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Abstract. This paper provides closed form expressions for the squared
distance between the joint density functions of k successive inter-arrival
times of two MAPs. The squared distance between the autocorrelation
functions of two MAPs is expressed in a closed form as well.
Based on these results a simple procedure is developed to approximate
a RAP by a MAP, in order to reduce the number of phases or to obtain
a Markovian representation.

1 Introduction

MAPs (Markovian Arrival Processes) and their generalizations, RAPs (Rational
Arrival Processes) are versatile modeling tools in various fields of performance
evaluation. They represent a dense class of point processes ([1]), and at the same
time they are easy to work with: several important statistical properties can be
expressed in a simple closed form, they exhibit many closeness properties, queues
involving MAP arrival and/or service process can be solved efficiently, etc.

In the last decades considerable research effort has been spent to approximate
various point processes by MAPs to take the advantage of their technical sim-
plicity. Matching and fitting methods have been developed to construct MAPs
based on empirical measurement traces, or based on point processes like depar-
ture processes of queues, etc. However, the MAPs or RAPs produced by some
of these procedures might not be ready for use immediately. There are situa-
tions when compactness (in terms of the number of states) and the Markovian
representation is important.

In order to develop procedures to compress a MAP and/or to obtain a Marko-
vian approximation of a RAP, it is necessary to define distance functions which
measure how ”close” two RAPs are to each other. Since this distance function
is evaluated repetitively in an optimization procedure, it must be efficient to
evaluate.

In this paper we show that the squared distance between the joint density
functions of k successive inter-arrival times of two MAPs can be expressed in
a closed form. Furthermore, the squared distance between the autocorrelation
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functions can be expressed in a closed form as well. Based on these results a
simple procedure is developed to approximate a RAP by a MAP, and some
possible applications are also provided.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and the main properties of MAPs and RAPs used in the paper. Section 3
presents how the distance between two MAPs is calculated. The RAP approx-
imation procedure is developed in Section 4. Finally, Section 5 demonstrates
how the results are applied for the approximation of the departure process of a
MAP/MAP/1 queue.

2 Markovian Arrival Processes

A Markovian Arrival Process (MAP, [7]) with N phases is given by two N ×N
matrices, D0 and D1. The sum D = D0 +D1 is the generator of an irreducible
continuous time Markov chain (CTMC) with N states, which is the background
process of the MAP. Matrix D1 contains the rates of those phase transitions
which are accompanied by an arrival, and the off-diagonal entries of D0 are the
rates of internal phase transitions.

The phase process embedded at arrival instants plays an important role in
the analysis of MAPs. This phase process is a discrete time Markov chain whose
transition probability matrix is P = (−D0)−1D1. The stationary probability
vector of the embedded process is denoted by α, it is the unique solution to
linear equations αP = α, α1 = 1.

The joint density function of k consecutive inter-arrival times X1,X2, . . .Xk

is given by

fk(x1, x2, . . . , xk) = αeD0x1D1 · eD0x2D1 · · · eD0xkD11. (1)

The lag-k autocorrelation of the inter-arrival times is matrix-geometric, and
can be expressed as

ρk =
E(X1Xk+1)− E(X1)2

E(X 2
1 )− E(X1)2

=
α(−D0)−1P k(−D0)−11− α(−D0)−11 · α(−D0)−11

σ2

=
1

σ2
α(−D0)−1(P − 1α)k(−D0)−11

(2)

for k > 0, and it is ρ0 = 1 for k = 0. σ2 denotes the variance of the inter-arrival
times. In (2) we exploited that P k − 1α = (P − 1α)k holds for k > 0 (notice
however that it does not hold for k = 0).

Rational Arrival Processes (RAPs) are generalizations of MAPs, which do
not have the Markovian restrictions. The D0,D1 matrices of RAPs can have
arbitrary entries, the only restriction is that the joint density function must be
valid. However, without loss of generality we assume that (D0+D1)1 = 1 holds
throughout the paper. By the appropriate similarity transformation all RAPs can



be transformed to this form ([8]), and several authors apply this assumption to
make the corresponding derivations simpler.

Getting rid of the Markovian restrictions makes RAPs easier to use than
MAPs in several situations, but checking that a RAP is a valid stochastic process
is hard (apart from the case when the transformation to a Markovian represen-
tation is successful).

Since this paper is on measuring the distance between two MAPs/RAPs, we
are going to leave the traditional (D0,D1) notation of the MAP matrices behind
and use different letters instead.

3 Efficient calculation of the distance between two MAPs

3.1 The distance between the joint density functions of two MAPs

Let us consider two MAPs, A = (A0,A1) and B = (B0,B1). The squared
difference of the joint density of the inter-arrival times up to lag-k is defined by

Dk{A,B} =

∫ ∞
0

. . .

∫ ∞
0

∫ ∞
0

(
αAe

A0x1A1 · · · eA0xk−1A1 · eA0xkA11

− αBeB0x1B1 · · · eB0xk−1B1 · eB0xkB11
)2
dx1 . . . dxk−1 dxk,

(3)

where αA and αB denote the stationary phase distribution of MAPs A and B
at arrival instants. The square term expands to

Dk{A,B} = Lk(A,A)− 2Lk(A,B) + Lk(B,B), (4)

where Lk(A,B) represents the integral

Lk(A,B) =

∫ ∞
0

. . .

∫ ∞
0

∫ ∞
0

αAe
A0x1A1 · · · eA0xk−1A1 · eA0xkA11

· αBeB0x1B1 · · · eB0xk−1B1 · eB0xkB11 dx1 . . . dxk−1 dxk.

(5)

This integral can be evaluated in an efficient way, by successive solution of
(Sylvester-type) linear equations, as stated by the following theorem.

Theorem 1. Lk(A,B) can be expressed by

Lk(A,B) = 1TB1
T · Yk ·A11, (6)

where matrix Yk is the solution of the recursive Sylvester equation{
−B1

TYk−1A1 = B0
TYk + YkA0 for k > 1,

−αT
BαA = B0

TY1 + Y1A0 for k = 1.
(7)



Proof. We start by transforming (5) as

Lk(A,B) =

∫ ∞
0

. . .

∫ ∞
0

∫ ∞
0

1
TB1

T eB0
T xkB1

T eB0
T xk−1 · · ·B1

T eB0
T x1αT

B

· αAeA0x1A1 · · · eA0xk−1A1 · eA0xkA11 dx1 . . . dxk−1 dxk

= 1
TB1

T

(∫ ∞
0

. . .

∫ ∞
0

∫ ∞
0

eB0
T xkB1

T eB0
T xk−1 · · ·B1

T eB0
T x1αT

B

· αAeA0x1A1 · · · eA0xk−1A1 · eA0xk dx1 . . . dxk−1 dxk

)
·A11.

(8)

Let us denote the term in the parenthesis by Yk. For k > 1, separating the first
and the last terms leads to the recursion

Yk =

∫ ∞
0

eB0
T xk ·B1

T

(∫ ∞
0

. . .

∫ ∞
0

eB0
T xk−1B1

T · · ·B1
T eB0

T x1αT
B

· αAeA0x1A1 · · · eA0xk−1A1 dx1 . . . dxk−1

)
A1 · eA0xk dxk

=

∫ ∞
0

eB0
T xkB1

T · Yk−1 ·A1e
A0xk dxk,

(9)

which is the solution of Sylvester equation −B1
TYk−1A1 = B0

TYk + YkA0.
The equation for k = 1 is obtained similarly. �

Note that the solution of (7) is always unique as matrices A0 and B0 are sub-
generators.

3.2 The distance between the lag autocorrelation functions

The squared distance between the lag autocorrelation functions of MAP A and
B is computed by

Dacf{A,B} =

∞∑
i=0

(ρ
(A)
i − ρ(B)i )2

=

∞∑
i=1

( 1

σ2
A
αA(−A0)−1(PA − 1αA)i(−A0)−11

− 1

σ2
B
αB(−B0)−1(PB − 1αB)i(−B0)−11

)2
,

(10)

where σ2
A (σ2

B) denotes the variance of the inter-arrival times of MAP A (B),
respectively. Expanding the square term leads to

Dacf{A,B} =
1

σ4
A

(
M(A,A)−m(A)

2

2
/4
)

− 2
1

σ2
Aσ

2
B

(
M(A,B)−m(A)

2 m
(B)
2 /4

)
+

1

σ4
B

(
M(B,B)−m(B)

2

2
/4
)
,

(11)



where m
(A)
2 and m

(B)
2 denote the second moment of the inter-arrival times of

MAP A and B, while matrix M(A,B) represents the sum

M(A,B) =

∞∑
i=0

αA(−A0)−1(PA − 1αA)i(−A0)−11·

· αB(−B0)−1(PB − 1αB)i(−B0)−11.

(12)

The terms involving the second moments in (11) are necessary since the sum
goes from i = 1 in (10) and it goes from i = 0 in (12). Term 0 of M(A,B) equals

m
(A)
2 /2 ·m(B)

2 /2.

The next theorem provides the solution of matrix M(A,B).

Theorem 2. Matrix M(A,B) is obtained by

M(A,B) = αA(−A0)−1 ·X · (−B0)−11, (13)

where X is the unique solution to the discrete Sylvester equation

(PA − 1αA) ·X · (PB − 1αB)−X + (−A0)−11αB(−B0)−1 = 0. (14)

Proof. Matrices PA − 1αA and PB − 1αB are stable, since the subtraction of
1αA and 1αB removes the eigenvalue of 1 which matrices PA and PB originally
had. Hence we can utilize that the solution of the sum X =

∑∞
i=0A

iCBi satisfies
the discrete Sylvester equation AXB −X + C = 0. �

4 Application: Approximating a RAP with a MAP

Having results for measuring the distance between two RAPs or MAPs can be
useful in many situations by themselves. In this section we use them as distance
functions in an optimization problem. We develop a simple procedure to obtain a
MAP that approximates the behavior of a given RAP. Two possible applications
of this procedure are as follows.

– Several matching procedures produce a RAP which does not have a Marko-
vian representation, or which is not even a valid stochastic process (the joint
density is negative at some points). The presented procedure returns a valid
MAP that is as close as possible to the target RAP.

– Several performance models involve huge MAPs which make the analysis
too slow and numerically challenging. With the presented procedure it is
possible to compress these large MAPs by constructing small replacements
that are easier to work with.

Throughout this section the target RAP is denoted by A = (A0,A1) and
the approximating one by B = (B0,B1).



4.1 Obtaining matrix B1 given that αB and B0 are known

Given that αB and B0 are already available (see later in Section 4.2) matrix B1

it obtained

– either to minimize Dk{A,B} up to a given k,
– or to minimize Dacf{A,B}.

According to the following theorem, optimizing the squared distance of the
lag-1 joint density function D2{A,B} is especially efficient.

Theorem 3. Given that αB and B0 are available, matrix B1 minimizing
D2{A,B} is the solution of the quadratic program

min
B1

{
vec〈B1〉T (WBB ⊗ YBB)vec〈B1〉 − 2vec〈A1〉T (WAB ⊗ YAB)vec〈B1〉

}
(15)

subject to (
I ⊗ αB(−B0)−1

)
vec〈B1〉 = αA, (16)

(1T ⊗ I)vec〈B1〉 = −B01. (17)

Matrices WAB,WBB,YAB and YBB are the solutions to Sylvester equations

A0WAB +WABB0
T = −A01 · 1TB0

T , (18)

B0WBB +WBBB0
T = −B01 · 1TB0

T , (19)

A0
TYAB + YABB0 = −αT

A · αB, (20)

B0
TYBB + YBBB0 = −αT

B · αB. (21)

Proof. Let us first apply the vec〈〉 (column stacking) operator on (6) at k = 2.
Utilizing the identity vec〈AXB〉 = (BT ⊗ A)vec〈X〉 for compatible matrices
A,B,X and the identity vec〈uT v〉 = (vT ⊗uT ) for row vectors u and v (see [9]).
We get

vec〈L2(A,B)〉 = (1TA0
T ⊗ 1TB0

T ) · vec〈Y2〉 = vec〈B01·1TA0
T 〉T · vec〈Y2〉. (22)

Applying the vec〈〉 operator on both sides of (7) and using vec〈AXB〉 = (BT ⊗
A)vec〈X〉 again leads to

−(I ⊗B1
TY1)vec〈A1〉 = (I ⊗B0

T )vec〈Y2〉+ (A0
T ⊗ I)vec〈Y2〉, (23)

from which vec〈Y2〉 is expressed by

vec〈Y2〉 = (−A0
T ⊕B0

T )−1(I ⊗B1
T )(I ⊗ YAB)vec〈A1〉, (24)

since Y1 = YAB. Thus we have

vec〈L2(A,B)〉 = vec〈B01·1TA0
T 〉T (−A0

T ⊕B0
T )−1︸ ︷︷ ︸

vec〈WAB〉T

(I ⊗B1
T )(I ⊗ YAB)vec〈A1〉,

(25)



where we recognized that the transpose of vec〈WAB〉 expressed from (18)
matches the first two terms of the expression. Using the identities of the vec〈〉
operator yields

vec〈WAB〉T (I ⊗B1
T ) = vec〈B1

TWAB〉T = vec〈B1〉T (WAB ⊗ I). (26)

Finally, putting together (25) and (26) gives

vec〈L2(A,B)〉 = vec〈B1〉T (WAB ⊗ YAB)vec〈A1〉. (27)

From the components of D2{A,B} (see (4)) L2(A,A) plays no role in the opti-
mization as it does not depend on B1, the term L2(A,B) yields the linear term
in (15) according to (27), and L2(B,B) introduces the quadratic term, based on
(27) after replacing A by B.

According to the first constraint (16) and the second constraint (17) the
solution must satisfy αB(−B0)−1B1 = αB and B11 = −B01, respectively. �

Theorem 4. Matrix WBB ⊗ YBB is positive definite, thus the quadratic opti-
mization problem of Theorem 3 is convex.

Proof. If WBB and YBB are positive definite, then their Kronecker product is
positive definite as well. First we show that matrix YBB is positive definite, thus
zYBBz

T > 0 holds for any non-zero row vector z. Since YBB is the solution of

a Sylvester equation, we have that YBB =
∫∞
0
eB0

T xαT
B · αBeB0x dx. Hence

zYBBz
T =

∫ ∞
0

zeB0
T xαT

B · αBeB0xzT dx =

∫ ∞
0

(
αBe

B0xzT
)2
dx, (28)

which can not be negative, furthermore, apart from a finite number of x values
αBe

B0xzT can not be zero either. Thus, the integral is always strictly positive.
The positive definiteness of matrix WBB can be proven similarly. �

Being able to formalize the optimization of D2{A,B} as a quadratic pro-
gramming problem means that obtaining the optimal matrix B1 is efficient: it
is fast, and there is a single optimum which is always found.

If we intend to take higher lag joint density differences also into account,
the objective function is Dk{A,B}, which is not quadratic for k > 2. However,
our numerical experience is that the built-in non-linear optimization tool in
MATLAB, called fmincon is able to return the solution matrix B1 quickly,
independent of the initial point of the optimization. We have a strong suspicion
that the returned solution is the global optimum, however we can not prove the
convexity of the objective function formally.

It is also possible to use Dacf{A,B} as the objective function of the optimiza-
tion problem, when looking for matrix B1 that minimizes the squared difference
of the autocorrelation function. We found that fmincon is rather prone to the
initial point in this case. Repeated running with different random initial points
was required to obtain the best solution.



4.2 Approximating a RAP

The proposed procedure consists of two steps:

1. obtaining the phase-type (PH) representation of the inter-arrival times, that
provides vector αB and matrix B0;

2. obtaining the optimal B1 matrix such that the correlation structure of the
target RAP is captured as accurately as possible.

Section 4.1 describes how step 2 is performed.
For step 1, any phase-type fitting method can be applied. To solve this prob-

lem [3] develops a moment matching method that returns a hyper-exponential
distribution of order N based on 2N − 1 moments, if it is possible. An other
solution published in [6] is based on a hyper-Erlang distribution, which always
succeeds if an appropriately large Erlang order is chosen.

Our method of choice, however, is a slight modification of [5], which is the
generalization of the former two. It constructs PH distributions from feedback
Erlang blocks (FEBs), where each FEB implements an eigenvalue of the tar-
get distribution. With FEBs it is possible to represent complex eigenvalues as
well, as opposed to the previously mentioned methods that operate on hyper-
exponential and hyper-Erlang distributions. The original method in [5] puts the
FEBs in a row, which is not appropriate for our goals, since there is only a single
absorbing state, implying that matrix B1 can have only a single non-zero row,
thus no correlation can be realized. However, the original method can be modi-
fied in a straight forward way to return a hyper-FEB structure. A key step of [5]
is the solution of a polynomial system of equations, which can have several solu-
tions, providing several valid αB,B0 pairs. Our RAP approximation procedure
performs the optimization of matrix B1 with all of these solutions, and picks
the best one among them.

4.3 Numerical examples

In the first numerical example we extract 7 marginal moments and 9 lag-1 joint
moments from a measurement trace containing inter-arrival times of real data
traffic3, and create a RAP of order 4 with the method published in [10]. The
obtained matrices are as follows:

A0 =


−0.579 −0.402 −0.364 −0.348
−0.368 −0.205 −0.315 −0.36

1.32 −0.845 0.701 1.13
−1.7 0.3 −1.14 −1.52

 , A1 =


0.576 0.262 0.41 0.446
0.168 0.501 0.313 0.266
0.29 −1.69 −0.598 −0.302
0.292 1.94 1.03 0.786

 .
The RAP characterized by A = (A0,A1) is, however, not a valid stochastic
process as the joint density given by (1) is negative since f2(0.5, 8) = −0.000357.
This RAP is the target of our approximation in this section.

3 We used the BC-pAug89 trace, http://ita.ee.lbl.gov/html/contrib/BC.html.
While this is a fairly old trace, it is often used for testing PH and MAP fitting
methods, it became like a benchmark.



Let us now construct a MAP B(1) = (B
(1)
0 ,B

(1)
1 ) which minimizes the

squared distance of the lag-1 joint density with A. The distribution of the inter-

arrival times, characterized by αB,B
(1)
0 are obtained by the modified moment

matching method of [5], and matrix B
(1)
1 has been determined by the quadratic

program provided by Theorem 3. The matrices of the MAP are

B
(1)
0 =


−0.074 0 0 0 0

0 −0.27 0.27 0 0
0 0 −0.27 0.27 0
0 0 0 −0.27 0
0 0 0 0 −1.2

 ,B(1)
1 =


0.0065 0.024 0 5.5·10−8 0.044

0 0 0 0 0
0 0 0 0 0

0.017 0.086 0 0 0.17
0 0.012 0 0 1.2

 ,

and the squared distance in the lag-1 joint pdf is D2{A,B(1)} = 0.000105. The
quadratic program has been solved by MATLAB is less than a second. Next,
we repeat the same procedure, but instead of focusing on the lag-1 distance, we
optimize on the squared distance of the joint pdf up to lag-10. This can not be
formalized as a quadratic program any more, but the optimization is still fast,
lasting only 1-2 seconds. In this case the hyper-exponential distribution provided
the best results (D11{A,B(10)} = 4.37 · 10−5). The matrices are

B
(10)
0 =

−0.0519 0 0
0 −0.151 0
0 0 −1.24

 , B
(10)
1 =

 10−6 0.0519 10−6

10−6 0.151 0.000465
0.000129 10−6 1.24

 .
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Fig. 1. Comparison of the density functions of the marginal distribution

To evaluate the quality of the approximation Figure 1 compares the marginal
density functions of A,B(1) and B(10). The plots are close to each other, the ap-
proximation is relatively accurate. To demonstrate that the lag-1 joint densities
are also accurate, Figure 2 depicts them at x2 = 0.5, 1 and 1.5.

In the next experiment the objective is the squared distance of the lag-k
autocorrelation function. As before, the input RAP is A, but now the approxi-
mation procedure has to minimize Dacf{A,B(ρ)} which is given in a closed form
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by (11) and Theorem 2. According to our experience the result of the optimiza-
tion is rather prone to the initial point. The best result from 10 trials is given
by matrices

B
(ρ)
0 =


−0.0851 0.0851 0 0 0 0

0 −0.0851 0 0 0 0
0 0 −0.267 0.267 0 0
0 0 0 −0.267 0.267 0
0 0 0 0 −0.267 0
0 0 0 0 0 −1.2

 ,B
(ρ)
1 =


0 0 0 0 0 0
0 0 0.0485 0 0 0.0366
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0965 0 0 0.1705

0.0004 0 0.0117 0 0 1.1885

 .

and the corresponding autocorrelation function is depicted in Figure 3. The
squared distance between the autocorrelation functions is Dacf{A,B(ρ)} =
0.00237.
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5 Application: Approximating the departure process of a
MAP/MAP/1 queue by a MAP

A popular approach for the analysis of the network of MAP/MAP/1 queues
is the so called traffic based decomposition, where the internal traffic in the
network is modeled by MAPs. The closeness properties of MAPs over splitting
and superposition make them ideal for this purpose. The key question is how to
obtain a MAP that represents the departure process of a queue. Two options
from the past literature which are known to perform relatively well are as follows:

– The ETAQA truncation of the queue length process in [11],
– and the joint moments based procedure presented in [4].

In the practice both methods can return a RAP instead of a MAP, thus the
procedure described in Section 4 becomes relevant.

5.1 Introduction to the departure process analysis

The MAP/MAP/1 queue is a subclass of QBD queues, which are characterized
by four matrices, B,F ,L and L0. Matrices B and F consist of phase transition
rates accompanied by service and arrival events, respectively, while matrices L0

and L correspond to the internal transitions when the queue is at level 0 and
at level above zero. The generator matrix of the CTMC keeping track of the
number of jobs in the queue and the phase of the system has a tri-diagonal
structure given by

Q =


L0 F
B L F
B L F

. . .
. . .

. . .

 . (29)

Separating the transitions that generate a departure leads to a MAP that
captures the departure process in an exact way as

D0 =


L0 F

L F
L F

. . .
. . .

 , D1 =

B B
. . .

 , (30)

but unfortunately this representation has infinitely many states. A finite repre-
sentation can be obtained by truncating the infinite model. It is proven in [11]
that an appropriate truncation at level k is able to preserve the joint distribution
of the departure process up to lag-(k − 1). The truncation at level k is done as

D0
(k) =


L0 F

L F
. . .

. . .

L+ F


0
1
...
k

, D1
(k) =

B . . .

B − FG FG


0
1
...
k

, (31)



where matrix G is the minimal non-negative solution to the matrix-quadratic
equation 0 = B +LG+ FG2.

Although the truncation leads to a finite model, the number of states can
still be too large. The superposition operations in the queueing network increase
the number of states even more, and the limits of numerical tractability are
easily hit. A possible solution for the state-space explosion is provided in [4],
where a compact representation is constructed while maintaining the lag-1 joint
moments of the large process.

5.2 Practical problems and possible solutions

An issue with both the ETAQA departure model and the joint moment based
approach is that they do not always return a Markovian representation, it is not
even guaranteed that the departure model is a valid stochastic process.

Applying the RAP approximation procedure presented in Section 4 makes it
possible to overcome this problem. Based on (D0

(k),D1
(k)) it always returns a

valid Markovian representation (H0,H1), and at the same time it is also able
to compress the truncated departure process to a desired level.

There is, however, one issue which has to be taken account when applying
the procedure of Section 4, namely that the number of marginal moments that
can be used to obtain matrix H0 is limited. We are going to show that the order
of the PH distribution representing the inter-departure times is finite (denoted
by ND), determined by 2ND − 1 moments, and using more moments during the
approximation leads to a dependent moment set (see [3]).

Theorem 5. The order of the PH distribution representing the inter-departure
times of a QBD queue with block size N > 1 is

ND = 2N. (32)

Proof. In [11] it is shown how an order 2N PH distribution is constructed that
captures the inter-departure times in an exact way, thus ND ≤ 2N . Additionally,
it is easy to find concrete matrices B,F ,L and L0 such that the order of this
PH distribution is exactly 2N (practically any random matrices are suitable, the
order can be determined by the STAIRCASE algorithm of [2]). Consequently,
we have that ND = 2N . �

Surprisingly, in case of MAP/MAP/1 queues the order of the inter-departure
times is lower.

Theorem 6. ([4], Theorem 2) The order of the PH distribution representing
the inter-departure times of a MAP/MAP/1 queue is

ND = NA +NS , (33)

where NA denotes the size of the MAP describing the arrival process and NS the
one of the service process, assuming that NA +NS > 1.



Thus, the proposed method for producing a MAP (B0,B1) that approxi-
mates the departure process is as follows:

1. First the ETAQA departure model is constructed up to the desired lag k,
providing matrices (D0

(k),D1
(k)). The stationary phase distribution at de-

parture instans needs to be determined as well, αD is the unique solution to
αD(−D0

(k))−1D1
(k), αD1 = 1.

2. The marginal moments of the inter-departure times are computed from αD

and D0
(k). The more moments are taken into account, the larger the output

of the approximation is. According to the above theorems, more than 2ND−1
should not be used.

3. Matrix B0 is obtained by moment matching (see Section 4.2).
4. Matrix B1 is obtained such that either the squared distance of the joint

density is minimized up to lag k, see 4.1.

5.3 Numerical example

In this example4 we consider a simple tandem queueing network of two
MAP/MAP/1 queues. The arrival process of the first station is given by ma-
trices

D0 =

−0.542 0.003 0
0.04 −0.23 0.01

0 0.001 −2.269

 , D1 =

0.021 0 0.518
0 0.17 0.01

0.004 0.005 2.259

 , (34)

while the matrices characterizing the service process are

S0 =

[
−10 0

0 −2.22

]
, S1 =

[
7.5 2.5
0.4 1.82

]
. (35)

With these parameters both the arrival and the service times are positively

correlated (ρ
(A)
1 = 0.21 and ρ

(S)
1 = 0.112) and the utilization of the first queue

is 0.624.
The service times of the second station are Erlang distributed with order 2

and intensity parameter 6 leading to utilization 0.685.
This queueing network is analyzed such a way, that the departure process

is approximated by the ETAQA truncation and by the joint moments based
methods. Next, our RAP approximation procedure (Section 4) is applied to
address the issues of the approximate departure processes, namely to obtain
a Markovian approximation and in case of the ETAQA truncation method, to
compress the large model to a compact one.

Table 1 depicts the mean queue length of the second station and the model
size by various departure process approximations. The ETAQA truncation model
has been applied with truncation levels 2 and 6, which has been compressed

4 The implementation of the presented method and all the numerical examples can be
downloaded from http://www.hit.bme.hu/~ghorvath/software



Model of the departure process #states E(queue len.)

Accurate result (simulation): n/a 2.6592

ETAQA, lag-1 truncation 18 2.3379
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.5722

ETAQA, lag-5 truncation 42 2.5405
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.5722
Our method based on 3 moments and D6{} 2 2.4266
Our method based on 5 moments and D6{} 3 2.6805

Joint moments based, 2 states 2 2.3255
Our method based on 3 moments and D2{} 2 2.3255

Joint moments based, 3 states 3 2.755
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.7489

Table 1. Results of the queueing network example

by our method based on either 3 or 5 marginal moments and with D2{} or
D6{} distance optimization. The corresponding queue length distributions at the
second station are compared in Figure 4. The departure process has also been
approximated by the joint moments based method of [4], and an approximate
Markovian representation has been constructed with our method based on 3 or
5 marginal moments and D2{} optimization.
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Fig. 4. Queue length distribution with the ETAQA departure model and its Markovian
approximations

The results indicate that the RAP approximation and state space compres-
sion technique presented in this paper is efficient, the MAP returned is able to
capture the important characteristic of the target RAP with an acceptable error.
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