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Introduction

Developments in fluorescence labeling, automation, micros-
copy, data storage, and image analysis have paved the way 
for a new era of biological research using high-content 
screening (HCS). In a high-content screen, vast quantities of 
biological data are collected and analyzed to identify small 
molecules, peptides, or genes that alter the phenotype of a 
cell. HCS is used extensively by the pharmaceutical industry 
throughout all stages of the drug development process.1 It has 
also emerged as a powerful approach for defining protein 
functions and understanding signaling pathways among aca-
demic investigators, thanks in large part to recent advances in 
genome-wide RNA interference (RNAi) technology.2

High-content screens capture a compound’s molecular and 
phenotypic effects on a cell through a wealth of extracted 
image data. In traditional high-throughput screening methods, 
biological responses from thousands of cells are aggregated 
into a few carefully selected project-specific readout parame-
ters. In contrast, high-content screens use image analysis to 
extract functional and morphometric data from individual 
cells on a massive scale. In the course of a typical genome-
wide RNAi screen, researchers acquire millions of images 
and then extract and store abundant quantitative information 
to characterize the cells, such as intensity, size, morphology, 

spatial distribution, and texture for computational analysis. 
With so much data, the search for positive results, or “hits,” 
can be daunting. Early approaches to hit identification ranked 
all compounds by a single parameter; those above a statisti-
cally determined threshold were considered hits.3 Filtering 
with additional parameters can improve the process but does 
not address the principal drawbacks of this approach: the dif-
ficulty of identifying which combinations of parameters are 
useful, human bias in choosing which parameters determine 
the hits, and the failure to exploit all of the information 
acquired from the image analysis.
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Abstract
High-content screening is a powerful method to discover new drugs and carry out basic biological research. Increasingly, 
high-content screens have come to rely on supervised machine learning (SML) to perform automatic phenotypic 
classification as an essential step of the analysis. However, this comes at a cost, namely, the labeled examples required to 
train the predictive model. Classification performance increases with the number of labeled examples, and because labeling 
examples demands time from an expert, the training process represents a significant time investment. Active learning 
strategies attempt to overcome this bottleneck by presenting the most relevant examples to the annotator, thereby 
achieving high accuracy while minimizing the cost of obtaining labeled data. In this article, we investigate the impact of active 
learning on single-cell–based phenotype recognition, using data from three large-scale RNA interference high-content 
screens representing diverse phenotypic profiling problems. We consider several combinations of active learning strategies 
and popular SML methods. Our results show that active learning significantly reduces the time cost and can be used to 
reveal the same phenotypic targets identified using SML. We also identify combinations of active learning strategies and 
SML methods which perform better than others on the phenotypic profiling problems we studied.
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Supervised machine learning (SML) has helped to address 
this problem by simultaneously considering all the parameters 
collected during image analysis and automatically sorting 
compounds according to predicted hit quality.4,5 Recent studies 
have shown that SML methods identify target compounds with 
significantly more reliability than manual parameter selec-
tion.6 SML also eliminates human bias introduced during 
parameter selection by considering every parameter for its pre-
diction. As SML methods have become more widely used in 
high-content screen analysis,7,8 they have demonstrated the 
power of multiparametric readouts to distinguish between true 
biological activity and nonbiological interference.

With machine learning, a new bottleneck has arisen in 
the analysis stage of the HCS process. Even without 
machine learning, experimenters face the arduous task of 
manually sifting through oceans of data in search of the 
right combination of parameters to generate a valid hit list. 
But if SML is used for hit identification, experimenters 
must provide the algorithms with labeled examples to build 
a predictive model in what is known as the training process. 
Typically, several hundred to several thousand examples are 
necessary for the classifier to achieve satisfactory perfor-
mance, and providing more examples nearly always 
increases performance, although at a diminishing rate. 
Depending on the difficulty of the problem, labeling an 
individual cell can take on average between 3 and 15 s; 
therefore, the annotation process represents a significant 
time investment. Fatigue further complicates the issue: 
because annotation quality degrades over time, the biologist 
is often forced to perform the labeling in multiple sittings.

In a typical annotation setting, the expert, or “oracle,” is 
presented with an image from the high-content screen chosen 
at random. The expert then decides which of the cells that 
appear in the image to label, evaluates them, and assigns the 
appropriate labels. To speed up the process, some practitio-
ners use a classifier trained on data from previously anno-
tated images to make predictions for every cell in a new 
image, and the expert is asked to correct the predictions. In 
the first case, human selection bias means that the labeled 
population is often highly correlated and not representative 
of the true population. But it is more concerning that both 
schemes unintentionally waste the expert’s effort. A signifi-
cant amount of time will be spent unknowingly labeling hun-
dreds or even thousands of cells that have little impact on the 
decision boundary of the learning algorithm. Recently, active 
learning strategies have emerged as a way to improve classi-
fication performance using less training data, thereby making 
more efficient use of the expert’s valuable time. They do so 
by allowing the learning algorithm to select the data it uses to 
learn through relevant queries posed to the expert.

This article explores how active learning strategies can 
be leveraged to make more efficient use of the expert’s 
time, achieving high hit identification accuracy while mini-
mizing the cost of obtaining labeled data. In particular, we 
compare four well-known active learning strategies and six 

popular machine learning algorithms on data taken from 
three large-scale RNAi high-content screens representing a 
diverse set of phenotypic profiling problems. Our investiga-
tion measures performance over time using implementa-
tions from the popular software packages Advanced Cell 
Classifier8 and Weka.9 In addition, we provide a software-
agnostic evaluation measuring classification performance 
for every query posed to the expert. Our results show that 
for the HCS assays we consider, there always exists an 
active learning strategy that will significantly increase the 
rate at which the classifier learns. In some cases, the time 
can be reduced by over a factor of 3. Although no one active 
learning strategy consistently ranked the best, some per-
formed consistently better than others. And interestingly, a 
few strategies actually perform worse than passive learning 
if training time is taken into account.

Materials and Methods

Ribosome Biogenesis Assay

The biosynthesis of proteins in cells is performed by ribo-
somes, macromolecular complexes that consist of a large 
(60S) and a small (40S) subunit. In eukaryotes, the produc-
tion of ribosomes is a complex, highly compartmentalized 
process that begins in the nucleolus. Both ribosomal sub-
units undergo separate maturation in the nucleolus and 
nucleoplasm before they are exported to the cytoplasm 
where final maturation occurs. Both subunits join to form 
the translational competent machinery.10 To investigate 40S 
biogenesis, a tet-inducible RPS2-YFP (40S) HeLa cell line 
was generated that allows us to observe the nuclear matura-
tion of freshly synthesized precursors of the small ribo-
somal subunit. This image-based assay partially relies on 
RPS2-YFP localization as readout. Under normal biogene-
sis conditions, the reporter mainly localizes to the cyto-
plasm, reflecting mature ribosomes. If biogenesis defects 
occur either in the nucleolus or the nucleoplasm, the reporter 
localizes to the respective cellular compartment and the 
cytoplasmic signal is strongly reduced.11 This assay was 
used in a genome-wide RNAi association study using the 
Qiagen Human genome-wide siRNA library (HsNmV1; 
Qiagen, Venlo, the Netherlands) and analyzed using HCS. 
Example images are provided in Figure 1a.

Semliki Forest Virus Assay

Semliki Forest virus (SFV) is an alphavirus (Togaviridae) 
transmitted by mosquitoes.12 In humans and animals, it can 
cause serious diseases including long-lasting arthritis and 
lethal encephalitis. This virus replicates very efficiently in 
most cell culture systems, completing its life cycle in few 
hours. Here we used a recombinant SFV that was geneti-
cally engineered to expresses a green fluorescent protein.13 
Soon after infection, the viral RNA genome is delivered in 
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the cytoplasm of the cell. Here the ribosomes, cellular 
machineries responsible for the production of proteins, start 
to produce the viral proteins. One of these viral proteins was 
fused with green fluorescent protein. At the beginning of 
infection, a few small green spots appear in the cell. As the 
infection proceeds and more viral proteins are produced, 
these fluorescent spots become larger, brighter, and concen-
trate around the nucleus of the cell. Thus, by monitoring the 
intensity distribution and texture of the green fluorescence, 
it is possible to distinguish between the different stages of 
infection, as well as noninfected cells. This assay was used 
in a genome-wide RNAi association study using the 
Dharmacon Human genome-wide siRNA library and ana-
lyzed using HCS. Example images from the screen are pro-
vided in Figure 1b (corresponding segmentations appear in 
Suppl. Fig. 1b).

Uukuniemi Virus Assay

Uukuniemi virus (UUKV) belongs to the virus family of 
Bunyaviridae that contains more than 350 segmented, 
negative-stranded RNA viruses.14 As a nonpathogenic virus 
for humans, UUKV serves as a model for some severe 
human pathogenic bunyaviruses such as the Rift Valley 
fever virus.15 To study the host genes that are involved dur-
ing the entry steps of UUKV, we conducted a genome-wide 
siRNA screen using the Qiagen Human genome-wide 
siRNA library. To monitor infected cells, we used indirect 
immunofluorescence against the viral nucleoprotein that is 
expressed in newly infected cells. After bunyaviruses enter 
into their host cells, their genome is released into the cyto-
plasm where the replication and the production of new viral 
proteins occur. Thus, we were able to classify infected and 
uninfected cells after depletion of a gene. Example images 
from the screen are provided in Figure 1c.

Microscopy

Images were acquired using two Molecular Devices 
(Sunnyvale, CA) ImageXpress Micro microscopes equipped 
with an automated plate loader and with 10x S Fluor 0.45NA 
objectives. The automated microscopes acquired nine sites per 
well arranged in a 3 × 3 slightly overlapping grid. Laser-based 
autofocusing was used to ensure that images were focused at 
every site. Two fluorescent channels were recorded for each 
high-content screen. For the ribosome biogenesis assay, a 
Hoechst channel was used for nuclear staining, and a YFP 
reporter is bound to the 40S subunit. For the SFV assay, a 
DAPI channel was used for nuclear staining, and a GFP chan-
nel reports the stage of viral infection. For the UUKV assay, a 
DAPI channel was used for nuclear staining, and a GFP chan-
nel was used to indicate if a cell was infected.

Image Analysis

The software analysis package CellProfiler16 was used to 
segment individual cells and extract features from images 
acquired for each screen. Several custom modules were 
used to increase the speed of the analysis. The image analy-
sis for all three assays followed a common framework. 
First, the cellular nuclei were detected and segmented using 
Otsu adaptive thresholding and the watershed algorithm on 
the DAPI/Hoechst channel. Next, the nuclei were used as 
“seed” regions, and the cytoplasm is approximated as a ring 
surrounding the nucleus. From these regions denoting cel-
lular compartments, various features were extracted for 
each cell describing the intensity, morphology, and texture. 
For the ribosome biogenesis assay, 26 features were col-
lected, mostly intensity-based (eg, integrated intensity, 
mean intensity of the nucleus/cytoplasm, standard deviation 
of intensity of the nucleus/cytoplasm, intensity along the 
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Figure 1. Examples images from the high-content assays considered in this study: (a) ribosome biogenesis, (b) Semliki Forest virus, (c) 
Uukuniemi virus. Annotations indicate the expert-labeled phenotype of a particular cell. A list of phenotypes is provided in the lower 
right of each pane. Phenotype 5–Other is not shown in (c) because it was used to collect errors in the image processing, which were 
extremely rare.
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edge of the nucleus, etc.). Texture features were also col-
lected to describe the contrast, correlation, variance, 
entropy, gradient, and so forth. The UUKV assay used the 
same features as the ribosome biogenesis assay, with two 
additional features describing the nucleus intensity, for a 
total of 28 features. A total of 94 features were collected for 
the SFV assay. In addition to the features described above, 
several morphological features were collected such as area, 
perimeter, form factor, eccentricity, and so on. A full list of 
the extracted features is given in Supplementary Table 2. 
The texture features were extracted at multiple scales to 
ensure sensitivity to different sized objects. In addition, a 
custom implementation of an “a trous” transform17 was 
used to perform spot detection of viral clusters. The custom 
CellProfiler modules, the pipelines, and the data sets can be 
downloaded from www.highcontentanalysis.org.

Multiparametric Analysis Using SML

With so many features available in a high-content screen, it 
is too difficult to take every feature into account while man-
ually performing hit identification. Although early works 
restricted themselves to just a few interpretable features, 
researchers have turned to machine learning to consider all 
the features collected during the image analysis. A few stud-
ies have made use of unsupervised learning techniques such 
as clustering18 and self-organizing maps,19 but the majority 
have opted for supervised techniques.4,5,7,8 SML infers a 
mapping function from labeled training data, which con-
sists of a set of training example pairs (a feature vector 
describing the cell and the desired class label). The super-
vised learning algorithm uses the training data to produce a 
function that maps unseen instances to the desired output. 
This requires the supervised learning algorithm to general-
ize to unseen situations in a reasonable way.

In this study, we consider six popular SML methods: Naive 
Bayes, KNN, SVM, LogitBoost, ANN, and random forest. 
The first, Naive Bayes, builds a prior probability of the class 
distribution and uses Bayes rule to update this using kernel 
density estimates from features of other examples. It is well 

suited for high-dimensional feature vectors and, despite its 
simplicity, can outperform more sophisticated methods. The 
second, k-nearest neighbors, or KNN, is a nonparametric 
instance-based learning method that predicts class member-
ship based on the k closest training examples. KNN can be a 
powerful predictive model, but the training process does not 
scale well for large data sets. A support vector machine, or 
SVM, is a method for finding the best separating hyperplane 
for linearly separable problems. It can be extended to nonlin-
early separable problems through the use of kernel functions 
and is one of the most popular and dependable machine learn-
ing methods. LogitBoost is an adaptation of AdaBoost set in a 
statistical framework that minimizes logistic loss on decision 
stumps. Adaboost is a meta-algorithm that trains a series of 
simple classifiers, each tuned to correct for mistakes made by 
the previous classifiers. It can be a powerful predictor for dif-
ficult problems. Artificial neural networks, or ANNs, are net-
works of artificial neurons that map several weighted inputs to 
a desired output, inspired by neurons in the brain. Random 
forests train thousands of decision trees on randomly chosen 
subsets of the feature space and make predictions by running 
the new instance to the terminal node of all the trees and per-
forming some statistical measurement. For this study, we used 
the WEKA9 implementations of the above machine learning 
methods with parameters selected for the best performance 
using an extensive cross-validated random search. A summary 
of the supervised learning methods considered in this study is 
provided in Table 1.

The standard procedure for collecting the labeled data 
necessary for the SML method to learn the mapping function 
is sometimes referred to as passive learning. The expert is 
presented with a set of instances randomly sampled from the 
data and is asked to assign labels to each. Alternatively, the 
expert is allowed to choose which samples to label. In this 
study, an instance corresponds to an individual cell, the labels 
are nominal, and the expert is provided with an image selected 
at random and allowed to choose which cells to annotate. The 
resulting set of labeled instances, called the training set, is 
supplied to the algorithm for learning, or model training. 
SML algorithms require a large training set to perform well, 
and prediction accuracy increases as the size of the training 
set increases. The labeling process is strenuous and must usu-
ally be broken into multiple sittings to ensure fatigue does not 
compromise the quality of the data. These factors constitute a 
significant time investment from the experts, making the pas-
sive learning process a major bottleneck in HCS.

Active Learning Strategies

Passive learning does not make efficient use of the expert’s 
time. There is no guarantee on the usefulness of the labels 
provided by the expert, regardless of whether the expert 
chose the cells to label or if they were selected at random. To 
help eliminate this bottleneck, we consider several active 
learning strategies to make more efficient use of the expert’s 

Table 1. Active Learning Strategies and Supervised Learning 
Methods Considered in This Study.

Sampling Strategies Machine Learning Methods

1. Passive learning 1. Naive Bayes
 2. k-nearest neighbors
Uncertainty sampling 3. Support vector machine
2. Least confident 4. LogitBoost
3. Margin sampling 5. Artificial neural network
4. Entropy 6. Random forest
Query by committee  
5-7. Vote entropy sampling with 

committee size C = 3, 5, 
and 7
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time. Active learning is an iterative process that aims to mini-
mize the cost of obtaining labeled data by carefully selecting 
the most informative examples for labeling. Consequently, 
active learning strategies promise to produce a more accurate 
predictor in significantly less time than passive learning.

Active learning can be broadly categorized into three 
frameworks: pool-based sampling, stream-based sampling, 
and membership query synthesis. Pool-based sampling is 
appropriate when large collections of unlabeled data can be 
gathered all at once. In pool-based sampling, there exists a 
large pool of unlabeled data U and a small set of labeled 
data L. Unlabeled samples are selectively drawn from the 
unlabeled pool according to an informativeness measure 
and presented to the oracle (expert) for labeling.20 This pro-
cess is referred to as a query. It is common to repeat this in 
an iterative cycle, as depicted in Figure 2. An instance or 
set of instances is sampled from the unlabeled pool using 
some selection strategy and presented as queries to the ora-
cle. The oracle uses expert knowledge to provide labels, and 
then the instance(s) are added to the labeled data. Next, the 
predictive model is retrained with the updated labeled data. 
After retraining, the SML algorithm makes predictions on 
the unlabeled pool, which are used by the selection strategy 
to measure the informativeness of each instance when 
choosing the next query. In this way, the cycle iteratively 

improves classification performance by querying the expert 
with the most useful unlabeled example(s) and retraining 
the model.

For high-content screens, pool-based sampling is typi-
cally the most appropriate framework because the assay and 
image analysis provide an extremely large pool of unla-
beled data. But it is worthwhile to explain briefly the other 
frameworks, as some situations may arise in which they are 
also useful. Stream-based sampling is used when instances 
are drawn one at a time from the data source; real-time 
stock market data are a good example. In this case, the task 
of the active learning is to decide whether to query the ora-
cle or discard the data, based on the expected usefulness.21 
In the membership query synthesis framework, the oracle is 
presented with either real examples or synthetically gener-
ated examples from the input space.22 Although this 
approach is not immediately useful for high-content screens, 
progress in the creation of valid cellular generative models 
means that it might one day be practical.

All active learning methods must evaluate the informa-
tiveness of unlabeled instances and choose which instances 
to present to the oracle. How this problem is formulated is 
known as the query strategy. Many query strategies exist in 
the literature. Expected model change attempts to estimate 
which instance would impart the greatest change to the cur-
rent model if its label were known.23 Expected error reduc-
tion attempts to measure not how much the model is likely 
to change but how much its generalization error is likely to 
be reduced.24 Similarly, expected variance reduction 
attempts to indirectly reduce generalization error by mini-
mizing the variance of the output. In this work, we focus on 
the two most popular query strategies: uncertainty sampling 
and query by committee.

Uncertainty Sampling. The simplest query strategy, uncer-
tainty sampling, attempts to select instances about which it is 
the least certain how to label. For probabilistic SML meth-
ods, it is straightforward to use the predicted class probabili-
ties to measure uncertainty directly. One method is to query 
the instance whose prediction is the least confident,25

x arg max P y x* ( | ),= −1 q
∧

 (1)

where x  refers to an unlabeled instance, y  refers to its 
associated label, x*  refers to the most informative instance 
chosen for the query, and y arg max P y x

∧= q ( | )  is the class 
label with the highest posterior probability predicted by the 
model θ. An interpretation of this query strategy is that it 
selects as the most informative instance the one that has 
most likely been mislabeled. However, a drawback to this 
approach is that it considers only the most probable class 
label, discarding information about the confidence of the 
remaining class labels.
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Figure 2. The active learning cycle. Starting from the top, an 
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using a query strategy and presented as queries to the oracle 
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each instance when choosing the next query. In this way, the 
cycle iteratively improves classification performance by querying 
the expert with the most useful unlabeled example(s) and 
retraining the model.
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To correct for this, some researchers use a query strategy 
that considers the first and second most probable class label, 
known as margin sampling,26 in which the most informative 
instance is given by

x* arg min P x P x= −θ θ
∧ ∧

( | ) ( | ),y y1 2  
(2)

where y
∧
1 �and y

∧
2 � are the first and second most probable 

class labels predicted by the model, respectively. This strat-
egy attempts to estimate the margin of each instance, or the 
distance to the decision boundary. Instances in which the 
model has little trouble differentiating between the first two 
class labels are assumed to have a large margin and are con-
sidered less informative. Instances with small margins are 
more ambiguous and are more likely to be useful when 
posed as queries to the oracle.

Margin sampling still considers only the two most prob-
able class labels. A more general query strategy that consid-
ers all predicted class labels uses the entropy as a measure 
of uncertainty,27

x argmax P x P x*
i ii= − ∑ θ θ

∧ ∧
( | ) log ( | ),y y

 
(3)

where k  indexes all possible labels. In information theory, 
entropy is a fundamental measure of uncertainty and allows 
this approach to consider all the class labels predicted by 
the SML model θ.

Query by Committee. A more theoretically motivated 
query strategy first proposed by Seung et al.,28 query by 
committee, constructs a “committee” of models 
C C= { , ..., }θ θ1

 that represent competing hypotheses, 

each trained on the same labeled set L. This query strat-
egy selects the most informative instance by determining 
the instance with the strongest disagreement among the 
various committee members. Many variations of query by 
committee appear in the literature, but they all must (1) be 
able to generate committee models whose hypotheses are 
consistent with the current labeling in L and (2) be able to 
measure disagreement among committee members. A 
popular method for discriminative learning models to 
generate approximately valid committee members is 
query by bagging.29 It uses bagging, a learning ensemble 
meta-algorithm, to construct committee members by sam-
pling labeled instances with replacement from L and then 
trains models on each set of sampled data. To measure 
disagreement among the committee members, we can 
adapt the entropy-based uncertainty sampling method to 
votes from the committee members. Accordingly, the 
most informative instance determined by entropy of the 
committee voting is given by

x argmax
V y

C
log
V y

C
*

i
i i= −∑

( ) ( )
,
 

(4)

where V(yi) is the number of votes that class label yi receives 
from the various committee members and C is the size of 
the committee.

Table 1 summarizes the active learning strategies con-
sidered in this study. In total, we compare seven different 
strategies including passive learning, three variants of 
uncertainty sampling, and three variants of query by com-
mittee. Query by committee using vote entropy is tested for 
three, five, and seven committee members. In all cases, 
committee members are trained using instances sampled 
with replacement from the labeled training set L, where 

m L=
3

4
| |  and | . |  is the cardinality operator. Each of the

six active learning strategies considered here (and passive 
learning) were tested in combination with the six SML 
methods described above.

Data Sets

We collected an expert-labeled data set for each of the assays 
described above. A summary is provided in Supplementary 
Table 1. The ribosome biogenesis data set contains a pool of 
4492 labeled cells, each with 26 descriptive parameters (or 
features). The SFV data set consists of 5119 labeled cells, 
each with 94 features. The UUKV data set contains 500 
labeled cells, each with 28 features. Each HCS assay identi-
fied five phenotypic classes, described below. In all our 
experiments, 66% of the data set was used for training the 
model (using active or passive strategies) and 33% was 
reserved to test the model. Annotations were performed using 
Advanced Cell Classifier.8 The data sets and their descrip-
tions can be downloaded from www.highcontentanalysis.org.

For the ribosome biogenesis assay, cells belong to one of the 
following classes. Examples of each class appear in Figure 1a.

•• Negative: No biogenesis defect in the cell; the 
reporter is localized in the cytoplasm

•• Nucleoplasmic accumulation: A biogenesis defect occurred 
in the cell; the reporter is localized in the nucleoplasm

•• Nucleolar accumulation: A biogenesis defect occurred 
in the cell; the reporter is localized in the nucleoli

•• Mitotic: The cell is undergoing mitosis
•• No tet: The reporter failed to activate in this cell

For the SFV assay, cells belong to one of the following 
classes. Examples of each class appear in Figure 1b.

•• Noninfected: No reporter presence indicates that the 
cell is not infected

•• Infected (early): A few faint localized reporters indi-
cate early stage of infection

•• Infected (mid): More numerous, larger reporters indi-
cate mid stage of infection

•• Infected (late): Larger, brighter reporters (sometimes 
clustered) indicate the late stage of infection

x

x

x
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•• Infected (collapsed): Clustered, bright reporters 
accompany a dramatic change in cell morphology 
after cell collapse.

For the UUKV assay, cells belong to one of the follow-
ing classes. Examples of each class appear in Figure 1c.

•• Noninfected: No reporter presence indicates that the 
cell is not infected

•• Infected: The presence of the viral nucleoprotein 
causes the marker to be expressed in the cytoplasm

•• Apoptotic: Fragmented morphology of the nucleus 
indicates programmed cell death

•• Mitotic: The cell is undergoing mitosis
•• Other: Used to collect cells that occasionally encoun-

tered image segmentation problems.

Performance Evaluation

The efficiency of an active learning strategy is typically 
measured by computing the accuracy of the classifier after 
every query. By plotting the accuracy against the query 
index, we can generate a learning curve (depicted in Fig. 3), 
and integrating the area under the learning curve (AUC) 
provides a useful measure of how quickly the active learn-
ing strategy improves classifier performance.26 However, 
measuring performance this way neglects an important 
practical component of the evaluation, namely, the time cost 
to the expert. Labeling a cell and retraining the classifier 
requires time and effort from the expert, and this fact should 
be accounted for in the performance evaluation. It may well 
be that an active learning strategy that appears to be more 
efficient when measured per query is actually inefficient 
when we consider how much time it took to label and train.

Therefore, to provide a more practical measure of learning 
efficiency, we measure the performance of an active learning 
strategy by computing the AUC over time instead of per query. 
This provides a better measurement of whether we have 
achieved our ultimate goal of reduced training and annotation 
time, but it comes with a caveat. The annotation time and 
model training time are linked to the data, the software, and the 
machines used for testing. Thus, the time measurements we 
report are specific to the problems considered in this study, 
although we made an effort to choose representative assays 
and popular implementations of SML methods.

Because our evaluation considers the time needed to 
retrain the SML model, a new question arises: what is the 
most efficient number of queries to present to the expert 
before retraining the SML model and proceeding with the 
next iteration of the active learning cycle? To answer this, 
we also run tests to investigate what is the optimal num-
ber of queries per cycle for each combination of active 
learning strategies and SML methods on all the HCS 
assays.

Results and Discussion

We tested 42 combinations of SML methods and active 
learning strategies (six supervised learners and six active 
learning strategies, plus passive learning). Each combina-
tion was evaluated for qc = { , , , , , , , , , , , , , , , }1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60 

qc = { , , , , , , , , , , , , , , , }1 2 3 4 5 10 15 20 25 30 35 40 45 50 55 60  queries per active learning cycle, for a 
total of 672 tests. The sheer number of individual tests 
required too much time from the experts; therefore, we had 
the experts create a shared pool of labeled data beforehand 
and recorded the annotation time. For each test, we then 
sampled two-thirds of the instances from the shared pool 
and used these data to simulate the active learning process, 
and we held out the remaining one-third for validation. 
Each test was initialized with a small labeled training set of 
10 instances, then proceeded to apply 1 of the 42 active 
learning cycles with qc  queries per cycle, and was iterated 
until 300 queries were added to the labeled set (300 queries 
is approximately the size of the training set for the smallest 
data set, the UUKV), and then tested on the validation set. 
We repeated each test five times and report the average 
results. Testing took 10,320 CPU hours (9 days) on 48 
cores. Finally, we repeated every test using the per-query 
measurements to provide a generic analysis that is not tied 
to the specific software and machines we used.

A summary of the results is provided in Figure 4 (results 
reported in Fig. 4 use three queries per cycle). Each column 
represents a combination of an active learning strategy and 
SML method, grouped by SML methods. The first three rows 
show results for the three high-content screens, and the last 
row shows the average of the three. The number above each 
bar graph is the average normalized AUC measured over time. 
Passive learning performance is indicated by a white bar, and 
the best active learning strategy for each SML method is indi-
cated by a dark bar. The overall best performing strategy for 
each high-content screen is indicated by an asterisk. A similar 
table is provided in Figure 5 (results reported in Fig. 5 use one 
query per cycle), but the scores are measured per instance 
instead of over time. The average labeling time for each data 
set is provided in Supplementary Table 1. In Supplementary 
Figure 4, we provide the average cycle times for least confi-
dent sampling and various SML models.

Learning curves for each high-content screen are shown in 
Figure 3a–c. In each case, the most efficient active learning 
strategy and SML method combination are provided, along 
with other active learning strategies for the same SML method. 
Similar curves are provided in Figure 3d–f measured per 
instance instead of over time. A complete set of learning curves 
is provided in Supplementary Figure 2. We also show the 
time and number of instances required to achieve fixed accu-
racy thresholds in Supplementary Tables 3 and 4.

In Supplementary Figure 5, we compare the efficiency 
of various values of qc , the number of queries per active 
learning cycle, where efficiency is measured by the average 
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normalized AUC measured over time. A complete set of fig-
ures for all active learning/SML method combinations is 
provided in Supplementary Figure 3.

Overall Performance

The results appearing in Figure 4 indicate that for the three 
phenotypic profiling problems considered in this study, there 
always exists an active learning strategy that will speed up the 
annotation process. However, there is no universally most effi-
cient combination of active learning strategy and SML method. 
Random forests with margin sampling was the most efficient 
method for the SFV and UUKV data sets, but ANN with mar-
gin sampling was the most efficient for ribosome biogenesis. 
This suggests that margin sampling is the best overall active 
learning strategy, but if we average the performance over all 
three data sets, random forests with least confident samplings 
reigns supreme. Interestingly, if we remove time consideration 
from our evaluation, as shown in Figure 5, the overall trends 
remain similar, but least confident is the best performing active 
learning strategy for all three data sets. Regardless of the data, 
random forests coupled with least confident or margin sam-
pling appear to be consistently good choices and would prob-
ably be the safest recommendation for a novel data set.

Our investigation into the optimal number of queries 
to present to the oracle every active learning cycle shows 
an overall trend, evident in Supplementary Figure 5. 
On average, for low qc, active learning strategies increase 
in efficiency as more queries are added to each cycle 
(Suppl. Fig. 6). But this trend quickly plateaus, and then 
efficiency decreases as more queries are added. There is 
no universally most efficient value for qc , but it does 
appear that each learning method has an optimal choice 
that depends on the data and the speed of the learner. 
However, if we take the mean score of all the methods on 
all the data sets as a measure, qc = 3  is the most efficient 
number of queries per cycle. This number best balances 
the expert labeling time and the retraining time of the 
SML model. An interesting note is the relative poor per-
formance of entropy sampling relative to its uncertainty 
sampling family members, least confident and margin 
sampling (Fig. 6a,b). We speculate that the reason for 
this discrepancy is that entropy sampling allows the 
active learning strategy to suggest examples further from 
the decision boundary than the other two methods.30 
Although for some problems this is a desirable property 
(e.g., discovery of novel phenotypes), it appears to 
degrade efficiency on the HCS data sets we considered.
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Figure 3. Learning curves for various active learning strategies. The top row shows learning curves as accuracy versus time, and the 
bottom row shows the accuracy versus number of instances. The curves shown here were selected based on the highest mean area 
under the learning curve. A complete set is provided in Supplementary Figure 2. (a) For the ribosome biogenesis assay, the most 
efficient strategy was margin sampling on an artificial neural network; (b) for the Semliki Forest virus, the most efficient strategy was 
margin sampling on random forests; and (c) for the Uukuniemi virus, the most efficient strategy was also margin sampling on random 
forests.
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Ribosome Biogenesis

The ribosome biogenesis assay was one of the more difficult 
phenotypic classification problems. The nucleoplasmic and 
nucleolar phenotypes are difficult to distinguish, and the 
overall heterogeneity of cells is strong. Figure 4 
clearly identifies margin sampling with an artificial neural 
network as dominant over other active learning strategies. In 
Figure 3a, we can see that this approach is able to achieve 
the same accuracy as passive learning in one-third the time, 
a significant time savings. Interestingly, in the same plot, all 
three query-by-committee strategies were less efficient than 
passive learning for qc = 5 , meaning that adopting these 
strategies would cost the expert time. If we turn to 
Supplemental Figure 3, we can see that query by commit-
tee is universally less efficient than passive learning for 
ANN, a surprising result. We can attribute this to the signifi-
cant training time of an ANN and the fact that query by com-
mittee must train several committee members, whereas only 
one learner is needed for uncertainty sampling.

Semliki Forest Virus

The SFV data present a different kind of difficulty because 
they attempt to model a continuous process with discrete 

classes; therefore, there can be significant confusion both 
by the learning method and by the expert. Looking at 
Figure 4, it is clear that random forests and LogitBoost are 
the most efficient learning algorithms for this problem. 
Although active learning gives a significant boost in effi-
ciency for this data set, the particular choice of active learn-
ing method is less important than the SML method. This is 
interesting because the SFV data set contained 96 features, 
the most of the three data sets. The best performers, random 
forests and LogitBoost, are both meta-learning algorithms 
built using decision trees, which are known to give good 
performance for high-dimensional data.

Uukuniemi Virus

The UUKV was the easiest of the three data sets. What is note-
worthy here is not so much the performance of the learning 
strategies but the performance of the annotator. The pregener-
ated label pool for this assay was annotated quickly and with-
out much discretion in choosing which cell to label. As a result, 
the gap between passive learning and all active learning meth-
ods is significant (Fig. 3c and Fig. 4). This suggests that there 
is some advantage to allowing the expert to choose which 
instances to label instead of sampling at random. Because the 
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Figure 4. Summary of active learning strategy efficiency (based on time). Performance is measured using the normalized area under 
the learning curve (AUC) over time. Each column represents a combination of an active learning strategy and supervised machine 
learning (SML) method, grouped by SML method. The first three rows show results for the three high-content screens, and the last 
row shows the average of the three. The number above each graph is the average AUC over five tests. Passive learning performance 
is indicated by a white bar, and the best active learning strategy for each SML method is indicated by a dark bar. The overall best 
performing strategy for each high-content screen is indicated by an asterisk.
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experts were more picky (less random) in the ribosome bio-
genesis and Semliki Forest data sets, passive learning was 
more competitive for those problems.

Discussion

Our tests have shown that for three representative pheno-
typic profiling problems, active learning can increase the 
speed and accuracy of the analysis process. Although there 
is no universally most efficient method, margin sampling 
with random forests with qc = 3  performed best on average 
for the problems we considered in this work (Suppl. Fig. 6). 
We also note that active learning methods that seem to be 
efficient when measured per query might turn out to be inef-
ficient when real-time costs are considered, and this should 
be taken into account before using active learning. Another 
important point to recognize is that allowing the expert to 
choose which cells to label biases the training set, and the 
labeled population is no longer representative of the real 
population. Although active learning does not eliminate 
bias from the labeled data, one can argue that it is a more 

justifiable bias because samples are chosen according to 
informativeness for the SML model, not human taste. In 
Supplementary Figure 7, we show that the annotator 
selection bias does not always strongly affect performance.

There are some limitations to our study that should be 
mentioned. The classes were known a priori because of the 
structure of our experiments. In practice, classes are usually 
discovered on the fly, although this should not significantly 
affect the results. We also note that the approaches consid-
ered in this work do not provide a way to discover automati-
cally novel classes or recognize mistakes in previous 
annotations based on the discovery of a new class. The size 
of the data pool available to the active learning methods is 
smaller in our study than would be used in practice, because 
of the limited availability of data. Active learning strategies 
may be more efficient than indicated as more plentiful data 
may contain more useful instances. Finally, one important 
topic we did not address in this study is stopping criteria. 
All active learning methods suffer from diminishing returns 
as more instances are added; in theory, a good stopping cri-
terion can predict when the cost of providing another label 
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Figure 5. Summary of active learning strategy efficiency (based on queries). Performance is measured using the normalized area 
under the learning curve (AUC) per query. Each column represents a combination of an active learning strategy and supervised 
machine learning (SML) method, grouped by SML method. The first three rows show results for the three high-content screens, 
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overall best performing strategy for each high-content screen is indicated by an asterisk.



Smith and Horvath 695

outweighs its expected performance improvement. 
Unfortunately, formulating a good stopping criterion is dif-
ficult in practice. However, it is possible to provide the 
expert with an estimate of the accuracy of the current model 
after each cycle, allowing the expert to make a more 
informed decision on when to stop training.
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