
Heuristic Representation Optimization for
Efficient Generation of PH-distributed Random

Variates

Gábor Horváth3,4, Philipp Reinecke1, Miklós Telek3,5, and Katinka Wolter2

1 HP Labs, Bristol
2 Freie Universität Berlin
Institut für Informatik

3 Budapest University of Technology and Economics
Department of Telecommunications

4 MTA-BME Information systems research group
5 Inter-University Center for Telecommunications and Informatics Debrecen

{philipp.reinecke, katinka.wolter}@fu-berlin.de,
{hgabor, telek}@webspn.hit.bme.hu

Abstract. Phase-type (PH) distributions are being used to model a
wide range of phenomena in performance and dependability evalua-
tion. The resulting models may be employed in analytical as well as
in simulation-driven approaches. Simulations require the efficient gener-
ation of random variates from PH distributions. PH distributions have
different representations and different associated computational costs for
pseudo random-variate generation (PRVG). In this paper we study the
problem of efficient representation and efficient generation of PH dis-
tributed variates. We introduce various PH representations of different
sizes and optimize them according to different cost functions associated
with PRVG.

Key words: PH distribution, pseudo random variate generation, mono-
cyclic representation.

1 Introduction

Phase-type (PH) distributions [1] are very useful in modelling interarrival times,
failure times, and other phenomena in computer systems. They can be employed
in analytical approaches as well as in simulation-based evaluations. When PH
distributions are used in simulations, often large sets of random variates must
be generated, and thus efficiency of random-variate generation from PH distri-
butions is important. We consider algorithms that ‘play’ the underlying Markov
chain. These algorithms provide high accuracy, because they represent each PH
sample as a sum of exponential samples, directly following the definition of PH
distributions.

PH distributions have different Markovian representations. The relations of
representations with identical and different sizes are discussed in [2] and in [3],

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42937328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

respectively. In the context of PRVG, the importance of different representa-
tions comes from the fact that the computational complexity of PH-distributed
random-variate generation depends on the representation [4]. This fact poses the
research problem of finding the representation that is optimal for random-variate
generation.

In [5] we addressed the question by considering the sub-class of Acyclic Phase-
type (APH) distributions. For APH distributions the optimal representation is
obtained as follows: Starting from any representation the first step is to transform
the representation to the CF-1 canonical form defined in [6]. An APH distribu-
tion is in CF-1 form if the generator matrix has a bi-diagonal structure and the
transition rates are non-decreasing towards the absorbing state. Transformation
to the CF-1 form is always possible because all APH distributions have a CF-1
representation [6]. The second step is to find the optimal ordering of the diagonal
(and the associated sub-diagonal) elements. It is shown in [5] that for APH in
bi-diagonal form the optimal representation is achieved by reversing the order
of the rates on the diagonals, if the resulting reversed CF-1 form is Markovian.
For the case when the reversed CF-1 form is not Markovian, heuristic search
algorithms are proposed to find the optimal ordering of the diagonal elements.

In a previous conference version of this paper [7] we generalized the results
obtained for the APH class to the PH class using a similar approach. In the
first step we transformed the representation to the monocyclic representation
proposed by Mocanu and Commault in [8]. The monocyclic representation is
a sparse Markovian representation. This representation is a natural extension
of the CF-1 form, in the sense that the generator matrix remains bi-diagonal,
but on the matrix block level. Due to their structure these matrix blocks are
referred to as feedback Erlang (FE) blocks. The second step of the procedure
in [7] was to find the optimal ordering of the FE matrix blocks (and the associ-
ated sub-diagonal matrix blocks). We showed that due to the complex structure
introduced by FE blocks there is no general optimal ordering that holds for all
PH distributions and proposed several heuristics for finding optimal orderings.

In this paper we add a new degree of freedom to the considered class of
PH representations and optimize over this extended class. The introduced new
degree of freedom is the possible transition at the departure from FE blocks to
the absorbing state with probability p, referred to as exit probability. At p = 0
the obtained PH structure is identical with the one in [7]. We show that by
extending the class of representations we can achieve a significant improvement
in the efficiency of random-variate generation.

The introduction of nonzero exit probability might result in a non-Markovian
representation of the PH distribution, that is, a representation with negative el-
ements in the initial vector, which cannot be used for random-variate generation
with play methods. In order to exploit the whole flexibility of the introduced de-
gree of freedom, we check if a further representation transformation can provide
a Markovian representation (possibly of larger size).

The method proposed in this paper is composed of two parts, preprocessing
and random-variate generation. The computational complexity of the combina-

tion of both steps should be optimized in general. There are obvious extreme
solutions for the cases when very few and extremely large numbers of random
samples are required. In the first case the preprocessing phase can be omitted
and in the second case arbitrarily large look-up tables can be computed during
the preprocessing phase. Our proposed solution is between these extremes. We
assume 106 − 1010 samples, where the cost of the preprocessing phase of our
method is negligible in case of moderate size (< 10 states) PH distributions.
The cost of the preprocessing phase increases sub-linearly with the size.

The paper is structured as follows. We first introduce basic concepts of phase-
type distributions and the notation used throughout the paper in Section 2.
In Section 3 we propose a set of Markovian representations for PH distribu-
tions which appear promising for efficient random variate generation. Section 4
presents a procedure for generating PH distributed random variates from mono-
cyclic representations and computes its cost measures. A case study and an
exhaustive numerical experiment demonstrate the abilities of the proposed rep-
resentations (Section 5). Section 6 concludes the paper.

2 Phase-type distributions

A ME distribution of size n is described by an initial row vector α ∈ IRn and a
matrix A ∈ IRn×n, which define the cumulative distribution function (CDF)

F (x) = 1−αeAx1l, (1)

where 1l is the column vector of ones of appropriate size. We denote this ME dis-
tribution by ME(α,A). The related probability density function (pdf), Laplace
transform and moments are

fX(x) = αeAx(−A)1l, (2)

f∗X(s) = E(e−sX) = α(sI−A)−1(−A)1l, (3)

µn = E(Xn) = n!α(−A)−n1l. (4)

Phase-type distributions [1, 9] of size n are a sub-class of matrix-exponential
distributions of the same size, where vector α ∈ IRn is a probability vector
α ∈ IRn with entries αi such that αi ≥ 0 and matrixA ∈ IRn×n is a sub-generator
matrix with entries aij such that aij ≥ 0 for i ̸= j and aii ≤ −

∑
j,j ̸=i aij . We

denote the phase type distribution with vector α and matrix A by PH(α,A).
In this paper we restrict the attention to the cases with α1l = 1, which results
in distributions without probability mass at zero.

2.1 Representations

The representation of a phase-type distribution by a vector α and matrix A (de-
noted as (α,A)) is not unique [6, 10], as summarized in the following theorems.

Theorem 1. [2] Let ME(α,A) of cardinality n and ME(γ,G) of cardinality n
represent two ME distributions with cdf FX(x) and FY (x), respectively. The two
distributions are identical if there exists a non-singular matrix B of cardinality
n × n, such that γ = αB, G = B−1AB and B1l = 1l. The same relation holds
when ME is replaced by PH.

Proof. If matrix B is non-singular and γ = αB, G = B−1AB, B1l = 1l, then

FY (x) = 1−γeGx1l = 1−αBeB
−1ABx1l = 1−αBB−1eAxB1l = 1−αeAx1l = FX(x).

We classify the vector matrix pairs which represent a distribution according
to (2) by the following important property.

Definition 1. The vector matrix pair (γ,G) with γ1l = 1 is called Markovian if
∀i : γi ≥ 0 and Gii < 0, Gij ≥ 0,∀i ̸= j. Otherwise it is called non-Markovian.

The Markovian representation of a PH distribution has a nice stochastic
interpretation, which is the time to absorption in a Markov chain with n transient
states and one absorbing state. In this case, we refer to γ of size n as the initial
probability vector and to G of size n × n as the sub-generator matrix of the
Markov chain. We employ the relation between the representations in Theorem 1
throughout this paper.

Theorem 1 uses the square matrix B to transform between representations
of the same size. This operation is defined as follows:

Definition 2. The similarity transformation of (α,A) with matrix B is
(αB,B−1AB) if B is invertible and B1l = 1l.

The main properties of a similarity transformation are as follows (cf. [11])

– (α,A) and (αB,B−1AB) have the same size,
– the eigenvalues of A and B−1AB are identical.
– If (α,A) is Markovian then (αB,B−1AB) can be both Markovian and non-

Markovian.

Representations with different sizes can be transformed into each other in a
similar manner, using a non-square matrix. This is stated in the following two
theorems, which are symmetric to each other.

Theorem 2. [10, 3] Let ME(α,A) of cardinality n and ME(γ,G) of cardinality
m (m > n), be two ME distributions with cdf FX(x) and FY (x), respectively. If
there exists a matrix V of cardinality m × n, such that α = γV, VA = GV,
V1ln = 1lm then ME(α,A) ≡ ME(γ,G).

Proof. If α = γV, VA = GV, V1ln = 1lm then

FX(x) = 1−αeAx1ln = 1−α
∞∑
i=0

Aix
i

i!
1ln = 1− γV

∞∑
i=0

Aix
i

i!
1ln =

= 1− γ
∞∑
i=0

Gix
i

i!
V1ln = 1− γ

∞∑
i=0

Gix
i

i!
1lm = 1− γeGx1lm = FY (x)

(5)

Theorem 3. [3] Let ME(α,A) of cardinality n and ME(γ,G) of cardinality m
(m > n), be two ME distributions with cdf FX(x) and FY (x), respectively. If
there exists a matrix W of cardinality n×m, such that αW = γ, AW = WG,
W1lm = 1ln then ME(α,A) ≡ ME(γ,G).

Proof. If αW = γ, AW = WG, W1lm = 1ln then

FX(x) = 1−αeAx1ln = 1−α
∞∑
i=0

Aix
i

i!
1ln = 1−α

∞∑
i=0

Aix
i

i!
W1lm =

= 1−αW
∞∑
i=0

Gix
i

i!
1lm = 1− γ

∞∑
i=0

Gix
i

i!
1lm = 1− γeGx1lm = FY (x)

(6)

In both cases of equivalent representations with different sizes we have the
following properties.

– The eigenvalues of A are all eigenvalues of G with at least the same multi-
plicity.

– If (α,A) is Markovian then (γ,G) can be both Markovian and non-
Markovian.

3 Phase-type representations for efficient random variate
generation

We recall that the computational complexity of PH-distributed random-variate
generation depends on the representation, and that there are examples where
the computational cost associated with a representation of larger size is less than
the one associated with representations of smaller size [4]. Our goal is to find the
Markovian representation with the lowest computational complexity, where we
allow the size of the representation to be increased. As the set of representations
of a PH distribution is enormously complex, we restrict our attention to a well-
defined subset of representations and look for an optimal representation in this
subset.

3.1 Monocyclic representation

We define the subset of representations considered here by a procedure. The
first element of this procedure is the generation of the monocyclic representation
defined in [8]. Here we summarize the main steps of this procedure.

Step 1: Given an (α,A) representation of the PH distribution, compute the
eigenvalues of A, denoted by σk, with their multiplicities. Choose the dom-
inant eigenvalue (the one with minimal absolute real part) and denote it
by σ1.

1 λ 2 λ 2 λ 2

β 1 β 2 β 3 β 4

2z

λ 22z

λ)
21 3 4

(1−

FE−2FE−1

Fig. 1. Monocyclic form of a PH distribution.

Step 2: For each eigenvalue generate a Markovian block representing the eigen-
value. In case of a real eigenvalue the associated Markovian block is com-
posed by a single state whose exit rate is the absolute value of the eigenvalue
(c.f. the first block in Figure 1). In case of a pair of complex eigenvalues,
σk = −ak ± ck i, the associated Markovian block contains a loop from the
last state of the block to the first state (c.f. the second block in Figure 1).
The loop is determined by the triple (bk, λk, zk), where bk is the number of
phases in the loop, λk is the common exit-rate of the phases in the loop,
and zk is the feedback probability at the end of the loop. From ak, ck and σ1
(where ak, ck > 0, σ1 is real and σ1 < 0) the triple (bk, λk, zk) is computed
by

bk =


2π

π − 2 arctan

(
ck

ak + σ1

)
 , (7)

λk =
1

2

(
2ak − ck tan

π

bk
+ ck cot

π

bk

)
, (8)

zk =

(
1−

ak − ck tan
π
bk

λk

)bk

, (9)

where ⌈x⌉ denotes the smallest integer strictly greater than x. These Marko-
vian blocks are referred to as feedback Erlang (FE) blocks in the following.
The single phase associated with a real eigenvalue can also be considered as
a degenerate FE block, where (bk = 1, λk = −σk, zk = 0).

Step 3: Compute the dominant eigenvalue of the FE blocks by

rk = −λk
(
1− z

1
bk

k

)
and order the FE blocks with non-decreasing absolute rk. In case of identical
rk values the FE blocks are ordered according to non-decreasing bk and then
non-decreasing λk and then nondecreasing zk.

Step 4: Compose a Markovian transient generator matrix, denoted by B, from
the FE blocks such that the FE blocks are repeated as many times as the

λ1 λ2 λ3 λ4

1 2 3 4

Fig. 2. CF-1 canonical form of Cumani [6].

1

γ 1

λ 2 λ 2 λ 2

γ 2 γ 3 γ 4

2z

λ 22z

γ 5 γ 6 γ 7

λ
1

FE−1

)
2 3 4

(1−

FE−2

5 6 7

λ λ λ

Erlang tail

Fig. 3. Monocyclic form of a PH distribution with Erlang tail.

multiplicity of the associated eigenvalue, the exit transition of an FE block
goes to the first phase of the next FE block and the FE blocks are ordered.
This way the FE block(s) associated with σ1 is (are) the first one(s).

Note that the case when all eigenvalues are real results in a transient gen-
erator matrix which is identical with the CF-1 canonical form of the acyclic
PH distributions [6], c.f. Figure 2.

Step 5: Compute the initial vector, β, such that (α,A) and (β,B) are different
representations of the same PH distribution. For this computation [8] pro-
posed a method based on the identity of the rational Laplace transforms of
(α,A) and (β,B). Here we recommend a different “time domain” approach
based on [3]: If the size of B is m then introduce the unknown matrix W
of size n×m, solve the set of linear equations AW = WB, W1lm = 1ln for
W and compute β = αW. Appendix A demonstrates the uniqueness of W
when A and B are diagonalizable.

Step 6: Check if β is non-negative. If β is non-negative then (β,B) is the mono-
cyclic representation of the PH distribution. If β contains at least one nega-
tive element then a further transformation is required to obtain a Markovian
representation, which is summarized in Step 7.

Step 7: Extend the monocyclic generator with an Erlang tail according to Fig-
ure 3. The obtained transient generator matrix, denoted by G, has the fol-
lowing structure

G =


B −B1l

−λ λ
. . .

. . .

−λ λ
−λ

 .

Procedure BFMarkovian(β,B):
λ := −σ1

for i := 1, i < 20, i++ do
for n := 1, n < 100, n++ do

(γ,G) := ExtendWithErlangTail(β,B, λ, n)
if γ ≥ 0 then

return (λ, n)
end if

end for
λ := 2 ∗ λ

end for
return (0, 0) % No Markovian representation is found

Fig. 4. A brute-force procedure for finding λ and nλ

This extension has two parameters, the rate of the Erlang tail λ and the
number of phases in the Erlang tail nλ. The initial vector, γ, which ensures
that (β,B) and (γ,G) are different representations of the same PH distri-
bution is computed according to Step 5. The computation of λ and nλ such
that the associated initial vector γ is non-negative is a weakly documented
part of [8]. A potential brute-force approach is Procedure BFMarkovian in
Figure 4. A more sophisticated approach is proposed in [12].
The resulting tuple (γ,G) is the monocyclic representation of the PH dis-
tribution.

The applicability of this procedure is ensured by the following theorem.

Theorem 4. [8] Every PH distribution has a monocyclic representation with
Markovian initial vector.

The monocyclic form of a PH distribution can be computed using, e.g., the
MOMI tool [13] or the Butools library [14].

Examples in the numerical example section indicate that the monocyclic
representation is often more efficient for PRVG than an arbitrary initial repre-
sentation. In the following subsections we introduce two variants of the mono-
cyclic representation to further enhance the efficiency of PRVG. The structural
properties of these representations also follow from [15, 8] due to Theorem 7 in
Appendix B.

3.2 Monocyclic representation with non-ordered FE blocks

The first generalization of the considered set of representations is obtained by
relaxing the ordering of the FE blocks in the monocyclic representation. The
associated representations are obtained by the following procedure.

Step 1-2: Obtain the FE blocks as before.
Step 3: Compute all permutations of the FE blocks where the FE block(s)

associated with σ1 is (are) the first one(s).

2 λ 2 λ 22z

λ 22z

λ 1λ)
1 2 3

(1−

FE−2

4

FE−1

Fig. 5. Monocyclic form of a PH distribution with non-ordered FE blocks.

Step 4-7: Obtain associated representations as before.

Figure 5 illustrates the effect of re-ordering FE blocks in the monocyclic
representation.

This procedure has the following properties: The transient generator matrices
with different FE block orders have different initial vectors. Consequently, the
sizes of the representations are different, in general, due to the fact that Erlang
tails of different sizes are required for obtaining the associated non-negative
initial vectors. The permutations where the block(s) associated with σ1 is (are)
not the first one(s) violate the structural properties of Theorem 7.

3.3 Monocyclic representation with non-zero exit probability

The second generalization of the considered set of representations is to exit from
each FE block with a non-zero probability. In this case, upon exit from an internal
FE-block with rate λk(1 − zk) the next visited phase is the first phase of the
next FE-block with probability 1 − p and the absorbing state with probability
p. The associated representations are obtained by the following procedure.

Step 1-3: Obtain and order the FE blocks as in the case of the monocyclic
representation.

Step 4: Compose a Markovian transient generator matrix, denoted by B, from
the FE blocks such that the FE blocks are repeated as many times as the
multiplicity of the associated eigenvalue, the exit transition of an FE block
goes to the first phase of the next FE block with probability 1 − p and to
exit with probability p, and the FE blocks are ordered.

Step 5-7: Obtain the Markovian representation as in the case of the monocyclic
representation.

Figure 6 shows a representation with non-zero exit probabilities at the inter-
nal FE blocks after the computation of the Erlang tail.

This procedure has the following properties: The exit from the last FE block
is not affected. With p = 0 we obtain the monocyclic representation. The cases
when the exit probability is 1 also violate the structural properties in Theorem 7.
The sizes of the representations with different p values might be different.

1

λ 2 λ 2 λ 2

γ 2 γ 3 γ 4

2z

λ 22z

γ 5 γ 6 γ 7

λ 1

λ 1

γ

1

FE−1

)
2 3 4

(1−

FE−2

5 6 7

λ λ λ

Erlang tail

(1−p)

p

Fig. 6. Monocyclic form of a PH distribution with non-zero exit probability.

3.4 Monocyclic representation with non-ordered FE blocks and
non-zero exit probability

The combination of the above two generalizations results in the widest class of
representation we consider for efficient PRVG in this paper.

All of the introduced PH representations have a special sparse structure, and
consequently the cost of drawing PH-distributed random samples using these
representations can be computed in a simple way, as discussed in the next section.

4 Random-variate generation from FE-diagonal
representations

In the following we consider the monocyclic representation of a PH distri-
bution with m Feedback-Erlang blocks for the eigenvalues and an Erlang tail of
length nλ and rate λ. Since the Erlang tail is a degenerate FE block, we have a
monocyclic representation withm+1 FE blocks and overall length n =

∑m+1
i=1 bi,

where the (m + 1)th block is given by the Erlang tail (if no Erlang tail exists,
we assume that the (m+ 1)th block is of length bi+1 = 0). Given this represen-
tation, random variates can be generated by the procedure Monocyclic, shown
in Figure 7. The algorithm uses the

Geo(q) =

⌊
lnU

ln p

⌋
(10)

operation for drawing a random variate from the Geometric distribution with
parameter q and support 0, 1, . . . ; the

Erl(b, λ) = − 1

λ
ln

(
b∏

i=1

Ui

)
(11)

operator for drawing a random variate from the Erlang-(b, λ) distribution; and
the

Discrete({p0, p1, p2, . . . , pn}) =
{
i if

∑i−1
j=0 pj ≤ U <

∑i
j=0 pj , (12)

operator to draw a discrete random variate with distribution p0, p1, p2, . . . , pn.
In all three cases, U denotes a uniformly distributed pseudo-random number
on (0, 1).

Procedure Monocyclic(γ, [{bi, λi, zi}, . . . , {bm+1, λm+1, zm+1}]):
x := 0
{j, l} := Discrete(γ)
% The chain starts from block j and inside the block
% it has to traverse l states until the last state of the block
% (e.g., for the left-most state of the jth block, l = bj).
while j ≤ m do

if zj > 0 then
c := Geo(zj)

else
c := 0

end if
x := x+ Erl(cbj + l, λj)
if j < m then

if p > 0 and Discrete({1− p, p}) = 1 then
j := m+ 1

else
j ++

end if
else

j ++
end if
l := bj

end while
x := x+ Erl(l, λj)
Return(x)

Fig. 7. The Monocyclic procedure

The algorithm works as follows: First, an initial state is chosen according to
the initial probability vector γ. We assume that this state belongs to Feedback-
Erlang block j ∈ {1, . . . ,m + 1}, and there are 1 ≤ l ≤ bj states to traverse
before the chain may enter the next block. Since all rates in the given FE block
are equal (λj), this corresponds to an Erlang-(l, λj) distribution. When the last
state of the block is reached, one may either leave the current block or stay in
the block by following the feedback-loop to the first state of the block. Note
that the random variate corresponding to one loop is Erlang-(bj , λi) distributed
and that the number of loops Cj = 0, 1, . . . within the jth FE block follows a
geometric distribution with parameter zj and support 0, 1, Consequently, for
the block entered upon initialization the algorithm draws a random variate from
an Erlang-(Cjbj + l, λj) distribution. Since all the remaining blocks are entered
at the first state, the respective random variates for blocks j+1, j+2, . . . ,m+1
are Erlang-((1 + Cj)bj , λj)-distributed.

Non-zero exit probabilities, as introduced in Section 3.3, extend this be-
haviour as follows: When leaving any block j = 1, . . . ,m, one can go to the start
of the Erlang tail (with probability p), or to the next block (with probability

1− p). When the chain enters the Erlang tail from the jth block, the remaining
blocks j + 1, . . . ,m are skipped.

The computational cost of Monocyclic is dominated by the number of loga-
rithm operations and the number of uniformly distributed pseudo random num-
bers that are required. Due to the regular structure of the monocyclic repre-
sentation the expected numbers of both operations can be computed from the
representation in a simple way.

4.1 Logarithm Costs

The number of logarithm operations depends on the distribution of the initial
probability mass over the Feedback-Erlang blocks and is independent of both
the distribution within the blocks and the length of the blocks.

Let the row vector

β :=

 b1∑
i=1

γi,

b1+b2∑
i=b1+1

γi, . . . ,

n∑
i=n−bm+1

γi

 (13)

of size m + 1 denote the initial probabilities for each FE block (if nλ = 0,
βm+1 := 0). Then, define the row vector ν ∈ IRm+1 with entries

νm+1 :=

{
1 nλ > 0

0 else
(14)

νm := νm+1 + 1 + Im (15)

νj := νj+1 + 1 + Ij − p(νj+1 − νm+1) for j = m− 1, . . . , 1, (16)

where Ij is 0 if zj = 0 and 1 otherwise. (15) represents the special case when
j = m. The jth entry of ν gives the number of logarithms when the chain is
entered at the jth block: Each traversed block requires one logarithm for drawing
the Erlang sample. If the feedback probability zj is larger than zero, an additional
logarithm is needed for drawing a Geometric sample (the logarithm of q in (10)
can be precomputed and therefore does not appear in the equation). The last
term of (16) accounts for the fact that with probability p the remaining blocks
may be skipped. The expected number of logarithm operations is then:

nLog(γ,G) = βνT. (17)

4.2 Uniform Costs

The expected number of uniformly-distributed random variates depends on the
number of choices between jumping to the Erlang tail or proceeding, on the
number of geometric samples, and on the number of uniforms required for the
Erlang samples. Additionally, one uniform is required for selecting the initial
state. These considerations yield the following expression:

nUni(γ,G) = n
(1)
Uni(γ,G) + n

(2)
Uni(γ,G) + n

(3)
Uni(γ,G) + 1. (18)

We first compute the number of samples required for the jump choices, which
depends on the number of visited blocks. Let ω ∈ IRm+1 denote the row vector
with entries

ωm+1 = 0 (19)

ωm = 0 (20)

ωj = 1 + (1− p)ωj+1 for j = 1, . . . ,m− 1. (21)

Each entry of ω represents the expected number of choices that can be made
when starting from this block. For j ∈ {m,m + 1}, the procedure cannot skip
towards the Erlang tail. For each block 1 ≤ j < m− 1, there is one local choice,
and with probability (1 − p) the (j + 1)th block is entered, which then entails
further choices. Since each discrete random variate requires one uniform random
number, the average number of uniforms in this part is

n
(1)
Uni(γ,G) = βωT. (22)

Similarly, the mean number of uniforms needed for the geometric samples is
obtained by defining the vector ϕ, whose entries

ϕm+1 = 0 (23)

ϕj = Ij + (1− p)ϕj+1 for j = 1, . . . ,m (24)

denote the mean number of Geo() operations starting from the ith FE block,
and computing

n
(2)
Uni(γ,G) = βϕT. (25)

The number of uniforms needed for the Erlang samples depends on the initial

block and on the initial state. For brevity, let sj :=
∑bj

k=1 bk denote the last state
of the jth block. As before, we recursively define a vector ψ ∈ IRn, starting with
the entries corresponding to the Erlang tail (if present):

ψsm+1 := 1 (26)

ψi := ψi+1 + 1 for i = sm+1 − 1, . . . , sm+1 − nλ + 1 (27)

When starting in states belonging to the mth block, the length of the Erlang
distribution (and hence the number of uniform samples) depends on the distance
to the feedback point and on the number of feedback loops. Furthermore, when
the chain is entered at this block, the Erlang tail has to be traversed completely.
Taking into account the length of the Erlang tail, the respective entries in ψ are
therefore given by

ψsm := 1 + nλ +
zm

1− zm
bm (28)

ψi := ψi+1 + 1 for i = sm − 1, . . . , sm − bm + 1 (29)

All the remaining blocks j = 1, . . . ,m − 1 can jump to the Erlang tail with
probability p, and continue with probability (1− p). The corresponding entries

are thus defined as

ψsj := 1 + pnλ + (1− p)ψsj+1 +
zj

1− zj
bj (30)

ψi := ψi+1 + 1 for i = sj − 1, . . . , sj − bj + 1. (31)

The number of uniforms for Erlang samples is then

n
(3)
Uni(γ,G) = γψT. (32)

4.3 Modification for Exit-Probability Zero

In the form shown in Figure 7, Monocyclic supports representations with exit
probability p ≥ 0. If it is known that the exit probability will be zero, a simplified
version that does not draw a discrete random variate for the exit arc can be used.
With this version, the expression for the expected number of uniforms in (18)

simplifies to nUni = n
(2)
Uni + n

(3)
Uni + 1. Equation 17 for the average number of

logarithms is not affected.

5 Numerical examples

In this section we demonstrate the efficiency improvements obtainable by us-
ing optimized representations, compared to the direct approach. The following
methods are considered in the comparison:

– The Play method is based on the direct simulation of the absorbing Markov
chain representing the PH random variable. At each step the sojourn time
of the state and the next state are drawn till the absorption. The average
speed of the algorithm depends on the mean number of phase transitions
occurring before absorption.

– The SmartPlay method (proposed in [16]) is the enhanced version of the play
method. When drawing a random sample, it first records which states are
traversed before absorption and how many times. The time spent in a given
state is then considered to be Erlang distributed, which requires only a single
logarithm operation to draw a sample from. Thus, the number of logarithm
operations needed to generate a PH distributed random sample is less than
or equal to the size of the PH distribution.

– The monocyclic representation can be beneficial for random number gener-
ation as shown in [4].

– Additional improvement can be achieved by optimizing the order of feedback
Erlang blocks of the monocyclic representation (Section 3.2). At some order-
ing of the blocks the initial probability vector can be such that on average
fewer blocks are traversed till absorption than in the original monocyclic
representation [7].

– The simulation cost can also be reduced by optimizing the exit rates of the
feedback Erlang blocks to reduce the average number of blocks to traverse
till absorption (Section 3.3).

– Finally, the combination of the latter two approaches by optimizing the order
of feedback Erlang blocks and optimizing the exit rates of the feedback Erlang
blocks at the same time, is considered.

We use a Mathematica implementation of the above methods on a modern
PC clocked at 3.4 GHz for our evaluation. Although the implementations might
not be fully optimized in terms of execution speed, it becomes obvious that
the computational complexity of the methods above is significantly different. Of
course, optimizing the representation of the PH distribution is done only once,
when the simulation is started, thus the additional overhead of a possibly slow
optimization amortizes with the simulation time.

Our findings on the execution speeds of the optimization methods are as
follows:

– Drawing PH variables using the play method and its enhanced variant does
not need any preliminary preparations at all.

– The transformation to the monocyclic representation is fast. It terminates
almost promptly with PHs having tens of phases, and takes a few seconds
with a hundred or more phases.

– To find the optimal order of feedback Erlang blocks in terms of the cost
function we implemented an exhaustive search algorithm that calculates the
costs of all possible orderings of the feedback Erlang blocks and selects the
cheapest one. Obviously, this is not a scalable approach due to the combi-
natorial explosion (i.e., for m FE blocks, m! orderings must be considered).
Optimizing the order of 6 feedback Erlang blocks takes 10-20 seconds, and
it increases with the size of the problem so fast that it becomes intolerably
slow with more than 10 phases. Note that we cannot apply the heuristic op-
timization algorithms proposed in [7] because we optimize the order on the
generally non-Markovian monocyclic representation and compute the Erlang
tail afterwards.

– To find the optimal exit probability only a single variable needs to be op-
timized (between 0 and 1), thus this is a quick and scalable method which
takes few seconds with tens of phases.

– The combined optimization is the slowest method. All possible orderings of
the feedback Erlang blocks are evaluated one by one and the optimal exit
probability is obtained for each ordering. While random-variate generation
with this method intuitively can be expected to perform best, it is also ob-
vious that the optimization step is the slowest of all the methods considered
here. It needs several minutes to optimize a structure involving as few as 6
feedback Erlang blocks.

During the simulation, the execution-time of generating a single random vari-
ate using any of the presented methods is dominated by the elementary oper-
ations of drawing a uniformly-distributed pseudo-random number and of com-
puting a logarithm. The exact cost of these operations depends on hardware
and software specifics. In the numerical examples the presented methods will be

evaluated using a combined cost function that depends on the ratio L of the
costs of these operations:

nTotal = nUni + L · nLog. (33)

5.1 A Case Study

In this section we provide a detailed case study to show how the presented
methods are able to reduce the cost of random variate generation. We use the
PH distribution (α,A) with the following parameters:

α =
[
0.40535 0.0914074 0.403507 0.099735

]
,

A =


−8.69773 1.1017 2.227 4.6353
2.10619 −10.1553 4.61562 1.50111
1.46425 4.261 −12.0265 4.40511
3.85212 5.72213 0.704262 −14.1558

 .
In this PH distribution the average number of state transitions up to absorp-

tion is

n∗ = α(diag⟨1/aii⟩A)−11l = 5.54692.

According to the Play method at each transition an exponentially distributed
sojourn time spent in the current phase is generated, followed by drawing the
next phase to visit. Generating exponentially distributed random variates in-
volves a logarithm operation and generating a uniform sample. To obtain the
next phase (according to the appropriate discrete distribution), an uniform sam-
ple is needed. Furthermore, another uniform sample is required to obtain the
initial phase of the distribution. Thus, assuming L = 1 we have

nUni = 1 + 2n∗ = 12.0938,

nLog = n∗ = 5.54692,

nTotal = nUni + L · nLog = 17.6408.

According to the SmartPlay method at each transition only the next phase
is drawn and the number of visits to the current phase is incremented by one.
Thus, assuming L = 1 we have

nUni = 1 + 2n∗ = 12.0938,

nLog = ñ = 2.85703,

nTotal = nUni + L · nLog = 14.9508,

where ñ is the average number of visited phases out of the all phases n.
Next, the monocyclic representation of PH(α,A) is constructed (see Figure

8). The number of logarithms required depends on how many states are traversed
till the absorption. Note that drawing Erlang distributed random variates needs

only a single logarithm operation, and the geometrically distributed variable
representing the number of times the feedback is taken needs an additional log-
arithm as well. The number of logarithms required is calculated as

nLog = 0.527017 · 3 + 0.13063 · 2
+ (0.102815 + 0.129809 + 0.109729) · 1 + 1 = 3.18466.

Now we calculate the number of uniform samples required. Since we know
that p = 0, we assume that the simplified version of the procedure Monocyclic is
used (cf. Section 4.3). One uniform is required for exponential distributions and
n uniforms are needed for order-n Erlang distributions. The average number
of times the feedback is taken is the mean of a geometric distribution with
parameter 0.115691/14.9325 = 0.00774763, thus it is 0.00781. An additional
uniform sample is needed to determine the initial phase of the PH distribution
as well. This yields

nUni = 0.527017 · 5 + 0.13063 · 4 + 0.102815 · 3
+ 0.129809 · 2 + 0.109729 · 1 + 0.00781 · 3 + 1 = 5.85882.2.02644 10.1892 14.9325 14.9325 14.81680.1156910.527017 0.13063 0.102815 0.129809 0.109729

Fig. 8. Monocyclic representation of PH(α,A).

Thus the total cost of the monocyclic representation is nTotal = 9.04349,
which is only half the cost of the play method.

In the hope of reducing the cost even further, we can try to change the order
of feedback Erlang blocks. As there are 3 feedback Erlang blocks in this example,
there are 6 different orderings to check. Figure 9 depicts the ordering that has
been found to be optimal. Note that an Erlang-3 distribution has been appended
to maintain the Markovian property of the initial distribution. The cost of this
structure is nTotal = 6.06503. At first sight it seems to be contradictory that
the size of the PH is increased to reduce the cost of generating random variates
from it, but it can be observed in Figure 9 that the initial probabilities closer to
the absorbing state increased, reducing the average cost of the representation.

An alternative way of reducing the cost is to allow absorption when leaving a
feedback Erlang block with a given probability. The exit probability that provides
the best cost needs to be obtained by optimization. In this particular example
the optimal exit probability is pe = 0.63904, yielding a cost of nTotal = 5.92069
(for L = 1). The resulting representation is shown in Figure 10.

10.1892 2.0264414.9325 14.9325 14.81680.1156910.000042 0.000071 0.00034 0.0026 0.681867 16.2115 16.2115 16.21150.0975944 0.117193 0.100289
Fig. 9. Representation of PH(α,A) with optimized order of feedback Erlang blocks.0.731464 3.67789 14.9325 14.9325 14.81680.1156910.867246 0.0771706 0.020707 0.0348574 0.000019316.51131.29498
Fig. 10. Representation of PH(α,A) with optimal exit probability pk = 0.63904.

Optimizing both the order of feedback Erlang blocks and the exit probabil-
ities may give even better results in general, but in this particular example it
did not improve the results further. Thus we conclude that with the representa-
tion of Figure 10 we are able to generate PH(α,A) distributed random variates
almost 4 times faster than the play method.

5.2 Evaluating the algorithms on random PH distributions

In this experiment we generate a large number of PH distributions and subject
them to optimization, in order to compare the performance of the presented
methods. To this end we implemented a random general PH representation
generator. For a given size n, it first draws uniformly distributed samples for
the initial distribution, which are normalized later. In order to ensure a kind
of diversity the elements of the transition matrix A are drawn as follows. For
i, j ∈ {1, . . . , n}, i ̸= j we set Aij = (i + j)U and for i ∈ {1, . . . , n} we set
Aii = −

∑
j,j ̸=iAi,j − irU, where U is a uniformly distributed pseudo random

number on (0, 1) and r is referred to as termination rate.
We also investigate the effect of the cost ratio L of the elementary opera-

tions. The cost ratio can differ considerably, depending on the random-number
generator, the implementation of the library routines, and the hardware. For in-
stance, from the data presented in Chapter 2 of [17] it follows that the L factor
can vary between 1.65 and 4.82 across machines with different hardware and
software versions. The study in [17] considered the simple congruential random-
number generator from [18] that was also employed in earlier versions of the
OMNeT++ discrete-event simulator. On the other hand, the Mersenne twister
random-number generator (used in current OMNeT++ versions) takes almost
the same amount of time per sample as the computation of a logarithm on our
PC, indicating an L factor of 1. We therefore consider two situations, L = 5 and
L = 1 to study the effect of different configurations.

termination play smart mono optimized
rate method play cyclic block order exit prob. both

0.033 862.228 581.053 14.8945 8.98875 5.62649 4.54437
0.1 274.3 188.889 14.6538 8.05776 5.70746 4.41429
0.33 93.2193 67.6334 13.8572 7.25978 5.55492 4.46992
1 32.8511 26.4622 12.1112 6.32547 5.24005 4.26856
3.3 13.6558 12.3872 9.06915 5.29952 4.83196 3.66658
10 7.62302 7.39187 6.95718 4.77055 4.20163 3.56268
33 5.2984 5.27564 5.76659 4.57731 3.96352 3.64796

Table 1. Median of the average simulation costs for order 6 PH distributions based
on 200 samples, with L = 1

termination play smart mono optimized
rate method play cyclic block order exit prob. both

0.033 2010.53 604.659 38.6973 21.7033 12.1318 9.44551
0.1 638.701 211.645 38.0652 20.5111 12.0221 9.27802
0.33 216.178 88.2694 35.9704 18.7376 11.8333 9.38989
1 75.3192 43.2917 32.0196 14.1857 11.2056 8.92384
3.3 30.5302 24.1673 24.4524 12.3403 9.85334 8.04083
10 16.4537 15.2964 18.4818 9.49973 8.57759 7.7933
33 11.0296 10.9113 15.2998 9.41429 7.99007 7.68007

Table 2. Median of the average simulation costs for order 6 PH distributions based
on 200 samples, with L = 5

For each random general PH representation we first compute the monocyclic
representation and then apply the optimization approaches proposed in this
paper to find an optimal ordering, an optimal exit probability, and an optimal
combination of these.

Table 1 and Table 2 show the cost of generating PH-distributed random vari-
ates based on the presented methods with L = 1 and L = 5, respectively. When
the termination rate is equal to 1 and n = 6 there is a gain of ∼65% due to the
transformation to the monocyclic representation. By optimizing the monocyclic
representation further gain can be obtained. Optimizing only the order of blocks
yields an additional ∼ 40%, while optimizing only the exit probability gives an
additional ∼55% gain. When both the order and the exit probabilities are sub-
ject to optimization, the cost given by the monocyclic representation is reduced
by ∼60%.

It is interesting to see how the proposed transformation reduces the dynamics
of the cost. In the evaluated range of termination rate, (0.033, 33), the cost of
random variate generation with direct simulation varies from 5.27 to 862.23,
while the cost of random variate generation with optimized representation varies
from 3.56 to 8.99 (for L = 1). This pattern also applies to the cost with cost
ratio L = 5.

5.3 Studying the effect of the shape of the density functions

In Section 5.2 we use randomly generated PH distributions for our evaluation,
but do not consider the possible impact of the distributions’ properties on the
results. In this section we extend the focus of our experiments by studying the
impact of the shape of the density function on the effectiveness of our opti-
mization approach. As phase-type distributions are often employed specifically
because of their ability to fit arbitrary densities, the question whether our ap-
proach can improve the efficiency of random-variate generation independently
of the shape of the density is of considerable practical interest.

We proceed as follows: We use a set of randomly-generated PH representa-
tions, split into classes by basic properties of their density functions, and perform
the comparisons for each class. We split the set of distributions as follows:

– Based on the squared coefficient of variation c2v, where we distinguish
• low c2v distributions: 0 < c2v ≤ 0.8,
• medium c2v distributions: 0.8 < c2v ≤ 2, and
• high c2v distributions: c2v ≥ 2.

– Based on the skewness γ, where we consider
• low skewness distributions: 0 < skewness ≤ 1.7,
• medium c2v distributions: 1.7 < skewness ≤ 3, and
• high c2v distributions: skewness ≥ 3.

– Based on the shape of the density function, where we have
• unimodal distributions with mode = 0,
• unimodal distributions with mode > 0,
• bimodal distributions.

We ensured that there were at least 100 distributions in each class, leading
to a total of 491 distributions in the evaluation (some distributions can be in
more than one class). The number of random PH distributions belonging to the
different classes and their properties are summarized in Table 3.

In order to ensure sufficient diversity of the random PH representations we
employ sparse representations, which we can generate more efficiently than non-
sparse representations. The representations we use are of size 6, each with a total
of 29 zero entries in the vector α, matrix A and closing vector (−A)1l.

Table 4 shows the median of the simulation costs corresponding to the classes
and methods used in the comparison. According to the results it is clear that
the shape of the distribution has only a minor effect on the simulation costs;
furthermore, this effect is far less than the effect of the the rate to absorp-
tion (see Section 5.2). The methods proposed by us are always better than the
play method and its smart variant. Our representation-optimization procedures
(monocyclic representation, block re-ordering, exit-rate optimization) are thus
effective indeed.

Finally, we want to point out another interesting feature of using special op-
timized representations in random-variate generation: As illustrated in Table 5,
our methods result in lower deviations from the average costs. The table shows
the median absolute deviation, computed as the median of the absolute distance

Class Num. of PHs Properties

low c2v: 122 min{c2v} = 0.38, max{c2v} = 0.79, avg{c2v} = 0.633
medium c2v: 245 min{c2v} = 0.801, max{c2v} = 1.95, avg{c2v} = 1.24
high c2v: 124 min{c2v} = 2.0, max{c2v} = 30.0, avg{c2v} = 3.88

low skewness: 100
min{skewness} = 0.88, max{skewness} = 1.69,

avg{skewness} = 1.49

medium skewness: 291
min{skewness} = 1.7, max{skewness} = 2.99,

avg{skewness} = 2.17

high skewness: 100
min{skewness} = 3.0, max{skewness} = 17.8,

avg{skewness} = 4.42
unimodal (= 0): 178
unimodal (> 0): 195
bimodal: 112
Table 3. Distribution classes used in the numerical experiment and their properties

Distribution play smart mono optimized
category method play cyclic block order exit prob. both

low c2v 17.1197 15.1901 10.1383 8.06738 7.84758 6.99389
medium c2v 19.2366 16.4011 10.6259 8.7675 8.06567 6.85941
high c2v 12.8795 11.9807 9.19163 7.61338 6.93164 6.16798

low skewness 16.9059 15.037 10.0735 8.10224 7.84758 6.99389
medium skewness 18.9395 16.1918 10.4715 8.376 8.00979 6.8764
high skewness 12.6723 11.866 9.12945 7.4516 6.81537 6.22411

unimodal (= 0) 17.0809 15.1225 9.78639 7.92051 7.48931 6.46098
unimodal (> 0) 16.5704 14.5647 9.99832 8.0776 7.36248 6.73391

bimodal 18.243 15.9309 10.4821 8.80954 8.41663 7.44066
Table 4. Median of the average simulation costs for the different distribution classes,
with L = 1

of the average cost from the median of the cost, for each set. Irrespective of
the shape of the distribution, the play and smart play methods always exhibit
significantly higher deviations than our methods, and, typically, optimization
reduces the costs further. Thus, our optimization procedures not only reduce
the average costs, but also help to reduce the variations in costs that may occur
due to different shapes of the density.

5.4 Summary

Comparing the performance of the presented methods we observe that using an
optimized monocyclic representation for generating PH distributed random vari-
ates improves the computational efficiency. The level of improvement depends
on the particular PH representation and the point of reference. Compared to
computationally expensive representations and the most naive and inefficient
(but probably the most frequently used) Play Method the proposed approach
can be orders of magnitudes faster. Compared to less expensive representations

Distribution play smart mono optimized
category method play cyclic block order exit prob. both

low c2v 6.91391 5.36713 1.80913 1.50672 1.66765 1.34934
medium c2v 9.40542 6.82684 2.3076 2.15295 2.14065 1.79224
high c2v 4.8017 3.97381 1.45068 1.2827 1.77428 1.75371

low skewness 7.38663 5.48416 1.60848 1.50833 1.96546 1.43628
medium skewness 9.18359 6.62589 2.19786 1.89588 2.13394 1.61766
high skewness 4.75207 3.82742 1.41999 1.2801 1.61185 1.57042

unimodal (= 0) 8.15012 6.11172 1.96242 1.50907 2.07041 1.7176
unimodal (> 0) 6.26133 4.95313 1.72021 1.59748 1.73314 1.39008

bimodal 9.09796 6.88498 2.41072 2.30431 2.3464 1.76058
Table 5. The median absolute deviations of the simulation costs for the distribution
classes

and more advanced methods the proposed method still has computational ben-
efit. If the time to generate the optimal representation is not an issue, and the
target PH distribution does not have too many phases (< 10), it is worth to
optimize both the block order and the exit probability. In other cases, we recom-
mend optimizing only the exit probability. This approach is fast, scales well with
the number of phases, and efficiently reduces the generation cost. Furthermore,
by optimizing the representations we are able to reduce the variability of the
costs. On the other hand, a potential risk of the proposed method is the use of
numerically sensitive calculations like the eigenvalue analysis of matrix A.

6 Conclusion

In this paper we studied the optimization of phase-type distributions for random-
variate generation. We exploited the use of FE-blocks based representations to-
gether with a nonzero exit probability from the FE-blocks. We optimized the
generation costs by changing the ordering of the FE-blocks and by modifying
exit-probability values. Our optimization procedures are supplemented with a
model transformation step in case of a non-Markovian representation.

The methods proposed in this paper have several desirable properties that
help with the use of phase-type distributions in simulation: First, as shown in
our numerical evaluations, they reduce the costs of random-variate generation
by orders of magnitude, when compared to non-optimized approaches. We could
demonstrate that both the ordering of the feedback-Erlang blocks and the in-
troduction of a nonzero exit probability are effective methods, and that the
improvements are independent of the shape of the distribution. Second, the
optimization procedures reduce the variability of the costs across different dis-
tributions considerably. Thus, using our approach, the run-time costs of simu-
lations also become more predictable. Third, our methods ensure that the cost
of random-variate generation is independent of the structure of the original PH
representation. Thus, arbitrary PH distributions can be used efficiently.

Acknowledgements

This work was partially supported by DFG grants Wo 898/3-1 and Wo 898/5-
1, by the European Union TAMOP-4.2.2C-11/1/KONV-2012-0001, the OTKA
K101150 and the Research and Technology Innovation Fund EITKIC 12-1-2012-
0001 projects, and by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. We would also like to thank the anonymous reviewers for
their extremely helpful suggestions on improving the paper.

References

1. Neuts, M.: Probability distributions of phase type. In: Liber Amicorum Prof.
Emeritus H. Florin, University of Louvain (1975) 173–206

2. Telek, M., Horváth, G.: A minimal representation of markov arrival processes
and a moments matching method. Performance Evaluation 64(9-12) (Aug. 2007)
1153–1168

3. Buchholz, P., Telek, M.: On minimal representation of rational arrival processes.
Annals of Operations Research 202(1) (2013) 35–58

4. Reinecke, P., Wolter, K., Bodrog, L., Telek, M.: On the Cost of Generating PH-
distributed Random Numbers. In Horváth, G., Joshi, K., Heindl, A., eds.: Proceed-
ings of the Ninth International Workshop on Performability Modeling of Computer
and Communication Systems (PMCCS-9), Eger, Hungary (September 17–18, 2009
2009) 16–20

5. Reinecke, P., Telek, M., Wolter, K.: Reducing the Costs of Generating APH-
Distributed Random Numbers. In Müller-Clostermann, B., Echtle, K., Rathgeb, E.,
eds.: MMB & DFT 2010. Number 5987 in LNCS, Springer-Verlag Berlin Heidelberg
(2010) 274–286

6. Cumani, A.: On the Canonical Representation of Homogeneous Markov Processes
Modelling Failure-time Distributions. Microelectronics and Reliability 22 (1982)
583–602

7. Horváth, G., Reinecke, P., Telek, M., Wolter, K.: Efficient generation of ph-
distributed random variates. In: ASMTA. LNCS, Gernoble, France, Springer (june
2012) 271–285

8. Mocanu, S., Commault, C.: Sparse Representations of Phase-type Distributions.
Commun. Stat., Stochastic Models 15(4) (1999) 759 – 778

9. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. An Algorithmic
Approach. Dover Publications, Inc., New York (1981)

10. O’Cinneide, C.A.: On non-uniqueness of representations of phase-type distribu-
tions. Communications in Statistics. Stochastic Models 5(2) (1989) 247–259

11. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton
University Press (2011) 2nd edition.

12. Reinecke, P., Telek, M.: Validity check of matrix-exponential distributions. Tech-
nical report, BME, Budapest, Hungary (2012) submitted for publication.

13. Mocanu, S.: MOMI tool, for mono-cyclic representation of PH distributions. Avail-
able at http://webspn.hit.bme.hu/˜telek/tools/momi.zip (2003)

14. Bodrog, L., Buchholz, P., Heindl, A., Horváth, A., Horváth, G., Kolossváry,
I., Németh, Z., Reinecke, P., Telek, M., Vécsei, M.: Butools: Program pack-
ages for computations with PH, ME distributions and MAP, RAP processes.
http://webspn.hit.bme.hu/˜butools (October 2011)

15. O’Cinneide, C.A.: Characterization of phase-type distributions. Commun. Stat.,
Stochastic Models 6 (1990) 1–57

16. Neuts, M.F., Pagano, M.E.: Generating random variates from a distribution of
phase type. In: WSC ’81: Proceedings of the 13th conference on Winter simulation,
Piscataway, NJ, USA, IEEE Press (1981) 381–387

17. Reinecke, P.: Efficient System Evaluation Using Stochastic Models. PhD thesis,
Freie Universität Berlin (2012/2013)

18. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, New York
(1991)

Appendix

A Unique solution of the representation transformation
method

(α,A) of size n and (β,B) of size m ≥ n are two representations of a PH
distribution, Let A = ΓA

−1ΛAΓA and B = ΓB
−1ΛBΓB be the Jordan decom-

position of A and B, where ΓA and ΓB are normalized such that ΓA1l = 1l and
ΓB1l = 1l. The unique solution of AW = WB, W1lm = 1ln can be obtained from
the combination of the following theorems.

Theorem 5. If A and B have distinct eigenvalues, the set of eigenvalues of A
is a subset of the set of eigenvalue of B, and the eigenvalues (diagonal elements)
of ΛB are ordered such that the size n upper left corner of ΛB is identical with
ΛA then the unique solution of AW = WB, W1lm = 1ln is

W = ΓA
−1 [In | 0n,m−n] ΓB ,

where In is the identity matrix of size n and 0n,m−n is the zero matrix of size
n×m− n.

Proof. Substituting the spectral decomposition into AW = WB and multiply-
ing with ΓA from the left and with ΓB

−1 from the right gives

ΛA ΓAWΓB
−1︸ ︷︷ ︸

W̄

= ΓAWΓB
−1︸ ︷︷ ︸

W̄

ΛB . (34)

Let W̄ = [W̄1|W̄2] be the partition of W̄ such that W̄1 is of size n× n, W̄2 is
of size n×m− n. Using this partition of W̄ in (34) we have

ΛAW̄ = ΛA[W̄1|W̄2] = [ΛAW̄1|ΛAW̄2] =

W̄ΛB = [W̄1|W̄2]ΛB = [W̄1|W̄2]

[
ΛA 0
0 ΛE

]
= [W̄1ΛA|W̄2ΛE] .

where ΛE of size m − n × m − n contains the extra eigenvalues of B. Since
ΛA and ΛE are diagonal matrixes with different eigenvalues the solution of

ΛAW̄1 = W̄1ΛA is a diagonal matrix and the solution of ΛAW̄2 = W̄2ΛE is
the zero matrix. Considering that the multiplication with ΓB does not affect the
row sum because ΓB1l = 1l we have 1l = W1l = W̄1l = W̄11l and consequently
diagonal matrix W̄1 should be W̄1 = I.

Theorem 6. If the Jordan decomposition of A and B are composed by a single
Jordan block with identical eigenvalue, then the unique solution of AW = WB,
W1lm = 1ln is

W = ΓA
−1 [0n,m−n | In] ΓB ,

where In is the identity matrix of size n and 0n,m−n is the zero matrix of size
n×m− n.

Proof. The proof follows the same simple substitution pattern as the one of
Theorem 5 based on

ΛA [0n,m−n | In] = [0n,m−n | ΛA]

and

[0n,m−n | In] ΛB = [0n,m−n | ΛA].

B The dominant eigenvector of a monocyclic generator

Theorem 7. The dominant left eigenvector of a monocyclic generator with exit
probability pk < 1 and arbitrarily ordered FE blocks such that the FE block
associated with the dominant eigenvalue is the first one is strictly positive.

Proof. The general from of such generator is

B =



−λ1 λ1
. . . (1−p)(1−zj)λj

−λi λi
. . .

. . .

−λi λi
ziλi −λi (1−p)(1−zi)λi

. . .


,

where i, j ∈ {2, 3, . . . , n}, n is the number of FE blocks, 0 ≤ p < 1 and for

all i ∈ {2, 3, . . . , n} we have 0 ≤ zi < 1, −λ1 > ri = −λi
(
1− z

1
bi
i

)
. The last

inequality ensures that the dominant eigenvalue of the FE block is less than
−λ1. Reformulating this last inequality gives(

λi − λ1
λi

)bi

− zi > 0. (35)

The dominant eigenvalue of B is −λ1. Let γ = maxi∈{1,...,n} λi then I + B/γ
is a non-negative matrix, whose eigenvectors are identical with the ones of B
and whose dominant eigenvalue is 1− λ1/γ. According to the Perron–Frobenius
theorem the dominant left eigenvector associated with 1−λ1/γ is non-negative.
It remains to prove that the eigenvector is strictly positive.

We show this by investigating the sign of the eigenvector elements associated
with consecutive FE blocks. The dominant left eigenvector of B, denoted by v,
is the solution of v(B+ λ1I) = 0. For FE block i it has the following structure:

(vk−bi , vk−bi+1, . . . , vk)


(1−p)(1−zj)λj

−λi + λ1 λi
. . .

. . .

−λi + λ1 λi
ziλi −λi + λ1

 = 0,

where vk−bi+1, . . . , vk are the eigenvector elements associated with FE block i
and vk−bi is last eigenvector element associated with the previous FE block, FE

block j. This linear system gives vj−1 =
(

λi−λ1
λi

)
vj for j ∈ {k − bi + 2, . . . , k},

where 0 <
(

λi−λ1
λi

)
< 1 and for the first column we have

vk−bi(1−p)(1−zj)λj − vk−bi+1(λi − λ1) + vkziλi = 0,

from which

vk−bi(1−p)(1−zj)λj/λ1 = vk

(
λi − λ1
λi

)bi

− vkzi.

That is, if vk is positive then vj , j ∈ {k − bi + 1, . . . , k − 1} are positive as well
and finally vk−bi is positive because the right-hand side is positive due to (35). If
vk is 0 then vj = 0 for j ∈ {k− bi, . . . , k− 1}. Recursively applying this relation
for the consecutive FE blocks gives the theorem.

