-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Repository of the Academy's Library

Representation transformations for finding
Markovian representations

Andris Mészaros', Gabor Horvath!3, and Miklés Telek!:2

! Budapest University of Technology and Economics,
2 MTA-BME Information systems research group,
3 Inter-University Center of Telecommunications and Informatics
{meszarosa, ghorvath, telek}@hit.bme.hu

Abstract. In this paper we consider existing and new representation
transformation methods for non-Markovian generalizations of Markov
chain driven stochastic models which intend transforming non-Markovian
representations into Markovian ones and evaluate their efficiency through
numerical experiments. One of the new features of the considered meth-
ods is the ability to obtain a Markovian representation of larger size.
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1 Introduction

Background Markov chain driven stochastic models, like PH distributions [1],
MAPs [2], and MMAPs [3], are efficiently used for describing practical systems
of various application fields, including computer networks and telecommunica-
tion systems. These models are described with a set of vectors and/or matrices,
which are referred to as representation. In some cases, e.g., when the coefficient
of variation of inter-event times is low, the non-Markovian generalizations of
these Markov chain based models are more efficient with respect to the size of
the representation. Another motivation for dealing with non-Markovian gener-
alizations comes from the fact that there are moments based fitting methods
which generate non-Markovian representations based on a set of moments and
joint moments.

Stochastic processes with Markovian representations have essentially impor-
tant nice features. There is always a valid stochastic process associated with a
Markovian representation, and it is easy to check if a representation is Marko-
vian or not. The main drawback of using non-Markovian representations is that
non-Markovian representations might or might not represent valid stochastic
processes. A non-Markovian representation is non-valid the joint density func-
tion of consecutive inter-arrival times defined by the representation, see eg. (1),
is negative at some point. In this case there is no stochastic process associated
with the non-Markovian representation. Additionally, it is not obvious how to
determine if a matrix exponential distribution (defined by a non-Markovian rep-
resentation) is a valid distribution (e.g. its density function is non-negative) and
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for more complex processes, like RAPs and MRAPs, we do not have the method-
ology for checking if a non-Markovian representation defines a valid process or
not.

In this paper we cannot present a general solution for checking if a non-
Markovian representation is associated with a stochastic process or not, we
only propose an elementary step. If a non-Markovian representation can be
transformed to a Markovian representation such that the representation defines
the same process, then the non-Markovian representation surely defines a valid
stochastic process. Our proposed elementary step is through numerical proce-
dures for transforming non-Markovian representations to Markovian ones. We
survey previously available methods and present new ones. The main new fea-
ture in this work is the representation transformation procedure which searches
for a Markovian representation of larger size.

The rest of the paper is organized as follows. Section 2 surveys the considered
set of stochastic models and summarizes the properties which are utilized later
on. Existing and new representation transformation methods are introduced for
same size in Section 3 and for extended size in Section 4. Section 5 is devoted to
the numerical experimentation with the different representation methods. The
paper is concluded in Section 6.

2 Markov chain driven stochastic models and their
non-Markovian generalizations

2.1 Phase type and matrix exponential distributions
We start with the basic definition of PH [1] and ME [4] distributions.

Definition 1. Let X be a random variable with cumulative distribution function

(cdf)
Fx(z) = Pr(X <z)=1-ae?®l,

where a is an initial row vector of size n, A is a square matriz of size n X n,
and 1 is the column vector of ones of size n. In this case, we say that X is
matriz exponentially distributed with representation o, A, or shortly, ME(«, A)
distributed.

Definition 2. If X is an ME(«, A) distributed random variable, where o and
A have the following properties:

— «a; >0, al =1 (there is no probability mass at x =0),
— A;; <0, Aj; >0 fori#j, A1 <0,

then we say that X is phase type distributed with representation o, A, or shortly,
PH(a, A) distributed.

The vector-matrix representations satisfying the conditions of Definition 2
are called Markovian.
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2.2 Marked MAPs and marked RAPs

MAPs and RAPs model point processes with a single type of events. Exten-
sion of these processes to multiple event types are referred to as marked MAPs
(MMAPs) [3] and marked RAPs (MRAPs) [5]. Due to space limitations we sum-
marize the properties of these more general processes only.

Let {X(t),Y(t)} be a point process supplemented with the type of the events
{1,..., K}, with joint probability density function of inter-event times and as-
sociated types f (t1,k1,...,t5,k;) for j=1,2,...,and k; € {1,..., K}.

Definition 3. {X(¢),)(t)} is called a marked rational arrival process if there
exists a set of K + 1 finite matrices (Ho, ..., Hg), such that

f(HO7~~~,HK) (tl, kl, . ,t]’, k}j) = ﬂ@HotlHkl €H°t2Hk2 .. .eHotj ij 1 (1)

where Zfio Hyl =0, and 7 is the solution of

K
m(~Ho) 'Y Hp=m, nl=1. (2)
=1

In this case, we say that {X(t),V(t)} is a marked rational arrival process with
representation (Ho, ..., Hk), or shortly, MRAP(Hy,...,Hk).

Definition 4. If {X(t),Y(t)} is a MRAP(Hy,...,Hk), such that

- Hk,ijZOfO?”k'Zl,
— Hy;; <0, Ho;; >0 fori#j, Hol <0,

then we say that {X(t),Y(t)} is a marked MAP with representation
(Ho, ..., Hy), that is, MMAP(Ho, ..., Hg).

The representations satisfying the conditions of Definition 4 are called Marko-
vian. Later we are going to use the following property of MRAPs from [6]

Definition 5. The rank of the (Hoy, ..., Hk) representation, with respect to
the initial vector, is the number of linear independent vectors of the form
EITIOG’IIil'klIil'oaz.l"_[k2 .., with a; € {1, 2,.. } and k; € {1, 2,..., K}

An efficient computational method for computing this rank is provided in [6].

Obviously, MRAPs and MMAPs with K = 1 are RAPs and MAPs. Based on
this property in the rest of the paper we are going to follow a unified treatment of
MRAPs/MMAPs and RAPs/MAPs with K event types. This way we are going
to present the existing representation transformation methods of the literature
in a more general environment than it is in the original publications.
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1: procedure MRAP2MMAP-[7]1(Ho,..., Hk)

2: a = 0.5;

3: while a > € do

4: for n =1 to maxIter do

5: (¢*,7%)= argmin G(Tr(Ho,...,Hk,T(i,j,a)))
4,4€E[L,...,n] i

6: (Ho™®) ... Hg ™)) = Tr(Ho,..., Hx,T(i*,j*,a))

7 if G(Ho"™",..., Hx ")) < G(Ho,...,Hk) then

8: (Ho, ..., Hyx)=(Ho ™", ... Hg ™))

9: end if

10: if Hy,..., Hk is Markovian then

11: return (Ho,...,Hk)

12: end if

13: end for

14: a=a/2

15: end while
16: return (Ho,..., Hk)
17: end procedure

Fig. 1. The representation transformation method of [7]

3 Representation transformation methods with the same
size

In this section we first present the previous research related to RAP/MRAP to
MAP/MMAP transformation. After that we introduce the new algorithms. The
past work only dealt with transformation between representations of the same
size. In this section we also introduce a representation transformation method
with size extension.

3.1 Previous works with single element modifications

The development of efficient numerical representation transformation methods
for finding a Markovian representation from a non-Markovian one dates back to
2007 [7]. This algorithm, generalized to MRAPs, is shown in Figure 1.

The algorithm applies a series of elementary transformations improving the
representation in each step until it reaches a Markovian representation or a
local optimum of the goal function. The matrix representing the elementary
transformations is given by

T(i,j, CE) =1+ :CE,'J' — :CE“', (:C 7é ].), (3)

where I is the identity matrix and FEj;; is the matrix whose only nonzero
entry is the ¢,j element which equals to 1. The procedure determines the
best possible elementary transformation matrix and transforms the represen-
tation in each step. The transformation step in the algorithm is represented by
Tr(Ho,...,Hg,T) = (T "HoT,..., T 'HgT).
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1: procedure MRAP2MMAP-[8](Ho,..., Hk)
2 r<1
3: repeat
4: (¢*,4%,2")= argmin G4(Tr(Ho,...,Hx,T(3,j,x)),T)
4,5€[,...,n], i3,
x€[0,1]
5: (Ho,...,HK)=T?“(Ho,...,HK,T(i*,j*,:E*))
6: if Hy, ..., Hg is Markovian then
T: return (Ho, ..., Hk)
8: end if
9: r < 1.057
10: until z* < e

11: return (Ho,...,Hk)
12: end procedure

Fig. 2. The representation transformation method of [8]

In [7] the following three goal functions are considered (denoted by

Gl('), Gg() and Gg())

Gi(Ho,...,Hx) = Y exp(—2[Hol, ;) + Y > exp(~2[Hy], ),

i,4,17#] k=1 i,j

K
Ga(Ho,...,Hk) = Y exp(—1000[Ho], ;) + > > exp(—1000[Hx], ,),

i,5,i%] k=1 i,j
K
Gs(Ho..... Hx) = 3 exp(—([Hol,; — 1)*) + 33 exp(~([Hil,, -~ 1)?).
i,4,i%]j k=1 i,j

The algorithm switches goal functions from time to time, which, for simplicity,
is not reflected in Figure 1. The multiple goal functions help to leave a local
optimum and let the optimization go for a better solution.

While the algorithm is successful in finding the Markovian representation in
many cases, our current intuition is that the rigidity of the transformation matrix
(3) might pose a problem in some cases. Buchholz et al. proposed a modified
version of this method in [8] by applying a different goal function and parameter
x in (3) is included in the optimization as well. The proposed procedure is
summarized in Figure 2. The goal function used in this algorithm is given by

Ga(Ho, ..., Hi,r) = TZ((—[HO]Z-,]-)+)2 —> (([Hol, ;)"

ij i)
K K

+ T’Z:Z:((*[lLIIc]i,j)Jr)2 - Z Z(([Hk]i,j)+)27 (4)
k=1 i,j k=1 i,j

where (z)7 is the positive part of z, i.e., (z)T = max{0, z}.
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The intuitive motivation of such a goal function is the following. If we do
not reward the higher non-negative elements, the algorithm will only try to in-
crease the negative elements, while possibly decreasing the other elements to
zero. When these elements reach zero, the algorithm can get stuck in a non-
Markovian representation. Therefore, this algorithm tries to make a ”provision”
for the non-negative elements in the beginning. Later the weight of these ele-
ments decreases, and procedure focuses more and more on increasing the negative
elements of the representation.

Apart from the different goal function, the main difference between
MRAP2MMAP-[7] and MRAP2MMAP-[8] is that in each iteration the former one
performs an exhaustive search for the optimal i, j parameters of the elementary
transformation matrix, while the latter one incorporates a continuous variable x
into the optimization as well, needing a more involved solution method.

3.2 A new family of representation transformation methods

Based on our experience with the past algorithms discussed in Section 3.1 we
found that the overly simple structure of the elementary transformation matrix
they are using limits their efficiency considerably.

The structure of the elementary matrix plays an important role during the
representation transformation. A too simple elementary transformation matrix
can restrict the basic movements of the optimization method. Along the re-
stricted path potentially no Markovian representations may be reachable. On
the other hand, a too general elementary transformation matrix introduces too
many variables to optimize. This makes the solution of the corresponding non-
linear optimization problem less effective. It will be slow and might give a local
optimum that is far from the global one.

In this section we introduce a family of representation transformation pro-
cedures. All these procedures follow the same basic idea as Algorithms 1 and 2,
that is, they still use consecutive transformations to find a Markovian represen-
tation of a RAP. However, we propose enhancements in two principal details of
the algorithm.

1. Elementary modifications of the transformation matriz The simple elemen-
tary transformation matrix given by (3) is basically an identity matrix (act-
ing as an initial transformation matrix) modified such that a single entry
is put in an off-diagonal position. It is possible to generalize this idea by
allowing more general modifications of the initial transformation matrix.

In the family of algorithms introduced in this paper we are making use of
three kinds of such elementary modifications.
— Single scalar modification. The initial transformation matrix Ty is mod-
ified by a single scalar z as

MS(TO,Z',]', ac) =T+ inj —zFE;;. (5)

In this case, only a single variable has to be optimized.
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— Single vector modification. The initial transformation matrix is increased
by a vector as

MV(T07Z.72) :TO+§1T - Z, (6)

where ¢; is the ith unit row vector. Vector z is such that My (To,4,z)1 =
1, thus number of elements to be optimized is n — 1, where n is the size
of the representaiton.

— Duyadic product modification. The most general modification of the initial
transformation matrix used in this paper is given by a dyadic product
of two vectors (where the 7,5 element of matrix u’ - v is u;v;), yielding

MD(TO,Q,Q) :TO+QT v, (7)

with Mp(To,u,v)1 = 1, which means that 2n — 1 elements need to be
optimized.

2. The way the transformation matriz is constructed. We investigate two cases
on how the transformation matrix is obtained in each step of the algorithm.

— Transformation with a single elementary modification. In this case,
the transformation matrix used to transform the current representa-
tion in each step of the algorithm is an identity matrix with an ele-
mentary modification applied. Thus, in each step the optimal matrix
T=DMg(I,i,j,x), T = My(I,i,z) or T = Mp(I,u,v) is determined
(depending on which variant of the algorithm we are using) and the
corresponding transformation is applied.

— Transformation with cumulative elementary modifications. According to
this approach the transformation is not applied in each step of the
algorithm. The algorithm starts with T = I, and makes several ele-
mentary modifications one after the other in a cumulative way (thus
T = Ms(T,i,j,2), T = My(T,i,z) oo T = Mp(T,u,v)), as long as
there is improvement according to the goal function. The transformation
is then applied with matrix T'. Observe that the matrix T obtained this
way is much more general then the one obtained by a single modification.

The three options according to the elementary transformations and the two
options according to the way the transformation matrix is obtained gives 6
possible algorithms in total. These algorithms will be identified as Algorithm
MRAP2MMAP-xy, where x can be

— x=8, if the algorithm uses single scalar modifications,
— x=V, if it uses single vector modifications,
— and x=D, if dyadic product modifications are used.

Similarly, the letter at position y determines the way the transformation matrix
is constructed

— y=8, if the algorithm uses single elementary modifications,
— y=C, if it uses cumulative elementary modifications.
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1: procedure MRAP2MMAP-DC (Ho,...,Hk)

2 iter < 1

3 while Hy, ..., Hx not Markovian and iter < maxIter do
4: T+ 1

5: fori=1to N do

6 (u*,v*) « argmin G(Tr(Ho,...,Hx, Mp(T,u,v)))
7 T + Mp(T,u",v")

8: end for

9: (Ho,...,Hk)« Tr(Ho,...,Hk,T)

10: iter < iter + 1

11: end while
12: return (Ho,...,Hk)
13: end procedure

Fig. 3. Representation transformation method with single (N = 1) and cumulative
(N > 1) dyadic elementary modifications

Figure 3 with N = 1 and N > 1 depicts two possible variants of this family of
methods. The goal function is the sum of the square of the negative elements of
the representation, thus

G(Ho,....Hr) =) ((~[Hol, )"’ + > > ((~[Hil, )" (8)
i,7 k=1 4,
i#]

4 Representation transformation methods with size
extension

If a size n non-Markovian MRAP has no Markovian representation of size n, then
the above discussed procedures are not applicable. There are cases, however,
when a MRAP of order n has a Markovian representation of order m > n. With
a simple modification, our algorithms can be applied to the problem of finding a
larger Markovian representation as well. The idea is based on the results of [6].

Theorem 1. (6], Theorem 4) If, for an MRAP (D, ...,Dg) of size m and
initial vector m (where & is the solution of m = w(Dg) ™! Z:Zl Dy, and 7l = 1),
the rank of the representation with respect to the initial vector (see Definition 5)
is n, and n < m, then there exists a non singular m X m transformation matrix
T, such that the transformed representation has the following block structure
(with block sizes n and m —n)

o7 = [Hx0
k * *

},forkzO,l,...,Kand ET:[ZO}, 9)
where x denotes irrelevant matriz blocks with arbitrary elements, and
(Ho,...,Hg) is an equivalent representation of the same process with size n
and initial vector 7.
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This theorem together with the further results of [6] provide a way to obtain
a smaller representation of a RAP, if it is possible. In this paper, however, we
have the opposite problem. We are investigating RAPs not having a Markovian
representation of the same size, thus we need to find a way to extend the size of
the representation.

Theorem 2. If representation (Ho,...,Hk) of size n is non-Markovian, but
the process has a (Do, ..., Dg) Markovian representation of size n + 1 whose
rank with respect to the initial vector is n, then such a representation can be
obtained in the form Dy =T 'H},/'T, k=0,1,..., K, where

0

and matriz T', vectors xi, k = 0,1,..., K, are such that T1 = 1, Zszo zl =0,

and [zo]n+1/ Yhey [2alns1 # —1.

Proof. By construction we have that T transforms matrices Dg, £k =0,1,..., K,
into the required block structure of Theorem 1.

It remains to be proven that the initial vector also has the required block
structure. That is, the solution of ' = 7/(—Hyo") ™ Zle H;,' has the form ' =
[1 0] . Focusing on the last element of the vector equation and utilizing the block

structure of matrices Hy' we have [y/],11 = [’7/]n+1@—j+1 Zf:ﬂ%]nﬂ- From

this scalar equation we have that [y'], 41 = 0 if [2g],41/ Zde[ﬁ]nH #-1. O

Based on Theorem 2 we search for a Markovian representation of size
n + 1 with the algorithm in Figure 4. For simplicity we omit the constraint
[@]nH/ZkK:ﬂﬁ]nH # —1 in the algorithm description, as, in practice, the
procedure never generates vector elements which violate it. This algorithm is
based on the alternating optimization of the elementary transformation matrix
and vectors zg, k=0,1,..., K.

The T'r() operator that performs the similarity transformation with size ex-
tension is defined by

Tr'(Ho,...,Hk,29,...,2k,T) =
0 0
Hy
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1: procedure MRAP2MMAP-SizeExt(Ho,..., Hk)

2: ) < random vector, k =0, ..., K, such that EkK:O zpl =0

3 T+ 1

4 while Do, ..., Dk not Markovian and iter < maxIter do

5: B+ 1T

6: for i =1to N do

7 (u*,v*) < argmin G(Tr'(Ho,...,Hk,zo,...,2x,T - Mp(B,u,v)))
8
9
0
1

u,v
B+ Mp(B,u",v")

end for

T« T.B;

(xo*y...,xx*) < argmin G(Tr'(Ho,...,Hk,xo,...,zx,T))
aco,m,ackeR("Jrl)
SR ak1=0

12: (zo,...,zk) < (zo*,...,z")

13: (Do...,Dk)=Tr(Ho,...,Hk,xo,...,2x,T)

14: iter <— iter + 1

15: end while

16: return (Dy,...,Dk)

17: end procedure

Fig. 4. Representation transformation with size extension using cumulative dyadic
product modifications

Based on the duality of redundant representations in [6], one might miss a
size extension approach with redundancy according to the closing vector. It is
possible to construct a counterpart procedure of similar nature that generates
representation with redundancy according to the closing vector, but we have two
reasons for not recommending such procedures.

— Each ME representation satisfying simple eigenvalue and density conditions
(namely, the dominant eigenvalue is real and has the largest real part; the
density is strictly positive on (0,00) ) has a PH representation with redun-
dant initial vector.

— We have the following conjecture:

If (Hy,...,Hg) of size n is non-Markovian and it has a Markovian repre-
sentation of size n + 1, then it has a Markovian representation of size n + 1
with a redundant initial vector and an other one with redundant closing
vector.

5 Numerical results

In this section we will provide some examples to demonstrate the behavior of
the algorithms introduced.
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5.1 Finding a Markovian representation of the same size

To investigate how efficient the various representation transformation methods
are, we define a kind of benchmark that consists of a large number of non-
Markovian representations of MAPs. We are interested in how many times the
various methods succeed to obtain a Markovian representation.

The MAPs belonging to the benchmark are generated as follows.

I ”Balanced” problems. In this problem class we generate MAPs with ma-
trices having random integer entries falling into [0, 10]. This random, but
Markovian representation is then transformed to a non-Markovian one with
a random transformation matrix. The benchmark includes
a.) 10 representations of size 3,

b.) 10 representations of size 4,
c.) and 10 representations of size 5.
IT 7Stiff” problems. MAPs belonging to this class have random entries as in
case of "Balanced” MAPs, but a particular matrix row or an entry is several
orders of magnitudes smaller or larger than the other ones. Again, a random
transformation matrix is applied to obtain a non-Markovian representation.
We expect that it will be more difficult to obtain a Markovian representation
for these problems. The benchmark includes
a.) 10 representations of size 3 with random integer entries falling into
[0,100000] except for the first row, where the random entries are from
[0, 10].

b.) 10 representations with similar construction, but the size is 4

c.) 10 representations of size 3 with random integer entries falling into
[0,100000] except for the first row, where the random entries are from
[0,10]. One entry in the first row is from [0, 100000].

d.) 10 representations with similar construction, but the size is 4.

e.) 10 representations of size 3 with random integer entries falling into [0, 10]
except for the first row, where the random entries are from [0, 100000].

f.) 10 representations with similar construction, but the size is 4

g.) 10 representations of size 3 with random integer entries falling into [0, 10]
except for the first row, where the random entries are from [0, 100000].
One entry in the first row is from [0, 10].

h.) 10 representations with similar construction, but the size is 4.

IIT ”Sparse” problems. In this case the matrices of the MAPs have a large num-
ber of 0 entries. The non-zero entries are random integers from [0, 10], and
the positions of the non-zero entries are randomly chosen as well (such that
the irreducibility of the background process is ensured). The non-Markovian
input for the algorithms is obtained by a random similarity transformation
again. The more zero entries the matrices have, the smaller the space of
Markovian representations for that particular process is, thus we expect
that it is difficult to find a Markovian solution for these problems as well.
The following sparse problems are included in the benchmark
a.) 10 representations of size 3 with 1 non-zero entry in each row (including

the rows of Hy, k=0, ..., K, except the diagonal of Hy),
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10 representations of size 3 with 2 non-zero entry in each row,

10 representations of size 3 with 3 non-zero entry in each row,

10 representations of size 4 with 1 non-zero entry in each row,

10 representations of size 4 with 2 non-zero entry in each row,
f.) 10 representations of size 4 with 3 non-zero entry in each row.

IV ”Near-bound” problems. These problems are based on the numerical exam-
ple of [7]. Matrices Hg and H; are given by

~10 0 1
Ho= |0 -3 h|, Hy=|3-h|-[0.20305]. (11)
0 —h-3 3+h

It is proven in [7] that this RAP has a Markovian representation if h <
0.552748375. In order to quantify the efficiency of the algorithms, we are
trying to approach this bound as much as possible and check which algo-
rithm finds the Markovian representation. Thus, the benchmark includes 12
MAPs defined by (11) with & values running from 0 to 0.55.

In total, this benchmark consists of 182 MAPs given by non-Markovian rep-
resentations. The algorithms involved in the comparison are the MRAP2MMAP-[7]
(see Figure 1) and the 6 variants of our algorithm introduced in Section 3.2.

We implemented all the algorithms in MATLAB environment. To solve the
arising nonlinear optimization problems we used exhaustive search for the dis-
crete and the built-in fminsearch function for the continuous variables. The
fminsearch function is based on the Nelder-Mead simplex algorithm that can
be found in most scientific toolboxes.

We are interested in the following measures:

— The number of times the algorithm finds a Markovian representation with
a tolerance of —10~°, denoted by N;. All results are considered as Marko-
vian if the smallest element (except the diagonal of Hy) is greater than the
tolerance.

— The number of times the algorithm finds a Markovian representation with a
tolerance of —10~7, denoted by Na.

— The average execution time of the algorithm denoted by T'.

The results are summarized in Table 1. For the ”balanced” problems all
algorithms performed well. There are some cases when an algorithm stucks in a
local optimum and fails to find a solution, but it does not occur frequently. For
the ”stiff” problems the results are quite mixed. Our VC variant wins in this case,
with the DC and DS variants being the second. MRAP2MMAP-[7] failed to find a
solution several times. The algorithms had a hard time obtaining a solution for
”sparse” problems as well. Our DC variant managed to solve more problems than
the other algorithms.

In general, we can conclude that the cumulative transformation matrix mod-
ifications perform much better than the single ones, and that the ”dyadic prod-
uct” and the ”single vector” modifications give the best overall performance.
Regarding the execution times, it is surprising how fast MRAP2MMAP-[7] is, it is
clearly the fastest method in the comparison.



Table 1. Results of the comparison of the algorithms

MRAP2MMAP-[7] | MRAP2MMAP-DS | MRAP2MMAP-DC | MRAP2MMAP-VS | MRAP2MMAP-VC | MRAP2MMAP-SS | MRAP2MMAP-SC
Problem N1 N2 T[S] N1 N2 T[S] N1 N2 T[S] N1 N2 T[S] N1 N2 T[S] N1 N2 T[S] N1 N2 T[S]
1. ”Balanced” problems
La.) 10 10 0.028| 10 10 1.63 |10 10 1.92| 9 9 2063|110 10 481 |10 10 263 |10 10 2.66
Lb.) 10 10 068 |10 10 6.74| 10 10 469 |10 10 499 (10 10 179 |10 9 408 |10 10 114
Ic.) 10 10 036 |10 10 11.9]10 10 869 | 9 8 354 | 9 9 166 9 9 577|110 9 96.7
II. 7Stiff” problems
Il.a.) |10 10 207 |10 10 559 | 9 9 138 |10 10 576 |10 10 102 | 9 9 10.8 |10 10 6.94
IIb.) |10 10 385 | 9 9 486 | 10 10 8.8 7 7 219 |9 9 7291 9 9 488 | 8 8 70.8
Il.c.) 10 10 0.11 9 9 158 |10 10 263 | 7 7 769 |10 10 106 | 8 7 2041 9 9 122
IId.) {10 10 044 |10 10 21.3|10 10 6.73| 8 8 182 9 9 815 | 7 7 703 |10 10 316
IL.e.) 5 5 766 | 10 10 816 | 10 10 4.5 9 9 473 | 9 9 288 | 8 8 14.6 | 10 10 7.66
I1.f) 2 2 236 | 9 9 823 8 8 792 | 7 7 270 |10 10 51510 9 489 | 9 8 57.2
IL.g.) 4 4 9 10 10 11.3 |10 10 465 | 9 9 346 | 9 9 374 | 6 6 21.1 |10 10 &8.48
ILh.) 2 2 236 | 6 6 165 | 7 7 107 | 8 7 255 |10 10 80.8 | 5 5 86.1| 8 7 65.5
II1. ”Sparse” problems
I1.a.) 9 9 806 | 10 10 426 |10 10 7.07| 8 8 838 |10 10 149 | 8 7 254 | 9 9 19
IILb.) | 5 5 6.42 | 10 10 6.16 | 10 10 469 | 7 6 723|110 9 363 5 4 319 | 7 6 28.9
ITL.c.) 8 8 1.69 | 9 9 208 9 9 204 | 5 5 69.6 | 8 8 328 | 5 5 294 | 7 7 208
I11.d.) | 8 7 20 9 6 192 |10 9 715 3 2 383 | 8 8 175 7 5 122 7 7 935
I1Le.) 4 2 164 | 4 2 287 | 8 8 883 ]| 2 1 364 7 6 269 2 1 151 3 2 131
ITL.f.) 4 4 105 | 6 6 154 | 6 6 114 | 2 2 311 5 5 239 1 1 140 3 3 132

IV. ”Near bound” problem

IV. [ 6 5 35812 12 623[12 12 256 1 1 127 [12 12 114 ]12 12 36910 10 252

Summary

Average|70% 68% 7.64 [90% 87% 60.4 [93% 92% 30.6 [66% 64% 165 [91% 90% 74.5 |[72% 68% 53.3 [82% 80% 45.6

SpOTJoW UOIJRULIOJSURI} UOTyejuasardoy]

€1
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5.2 Finding a Markovian representation with size extension

There is no method available to determine the MAP order of a RAP in the
general case. Therefore the examples discussed here will be special RAPs: we
will only examine renewal processes with ME(3) distributed inter-event times as
there are results for the order of these.

Our first example is an order 3 RAP. The inter-arrival time distribution is a
matrix exponential distribution discussed by Harris in [9].

-11 0 000
Hyo=|0-22 |, Hi =00 0],
0 0 -3 a b a

where b = 3 — 2a.

With a > 1.5 the process does not have an order 3 Markovian representation.
With a = 2 the process is on the border of the representation space of order
4 MAPs because with parameter a > 2 it will not have a size 4 Markovian
representation. All our size extension based methods find a size 4 Markovian
representation for ¢ = 2 with a tolerance of 10~7. The fastest are the dyadic
optimization methods, needing only a few minutes, while the slowest SC scalar
optimization method needs more than an hour. As an example we present the
output of the VS algorithm

-1 0 0 1 0 000
0 —2.12212 0 0 000
Do=1| 4 o 4003 | Pr= 1970 2 0
0 279 0 —2.79 0 000

In the second example we examine an order 3 RAP with a structure similar to
the previous one.

-11 0 000
Hy=10-11}, H={00 0],
0 0 —1 a b a

with b = 1 — 2a. By applying Theorem 7.5 in [10] one can get that this process

has a size n = 3 + (2%1 Markovian representation with triangular Dg, where

¢ = (1—(14)2 if and only if a < ﬁﬁ According to Conjecture 7.6 in the same
paper this is also the order of the MAP. If ¢ > 0.5, this order is at least 4. (The
confirmation can be done similar to the first example.) If 0.5 < a < 1 the order is
exactly 4, as can be seen from the previous formula for n. For order 5, we get the
1 < a < 14(0.25(3++/3)) boundaries. We choose a = 1, thus the process will be
on the border of order 4 and order 5 MAP class. The results are similar to that
of the first example. Each method finds a Markovian representation with 10~7
tolerance. The dyadic and vector based optimizations need a couple of minutes,
the scalar based optimizations finish in around an hour. We give the output of
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the VS method in this case as an example.

-1 0.048 0.005 0.802 0.104 0  0.041 0

Do — 0 -—-1.07 048 0 D, — 0.38 0.015 0.194 0.002
0 0119 -1.83 0 ’ 1.029 0.069 0.607 0
0 0972 0 -1 0 0.008 0.02 0

6 Conclusion

We have presented a set of representation transformation methods for find-
ing Markovian representation based on general (non-Markovian) matrix rep-
resentations of various stochastic models including ME distributions, RAPs and
MRAPs. The presented new methods relax two limitations of the previously
applied ones: the single element based similarity transformation of the repre-
sentation in each iteration cycle and the fixed size of the representations. The
price of the more complex methods is the potentially increased computational
complexity and the dependence on non-linear optimization tools.
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