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Abstract. A recent paper (Healey et al., J. Nonlin. Sci., 2013, 23, 777-

805.) predicted the disappearance of the stretch-induced wrinkled pattern of
thin, clamped, elastic sheets by numerical simulation of the Föppl-von Kármán

equations extended to the finite in-plane strain regime. It has also been re-

vealed that for some aspect ratios of the rectangular domain wrinkles do not
occur at all regardless of the applied extension. To verify these predictions

we carried out experiments on thin (20 µm thick adhesive covered), previously

prestressed elastomer sheets with different aspect ratios under displacement
controlled pull tests. On one hand the the adjustment of the material proper-

ties during prestressing is highly advantageous as in targeted strain regime the

film becomes substantially linearly elastic (which is far not the case without
prestress). On the other hand a significant, non-ignorable orthotropy develops

during this first extension. To enable quantitative comparisons we abandoned

the assumption about material isotropy inherent in the original model and
derived the governing equations for an orthotropic medium. In this way we

found good agreement between numerical simulations and experimental data.
Analysis of the negativity of the second Piola-Kirchhoff stress tensor re-

vealed that the critical stretch for a bifurcation point at which the wrinkles

disappear must be finite for any aspect ratio. On the contrary there is no such
a bound for the aspect ratio as a bifurcation parameter. Physically this man-

ifests as complicated wrinkled patterns with more than one highly wrinkled
zones on the surface in case of elongated rectangles. These arrangements have
been found both numerically and experimentally. These findings also support

the new, finite strain model, since the Föppl-von Kármán equations based on

infinitesimal strains do not exhibit such a behavior.

1. Introduction

Formation of wrinkled zones of thin, hyperelastic stretched sheets has been
widely discussed in the literature recently. While the wrinkling of sheets under
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2 DISAPPEARANCE OF STRETCH-INDUCED WRINKLES...

in-plane compression is a classical buckling problem [28, 11], the somehow counter-
intuitive occurrence of wrinkles under dominantly tensile loading has become inten-
sively discussed around 2000 [9, 2, 1]. The mechanical background of the phenomena
is well described by the variants of the tension-field theory [24, 4]. This approach
focuses on the in-plane stress state and neglects the bending stiffness of the sheet.
Depending on the n− number of the negative eigenvalues of the stress tensor, one
can distinguish between taut (n− = 0), wrinkled (n− = 1) and slack (n− = 2)
zones of the domain.

Intuitively the wrinkling pattern of a stretched, rectangular sheet clamped at two
opposite sides (with the two other sides being free) occurs due to a slight lateral
compression caused by the restrained contraction at the clamped ends. Having a
sufficiently thin film, even this slight lateral compression is unbearable in a planar
state, a buckling occurs and we are left with a wrinkled solution. Tension-field
theory is a perfect tool to determine an upper bound for the subdomain affected by
wrinkling, but it is unable to predict the wrinkled pattern (number and shape of the
wrinkles) itself. The direction of the positive principal stress is the sole information
about the shape: it is aligned with the wrinkle crests. In the mathematical point of
view the versions of tension-field theory are related to the zero limit in the thickness,
thus using them for comparison against experimental data requires extra care. To
handle the non-vanishing (but still small) thickness of the film and to study the
shape of the wrinkled pattern the celebrated Föppl-von Kármán plate theory is
used extensively. In the geometric point of view the Föppl-von Kármán model
[29] is a non-linear theory allowing for finite out-of plane deformations as long as
the in plane-strains can be regarded infinitesimal. It predicts the appearance of
wrinkles for (presumably perfect) films at a small value of the stretch (much below
1%). Accordingly, the assumptions underlying the theory are practically valid at
this first bifurcation point at which the planar solution loses stability. Following
the traditions of bifurcation theory, in our work we will refer the planar solution
as trivial, however even this solution is affected by lateral contraction (Fig. 1).
The postcritical branches emanating from the above mentioned bifurcation point
contain the wrinkled solutions. These branches are found to be stable and numerical
simulations show that the wrinkled pattern preserves stability leaving the trivial
solution unstable for any higher value of the stretch.

A recent paper [12] suggested to extend the classical Föppl-von Kármán theory
into the regime of finite in-plane strains in the case of isotropic (in specific, Saint
Venant - Kirchhoff) material. Numerical simulations based on this model suggest
that the infinitesimal strain assumption not only results in quantitative errors in
the finite strain regime, but the difference between the two models is indeed a
qualitative one: in the finite strain model the trivial, planar solution regains stability
in a second bifurcation point (at some stretch exceeding the critical stretch of the
first bifurcation). Furthermore, just a bounded regime of the aspect ratios exhibits
wrinkling, i.e. for a fixed length sufficiently narrow or wide films would not wrinkle
at all. These findings clearly point to an isola-center bifurcation in the model. Our
paper is devoted to experimentally verify the predictions of the finite-strain model.

Difficulty of such a verification stems from the fact that hardly any material is
linearly elastic in the targeted finite strain regime (max. 50% stretch). Papers in
the literature tend to present pure numerical simulations [6, 22, 20, 5, 27]; experi-
mental works either aim to incorporate plastic response [30, 21] or compare results
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measured on elastomers against numerical data based on linear elasticity [19]. In
accordance with the general expectation, the stretch needed for well developed wrin-
kled patterns (approx. 10− 25%) causes non-negligible adjustment in the material
properties; most of the candidate materials for an experimental verification exhibit
significant plastification and other, non-linear and non-recoverable phenomena. A
well-chosen elastomer (such as polyurethane) is still hyperelastic in this range, but
it is far-not linear-elastic. We demonstrate, that prestressing substantially helps
to obtain a nearly linearly elastic material, however, the price of this step must be
paid as the material develops non-ignorable orthotropy. That is why an orthotropic
extension of the original model is essential in case simulations are compared against
experimental data.

Results of the in-plane stress analysis also hint towards emerging orthotropy: in
the direction of the stretch the absolute value of the normal stress differs by at least
one order of magnitude compared to the cross direction, thus any kind of material
adjustment is much more probable in the longitudinal direction. Our experiments
affirm that elastomers (in specific: polyurethane) become highly orthotropic during
the first extension, after that the material behaves dominantly elastic with negligible
variation of the material parameters during more than 10 loading cycles which
enables one to carry out repeated elongations of the specimen. We are aware the
fact, that restrained contraction (i.e. Poisson-effect) is not the sole reason behind
wrinkling, for instance shear deformations (warping) has a contribution, too [25].
Although this contribution is an interesting experimental challenge, in this paper we
focus on emerging orthotropy and the experimental validation of the disappearance
of wrinkles. There are a few publication of related experimental results, some of
them uses highly elaborated experimental settings (e.g [6, 8]), none of them point
out the existence of the second bifurcation point a the resumed flat state of the
film. Regarding that lack of observation it is worthy to point out, that even a simple
experimental arrangement reproduces the anticipated behavior in a reliable manner
due to the well-chosen material and the prestressing. Our findings also point up that
the adjustment of the material properties during the first extension requires either
extra care from the experimental side or an elaborated model is needed for proper
understanding. To the best of our knowledge, this issue is completely overlooked
in the literature of thin films.

The paper is organized as follows: to avoid superfluous repetitions we summarize
the key findings of [12] about the finite strain extension of the Föppl-von Kármán
theory in Section 2 and also provide an extension of the model for orthotropic
materials. In the following section we investigate our problem applying a viewpoint
close to tension-field theory. Section 4 is devoted to the experimental setup and
the detailed description of the performed measurements. In Section 5 comparison
between numerical and experimental data is presented, finally we draw conclusions
in Section 6.

2. A model of thin orthotropic plates under finite in-plane strains

We investigate static equilibrium configurations of a thin plate with a constant
thickness h occupying a closed domain Ω in R3. The plate is made of a homogeneous
material. We use a fixed, orthonormal basis {g1,g2,g3}, g1 and g2 span the plane
of the film in the reference configuration (Fig. 1). Let us denote the width and
the length of the unloaded film by W and L, respectively. The aspect ratio of the
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domain is defined as

(1) β =
L

2W
.

Figure 1. The laterally contracted, stretched thin film under ε
stretch. Two opposite sides (i = 1, 2) of the rectangular domain
are clamped, the other two are free. The boundary of the domain
in the reference configuration with length L and widthW is dashed.

During the deformation the normals of the mid-surface in the reference configu-
ration are mapped to the normals of the deformed mid-surface. Furthermore, only
the coupling between the bending and in-plane strains is considered as a (geomet-
rically) non-linear effect. These assumptions enable one to uniquely describe the
deformation of the plate by displacements of its middle surface. The u : Ω → R3

displacement field is given by

(2) u =

u(x, y)
v(x, y)
w(x, y)

 ,
where the in-plane displacements u(x, y) and v(x, y) and the out-of-plane defor-
mation w(x, y) are suitably continuously differentiable functions. In the classical
Föppl-von Kármán theory the Ψ(u) strain energy density of the plate is given as
the sum of the energy densities associated with the in-plane deformation (Ψm(e))
and bending (Ψb(k)):

(3) Ψ(u) = Ψm(e) + Ψb(k),

where e denotes the in-plane strain tensor established by truncating the length-
change of an infinitesimal segment in the mid-surface. Furthermore k is the lin-
earized bending strain tensor. Using subscripts to denote partial derivatives the



DISAPPEARANCE OF STRETCH-INDUCED WRINKLES... 5

linearized strain tensors are formulated as

e(u) =
1

2

[
2ux + w2

x uy + vx + wxwy

uy + vx + wxwy 2vy + w2
y

]
,(4)

k̂(u) = −
[
wxx wxy

wxy wyy

]
z = −k(u)z.(5)

For isotropic materials with a Y modulus of elasticity and ν Poisson ratio (0 <
ν < 0.5) the theory can be interpreted as a two dimensional approximation of a
three dimensional theory [26] for the Saint-Venant Kirchhoff material:

Ψm =
Y h

2(1− ν2)

[
ν(Tr e)2 + (1− ν)e · e

]
,(6)

Ψb =
Y h3

24(1− ν2)

[
ν(Trk)2 + (1− ν)k · k

]
.(7)

We assume a plane-stress problem (i.e. the surfaces of the plate are stress-free)
and investigate hard-loading problems, i.e. along subsets ∂Ωi ⊂ ∂Ω, (i > 0) the
displacement is prescribed as

(8) ui = εu0,i = ε

u0,i

v0,i

0

 ,
where u0,i and v0,i are given, sufficiently differentiable functions and the scalar
ε is the load parameter. In our case i = {1, 2} with u0,1(−L/2, y) = −L/2,
u0,2(L/2, y) = L/2 and v0,1(−L/2, y) = v0,2(L/2, y) = 0 (Fig. 1). Assuming
no other external loads the I(u) potential energy of the system is simply

(9) I(u) =

∫
Ω

ΨdΩ.

We seek solutions that minimize the functional in (9) subject to the boundary
conditions (8). Extension of the model to the finite strain regime is carried out by
using the

(10) E(u) =

1

2

[
2ux + u2

x + v2
x + w2

x uy + vx + uxuy + vxvy + wxwy

uy + vx + uxuy + vxvy + wxwy 2vy + u2
y + v2

y + w2
y

]
Green-Lagrangian strain tensor instead of the truncated strain tensor e in eq. (6).
The energy density is obtained as

(11) Ψ(u) = Ψm(E) + Ψb(k).

For details and mathematical justification of this (not straightforward) substitution
we refer to the above citepd paper[12]. The first variations of (9) with respect to
the components of the displacement-field u deliver the equilibrium (Euler-Lagrange)
equations:

∇ · [(I + g1 ⊗∇u+ g2 ⊗∇v)N] = 0,(12)

h2∆2w −∇ · (N∇w) = 0,(13)

where I is the (2 × 2) unit tensor and ∆(.) and ∆2(.) denote the Laplace and
biharmonic operators, respectively. The stress tensor denoted by N in the equilib-
rium equations is the second Piola-Kirchhoff stress associated with the membrane
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behavior, in specific:

(14) N =
dψm

dE
=

Y h

(1− ν2)
[ν Tr(E)I + (1− ν)E] .

The potential energy functional for films made of orthotropic material is ob-
tained in a similar manner to the isotropic case [18]. We assume that the principal
directions of the material orthotropy are being aligned with the x and y coordi-
nate axes. Let Y0 and Y90 denote the moduli of elasticity in directions x and y,
respectively. We define the ratio

(15) r =
Y90

Y0

to denote the degree of orthotropy. Furthermore, symmetry conditions on the elastic
stiffness tensor imply that the Poisson ratios in the two principal directions fulfill
ν[xy] = rν[yx] [13]. We express the shear modulus µ as

(16) µ = qY0,

with q being a positive scalar. Let us write the fourth order material elastic stiffness
tensor C of a two dimensional, orthotropic medium in the following way:

(17) C =
Y0

1− rν2
[xy]

C̃,

where the nonzero elements of the fourth order tensor C̃ solely depend on the non-

dimensional material parameters: C̃1111 = 1, C̃1122 = C̃2211 = rν[xy], C̃2222 = r

and finally C̃1212 = q(rν2
[xy] − 1). To obtain the energy densities Ψm and Ψb for

orthotropic films we use the linearized bending tensor (5), the finite strain in-plane
tensor from (10) and integrate through the thickness of the film:

Ψm(E) =
1

2

∫ h/2

−h/2

{E ·C ·E} dz =
1

2

Y0h

1− rν2
[xy]

E · C̃ ·E,(18)

Ψb(k) =
1

2

∫ h/2

−h/2

{k ·C · k} dz =
1

24

Y0h
3

1− rν2
[xy]

k · C̃ · k.(19)

The potential energy of the enitre domain follows by substituting (18) and (19)
into eq.(11). After rescaling (i.e. multiplying by 24(1 − rν2

[xy])/(Y0h
3)) and intro-

ducing κ = h−2 we obtain the energy functional

I(u) =

∫
Ω

{Ψm(E) + Ψb(k)} dΩ

=

∫
Ω

{
12κE · C̃ ·E + k · C̃ · k

}
dΩ.

(20)

The second Piola-Kirchhoff stress tensor arising from membrane strains can be
formulated as

(21) N =
dψm

dE
= 12

[
E11 + rν[xy]E22 2q(1− rν2

[xy])E12

2q(1− rν2
[xy])E12 rE22 + rν[xy]E11

]
.

Nevertheless, for r = 1 and q = 0.5(1+ν)−1 this is identical to the rescaled version of
the isotropic case from eq.(14). The Euler-Lagrange equations associated with the
energy functional in (20) are formally identical to equations (12-13), nevertheless
the stress N is given by (21) in this case.
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The applied numerical scheme (in fact, a Ritz method) aims to approximate
the minima of the functional (20) subject to the boundary conditions in eq.(8) by
finite element discretization. Observe, that the material parameters involved in the
problem are the dimensionless r, q and ν[xy]. We use a regular rectangular mesh to
establish the finite elements [23] with the usual C0 basis functions to approximate
u and v and C1 basis functions for w. Each internal node of the discretization
represents six unknowns. The compiled system of nonlinear algebraic equations are
the discretized Euler-Lagrange equations associated with eq.(20).

To investigate stable, wrinkled solutions along non-trivial equilibrium branches
classical arch-length continuation is a perfect numerical tool [12]. Since in our
work we target to show that planar solutions along the trivial equilibrium branch
regain stability the investigation of the trivial solution is sufficient. We aim to
demonstrate that for sufficiently large, fixed β there exist 0 < εcr,1 < εcr,2 < ∞
such that the trivial branch is unstable iff εcr,1 < ε < εcr,2 and it is stable otherwise.
To reach our goal we evaluate the minimal eigenvalue λmin of the Jacobian (i.e. the
second variation of the discrete approximation of functional (20), as it is usual for
Ritz methods) at solutions along the trivial equilibrium path. The trivial, planar
(w ≡ 0) solution is unstable for λmin < 0, otherwise it is considered to be stable.
In case we needed to pick up a solution from the non-trivial branch we fixed all the
parameters in the problem, applied a random perturbation for the trivial, planar
solution and used Broyden’s method to detect a wrinkled solution.

3. Investigation of the parameter space: a stress analysis

For given material parameters (i.e. r, q and ν is fixed) our problem consists
of three bifurcation parameters: the h thickness of the film, the β aspect ratio of
the domain and the applied stretch ε. The already citepd paper [12] presents a
lemma, which leads to the conclusion, that a necessary condition for a bifurcation
from the trivial, planar state (i.e. w 6= 0 for some (x, y) ∈ Ω) is the violation of the
non-negativity of the second Piola-Kirchhoff stress tensor computed for the trivial
solution (w ≡ 0). This statement remains valid for an orthotropic material. For a
planar solution the left-hand side of (13) is identically zero for any h and N, thus
the solution of (12) is independent of the film thickness. We arrive at the conclusion
that the negativity of N (computed for a trivial solution) can be used to determine
a point-set of possible bifurcation points in the β-ε quarter for any positive values
of h.

Negativity of the stress tensor marks the admissible locations of the two bifur-
cation points εcr,1 and εcr,2 in the parameter space (Fig. 2). This approach reveals
several, so far unrevealed facts: in the ε direction as ε → ∞ the stress tensor be-
comes positive, which means that even in case h→ 0 the εcr,2 value for the second
bifurcation point (this is the one, where the trivial solution regains stability) re-
mains finite. This observation is not purely numerical: let us consider our governing
equations for a given domain (i.e. β is fixed) with an arbitrary large stretch. To
make our boundary value problem homogeneous we apply the following change of
variables:

(22) u(x, y) = εx+ ū(x, y).
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Substituting (22) into the Green-Lagrangian strain tensor in eq. (10) and using
eq. (21) the two components of the (12) equilibrium equation can be arranged as
follows: (

18ūxx + 6rνūyy − 12qrν2ūyy + 12qūyy
)
ε2+

+f1 (.) ε+ g1 (.) = 0,
(23)

(24) (6vxx + 6rνvyy) ε2 + f2 (.) ε+ g2 (.) = 0,

where f1(.), f2(.), g1(.) and g2(.) all depend on the first and second partial deriva-
tives of ū and v. Division of both equations by ε2 and letting ε→∞ leads to two,
uncoupled equations:(

18ūxx + 6rνūyy − 12qrν2ūyy + 12qūyy
)

= 0,(25)

(6vxx + 6rνvyy) = 0.(26)

Taking into account the boundary conditions of the clamped sheet and the re-
flectional symmetry along the coordinate axes (ū = 0 along x = 0 and v = 0 along
y = 0) solutions of the PDEs in (25) and (26) can be written in a closed form:

ū(x, y) = 2b cosh (ay) sin

(
a

√
6q − 6qrν2 + 3rνx

3

)
,(27)

v(x, y) = −2c sinh (dy) cos
(
d
√
rνx

)
,(28)

where a, b, c and d are appropriate real numbers. In specific, a and d should be
chosen to fulfill the boundary conditions along the clamped sides. Since none of
these constants are O(ε) from eqs. (10) and (21) we obtain:

(29) lim
ε→∞

1

ε2
N = 6

[
1 0
0 rν

]
> 0.

Computation of the negative eigenvalue of the stress tensor revealed, that at a
fixed finite stretch the negative eigenvalue persists for arbitrary high values of β
(Fig. 2 a)); however, the maximal compressive stress gradually decreases as β
tends to infinity. In other words elongated, flat sheets are sensitive in material
and geometrical imperfections as compression is presented to advocate wrinkling,
hence bending rigidity need to be sufficient to obstacle it. In Figure 2 we present
computational results for three different degrees of orthotropy: the middle column
belongs to the isotropic material, the left column is plotted for a small orthotropy
typical for the unloaded polyurethane sheet and the right column shows the results
for a highly orthotropic material (i.e. the polyurethane sheet after prestressing).
As we mentioned, negativity of N is necessary, but not sufficient condition to have
a bifurcation from the trivial solution. For fixed values of h we also computed the
closed curves of bifurcation points (Fig. 2 c)), nevertheless, these non-intersecting
curves are shrinking as h is increased and over a critical thickness there is no
wrinkling at all.

4. Experimental

The experimental investigation of wrinkling is not straightforward: the realiza-
tion of the idealized boundary conditions and application of the proper loading
might call for a special, unique equipment [16, 10]. As our case is very close to a
traditional pulling test and we model a displacement controlled process, a direct
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measurement of the stresses along the clamped boundary of the film is not necessary.
Hence we determined the material properties separately and examined wrinkling
with a simple machine equipped with a servo engine. The speed of the extension
was fixed at 120 mm/min in all tests done with this machine. The occurrence and
disappearance of the wrinkles were observed visually, in addition we photographed
the specimen in small-angle lighting [10] (Fig. 3) and recorded videos (provided as
supplementary data). Visual observation does not provide an exact critical stretch
at disappearance (εcr,2). We determined ε21, at which the wrinkles were definitely
visible and a ε22 with a visibly plane specimen without any shades. Of course, we
expect ε21 < εcr,2 < ε22. More accurate observation technologies (e.g. optical mea-
suring or scanning the middle section of the specimen) would close the gap between
the measured lower and upper bounds. We took ε2 = 0.5(ε21 + ε22).

a) ε = 0.00

b) ε = 0.04

c) ε = 0.13

d) ε = 0.22

Figure 3. Increasing of the stretch leads to the disappearance of
wrinkles. L = 50 mm, W = 25 mm, β = 1.

There is a huge range of elastomer films available. We tested several products
used as health-care tapes and carried out our experiments on Hydrofilm Roll man-
ufactured by Paul Hartmann AG. The used sheets have a 20 µm nominal thickness
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and they are covered by an adhesive layer on one side. As it is typical among poly-
mers [15], the unloaded material is slightly orthotropic due to the manufacturing
process. In addition, as we already pointed out, the first extension (let us call it
prestressing) results in a significant change in the material properties.

Before prestressing
Y0 48.45 N/mm2

Y90 37.75 N/mm2

Y45 44.23 N/mm2

G 17.41 N/mm2

r 0.78
q 0.36
ν 0.3

After prestressing
Y0 15.36 N/mm2

Y90 27.69 N/mm2

Y45 28.66 N/mm2

G 14.55 N/mm2

r 1.80
q 0.94
ν 0.3

Table 1. Material parameters measured before and after pre-
stressing. Observe the remarkable shift in the degree of orthotropy.
The measured values used to compute the material parameters are
provided as supplementary data (MaterialParameters.pdf).

The following loading cycles turned out to have negligible further effect on the
material features, up to 8-10 loading cycles the material can be regarded as hyper-
elastic, what is more, it is rather close to be linear elastic. We fixed the applied
ε = 0.66 prestretch in all measurements and experiments, since we expected the
wrinkles to disappear below this threshold.

The material properties were determined for both the unloaded and the pre-
stressed material in three test series. In the first series we used a Zwick Z150 ma-
terial testing machine equipped with special grips (type: Zwick 9103 10) developed
for technical membranes. The testing machine detected the force-displacement dia-
gram during the displacement controlled pull test in 0.01 mm steps. In all series we
measured 5 specimens with a width of W = 30 mm and length of L = 25 mm cut
out parallel, in 45 degrees and perpendicular to the long direction. Results of these
three directions provided all the needed material parameters (Y0, Y45, Y90, ν[xy], r,
q) [17, 3]. In the second and third test series (let us call them control tests) we used
a Zwick Z020 material testing machine and a videoextensometer (Messphysik ME
46 full image videoextensometer), and determined the force-displacement diagram
in 0.002 mm intervals. The three testing series resulted in very close outcomes and
the variation of the material parameters were also low. The best fit for the mea-
sured data for the unloaded material resulted in r = 0.78 and q = 0.36, while for
the prestressed case the strong direction of orthotropy interchanged as we measured
r = 1.80 and q = 0.94 with negligible change in the Poisson ratio ν = ν[xy] (Table
1).

5. Results and discussion

As we pointed out, disappearance of wrinkling of stretched films were predicted
based on numerical simulations [12]. Some other numerical studies [21] also point
to such a phenomenon. On the other hand, experimental works lack to confirm
this prediction. Our experiments clearly demonstrated, that in accordance with
the prediction, wrinkles disappear over a critical stretch. Thermoplastic polymers
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Figure 4. Comparison of numerical simulations against experi-
mental data. The dot dashed line set out the border for negative
PK stress (as it is given in Fig. 2). Numerical values for the εcr,2
critical points at which wrinkles disappear are plotted with solid
lines for several thickness values. The dashed line stands for the
experimental result, observe the good agreement between the mean
of the experiments and the computed results for h = 40 µm. The
measured values are provided as supplementary data (Mea-
sured.pdf).

(such as polyethylene and polypropylene) used in the experimental works are infe-
rior choices for such a verification due to their dominantly plastic behavior. In spite
of this difficulty, in our earlier work [7] we reported about disappearance of wrin-
kling in experiments with polypropylene sheets. That was a qualitative agreement,
a quantitative comparison would be meaningful against simulations of plastic con-
stitutive relations. Such a relation has been published recently [21], however that
work completely lacks the investigation of emerging orthotropy during the loading
process. This change in the orthotropy parameters is so significant that for some
aspect ratios no wrinkling appears at all during the first extension of the specimen,
but in the successive cycles it forms repeatedly (watch the video file provided as
supplementary data). This observation also supports our methodology, namely,
that we carry out our investigation on prestressed elastomers. After prestressing
the material is close to be linear elastic, thus in this case quantitative comparison
against numerical simulations is possible.

For numerical simulations we used the average of the measured material pa-
rameters mentioned at the end of the previous section. Before prestress the free
distance between the clamped ends was adjusted to 50 mm. During the prestress
approximately 3 mm plastic (unrecoverable) extension of the film was observable
(regardless of the width of the film), thus to keep consistence with the experiments
in the numerical simulations we took L = 53 mm into account. Since the thickness
of the film contains some uncertainty due to the presence of the adhesive layer we
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plotted the numerical results for a reasonable range (Fig. 4). While numerical
results for h = 20 µm exceeds the curve of the experimental results, then the graph
for h = 60 µm is completely inside the curve of the measurements, the agreement
with h = 40 µm is convincing. For such a high degree of orthotropy the first bi-
furcation point (appearance of wrinkles, εcr,1) is located very close to ε = 0 (see
Fig. 2). These points are omitted from Fig. 4, but the very rapid appearance of
wrinkles in the experiments is in accordance with the simulations. As we mentioned
earlier, higher values of β are considered to be more imperfection sensitive, which
is also confirmed by our experiments: observe the increasing variation between
0.8 < β < 1.2. It also explains the slightly worse accordance between numerical
and experimental data around β = 1.2.

As we pointed out in Section 3, compression vanishes for high values of the
stretch, but not for high values of the aspect ratios. Elongated sheets (in the trivial,
planar state) with β > 1.56 exhibited two, disjoint sets of compressed regions (Fig.
5) in the simulations. Observe that for instance at β = 3.25 and h = 0.15 µm the
compressed regions are disjoint for the stretch values at which the planar solution is
unstable (0.05 < ε < 0.39, Fig. 5 a)). Due to the disjoint sets of compressed points
in the trivial solution we expected complicated wrinkled patterns for very thin and
long, elongated sheets. We present such a solution in the b) and c) parts of Fig.
5. Observe, that there are two, well separated, highly wrinkled zones formed both
in the simulation and the experiment. These finding are in good agreement with
numerically predicted arrangement of wrinkles for such a high aspect ratio [14].

6. Conclusions

In our paper we reported about successful experiments to validate a prediction
of the Föppl-von Kármán theory extended to finite in-plane strains namely the dis-
appearance of the wrinkled pattern of clamped, thin sheets under uniform tension.
Our work not only provide experimental proof about the second bifurcation point
along the trivial equilibrium path, at which the planar solution regains stability,
but it also confirms that the aspect ratio of the rectangular domain significantly
affects the location of the bifurcation points. Our findings support the numerically
predicted isola-center bifurcation in the finite strain model.

To cope with the difficulty of the substantial stretch needed for wrinkled pat-
terns we applied prestress on a well-chosen elastomer (polyurethane) to gain an
essentially linearly elastic material behavior. A significant orthotropy emerges dur-
ing prestressing, according to this observation we extended the originally isotropic
model to orthotropic films. Numerical computations based on the orthotropic con-
stitutive behaviour agree well with the experimental results as long as plastic effects
are negligible.

In this paper we focused on incorporation of a realistic, but in the same time
uncomplicated constitutive law into a geometrically nonlinear model. It suggests
a problem for further research, namely the application of wrinkled patterns to
draw conclusions about the constitutive law of the material (in specific about the
degree of orthotropy) as well as incorporating the adjustment of the material during
the prestress via some well-chosen damage propagation approach, for instance the
Mullins-effect.
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Figure 5. For high aspect ratios at the bifurcation points the
compressed zones are disconnected. a) At a fixed domain (W =
20 mm, L = 130 mm, β = 3.25, h = 15 µm polyurethane film) the
two bifurcation points are located at εcr,1 ≈ 0.05 and εcr,2 ≈ 0.39
Observe the fusion of compressed zones as the stretch is increased,
b) A computed wrinkled solution at ε = 0.15 (denoted by black dot
in the λmin− ε graph), c) experimental evidence for the computed
arrangement of wrinkles at ε = 0.15.
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