.

Proof of Theorem 1: Let X,C denote an instance of a
NAE-3SAT problem with variables X = {x1, . . . , xn} and
clauses C = {c1, . . . , cm}. We build a graph G = (V,E)
belonging to this instance as follows:

V :={r} ∪ {xit, xif |xi ∈ X} ∪ {cj |cj ∈ C},
E :={(r, xit), (r, xif ), (xit, xif )|xi ∈ X}∪

∪ {(xit, cj)|cj ∈ C, xi ∈ X,xi ∈ cj}∪
∪ {(xif , cj)|cj ∈ C, xi ∈ X,xi ∈ cj},

where xit and xif correspond to the true and false assignment
of variable xi, respectively. The weight w(e) := 1,∀e ∈ E.
For every node v, let d(v) denote the minimal length of two
edge-disjoint v−r-paths. Note that d(v) = 3 for nodes v = xit
or v = xif , and 4 for nodes v = cj and this shortest pair of
edge-disjoint paths is unique for every node.
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Fig. 7: The polynomial-time tranformation of the NAE-3SAT
instance (X = {x1, x2, x3, x4}, C = {c1 = {x1, x2, x4}, c2 =
{x1, x2, x3}}, k = 2). A NAE truth assignment is x1 =
1, x2 = 0, x3 = 0, x4 = 1.

Claim 1: There is a not-all-equal truth assignment of the
NAE-3SAT instance (X,C) if and only if G has two minimum
length redundant trees with c(T1, T2) =

∑
v∈V d(v).

Proof: Let a : X → {t, f} be a not-all-equal truth
assignment of the instance and let a denote the opposite
assignment. For a clause ci ∈ C let xt(i) be a literal that
evaluates to true in ci (that is, either xt(i) ∈ ci and a(xt(i)) = t
or xt(i) ∈ ci and a(xt(i)) = f ). Similarly can we pick a literal
xf(i) which evaluates to false in ci. Now we are ready to
construct trees T1 and T2:

T1 = {(xj
a(xj)

, r), (xj
a(xj)

, xj
a(xj)

)|xj ∈ X} ∪ {(ci, xt(i)
a(xt(i))

)|ci ∈ C}
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, r), (xj
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)|xj ∈ X} ∪ {(ci, xf(i)
a(xf(i))

)|ci ∈ C}

These trees are redundant and minimum
length, as (ci, x
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), (x
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, r) ∈ T1 and
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), (x
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, r) ∈ T2, hence nodes ci have
c(P (T1, ci)) + c(P (T2, ci)) = 2 + 2 = 4, which is minimal.
The trees T1 and T2 are clearly minimum length for nodes xit
and xif , too.

To prove the other direction let T1 and T2 be two minimum
length redundant trees. Hence, for every variable xi ∈ X ,
paths (xit, x

i
f ), (x

i
f , r) and (xif , x

i
t), (x

i
t, r) are part of different

trees, so we can define the following evaluation of X:

a(xi) :=

{
t , if (xit, r) ∈ T1
f , if (xif , r) ∈ T1

From the assumption on minimum length, we get that ci
have c(P (T1, ci)) = c(P (T2, ci)) = 2, that is there exists a
variable xj with either xj ∈ ci and (xtj , r) ∈ T1 or xj ∈ ci
and (xfj , r) ∈ T1. Both are equivalent to that there is a literal
that is evaluated to true in clause ci. Similarly we can derive
from c(P (T2, ci)) = 2 that there is also a literal which is
evaluated to false in ci.
Since NAE-3SAT is NP-complete, the claim follows.


