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Abstract Alien introgression breeding is an attractive approach to recover genetic 
variation that was lost during wheat domestication and breeding. New alleles 
and genes may be introduced from wild relatives from the tribe Triticeae, which 
exhibit large genetic variation and many potentially useful traits. Although a 
range of wheat–alien introgression lines has been developed, apart from the 
1BL.1RS translocation, only a few commercial wheat cultivars benefitted 
from alien introgression. This is a consequence of poor knowledge of genome 
structure of wild donors, limited ability to control chromosome behavior 
during meiosis in interspecific hybrids and introgression lines, difficulties 
in eliminating unwanted chromatin transferred simultaneously with genes 
of interest, as well as a lack of tools permitting large-scale production and 
characterization of introgression lines. Recent advances in molecular and flow 
cytogenetics and genomics are bound to change the situation. New insights 
into the meiotic recombination raise the hopes for the ability to control its 
frequency and distribution. The progress in comparative genome analysis 
provides clues about the genome collinearity between wild species and 
wheat, making it possible to assess chances for chromosome recombination 
and predict its outcomes. Genomics tools enable massive and high-resolution 
screening of hybrids and their progenies and characterize their genomes, 
including the development of markers linked to traits of interest. Until recently, 
little attention has been paid to the function of introgressed genes and their 
interaction with the host genome. However, also this has been changing and all 
these achievements make the breeding of improved wheat cultivars using wild 
germplasm a realistic goal.
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Chapter 13
Genomics of Wild Relatives and Alien 
Introgressions

Elodie Rey, István Molnár, and Jaroslav Doležel

13.1  �Introduction

As one of the most important staple food crops, bread wheat (Triticum aestivum, L.) 
continues to play a major role in ensuring global food security. The growing human 
population is estimated to reach nine billion by 2050, and in order to meet the 
expected demand, the annual yield increase of wheat should reach 2 %. This is a 
great challenge, as climate change and land degradation act against this endeavor. 
Apart from improved agronomic practice and reduction of postharvest losses, the 
key elements will be new varieties with increased resistance to diseases and pests, 
adverse environmental conditions, and with improved yield.

According to the most widely accepted scenario, bread wheat (2n = 6x = 42, 
BBAADD genome) arose about 8000 years ago when a cultivated form of tetraploid 
Triticum turgidum (2n = 4x = 28, BBAA genome) migrated to south of the Caspian 
Sea and in the area of Fertile Crescent crossed with a wild diploid grass Aegilops 
tauschii Coss. (2n = 2x = 14, DD genome). The union of unreduced gametes, or 
somatic chromosome doubling in the hybrid (Feuillet et al. 2008), resulted in a new 
allohexaploid species. The genetic diversity of bread wheat was restricted at the onset 
of its origin by the limited diversity of parental populations and was eroded subse-
quently during domestication and thousands years of cultivation and breeding.

One option to recover the useful variation that was lost and to acquire new and 
valuable genes and alleles is to utilize wild relatives of wheat, which were not 
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subjected to human selection, and thus represent a rich source of diversity. The tribe 
Triticeae comprises wild annual and perennial species related to wheat, facilitating 
the production of interspecific hybrids. The efforts to use this approach date back 
140 years, and the first experiments at the end of nineteenth century and beginning 
of twentieth century involved hybridization between wheat and rye (Wilson 1876), 
wheat and barley (Farrer 1904), and between wheat and Aegilops (Kihara 1937). 
However, larger-scale production of interspecific hybrids was delayed until the 
introduction of colchicine treatment in 1930s (Blakeslee 1937), allowing the pro-
duction of fertile amphiploids by doubling chromosome number in otherwise sterile 
hybrids. Among other, this provided a way to develop triticale as a new cereal crop 
(Meurant 1982). With the advances in hybridization techniques (Kruse 1973) and 
establishment of in vitro embryo rescue methodology (Murashige and Skoog 1962), 
wide hybridization became more accessible, and the experiments involved a larger 
group of wild and cultivated wheat relatives (Mujeeb-Kazi 1995).

An extensively used approach to utilize wild germplasm in wheat breeding has 
been the production of synthetic hexaploid wheat by hybridizing tetraploid durum 
wheat (T. turgidum ssp. durum (Desf.) Husn.) (2n = 4x = 28; BBAA genome) with Ae. 
tauschii. Both synthetic hexaploid and bread wheat have the same genomic constitu-
tion and therefore can be readily hybridized to transfer novel alleles and genes from 
different accessions of the D-genome progenitor. This strategy has been employed at 
CIMMYT where more than 1000 synthetic wheats were created (del Blanco et al. 
2001; Warburton et al. 2006; van Ginkel and Ogbonnaya 2008; Li et al. 2014).

Genetic diversity suitable for wheat improvement is not limited to Ae. tauschii, 
and over the years, a range of interspecific hybrids, chromosome addition and trans-
location lines were obtained between perennial and annual Triticeae species and 
bread wheat (Mujeeb-Kazi 1995; Friebe et al. 1996; Schneider et al. 2008; Molnár-
Láng et al. 2014). Probably the best example of a successful wheat–alien introgres-
sion has been the spontaneous 1BL.1RS chromosome translocation (Mujeeb-Kazi 
1995). It was estimated that between 1991 and 1995, 45 % of 505 commercial cul-
tivars of bread wheat in 17 countries carried 1BL.1RS translocation, which confers 
increased grain yield by providing race-specific disease resistance to major rust 
diseases (including Lr29/Yr26 leaf and yellow rust resistance genes), improved 
adaptation and stress tolerance, superior aerial biomass, and higher kernel weight 
(Rabinovich 1998; Feuillet et al. 2008; Zarco-Hernandez et al. 2005). However, too 
few other alien introgressions into wheat made their way to agricultural practice.

This chapter reviews the progress in characterizing nuclear genomes of wild 
relatives of wheat and wheat–alien introgression lines at chromosomal and DNA 
levels, and the potential of these approaches to support wheat–alien introgression 
breeding. After introducing the diversity of wild relatives of wheat and the difficul-
ties of the introgression breeding, methods of cytogenetics and genomics are out-
lined and examples of their uses are given. The need for better understanding the 
mechanisms controlling chromosome behavior and for better knowledge of genome 
structure of wild relatives is explained. The last part of the chapter is devoted to the 
interaction of the introgressed chromatin with the host wheat genome. This research 
area has been poorly developed so far, and the lack of information may hamper the 
attempts to develop improved cultivars of wheat with alien introgressions.
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13.2  �Wild Relatives of Wheat and Difficulties with Alien 
Introgression

The tribe Triticeae comprises a group of species belonging to the Poaceae grass 
family commonly named Gramineae. In addition to economically important bread 
wheat (T. aestivum L.), durum wheat (T. turgidum ssp. durum), barley (Hordeum 
vulgare L.), and rye (Secale cereale L.), the tribe comprises over 500 wild and 
cultivated species of genera Aegilops, Agropyron, Ambylopyrum, Anthosachne, 
Campeiostachys, Dasypyrum, Elymus, Hordeum, Leymus, Lophopyrum, 
Psathyrostachys, Pseudoroegneria, Secale, Thinopyrum, and Triticum.

The Triticeae species exhibit a large diversity in terms of geographical distribu-
tion, environmental requirements, and agronomically interesting traits. The latter 
include increased yield (Reynolds et  al. 2001), resistance to pests and diseases 
(Friebe et al. 1996), early maturity (Koba et al. 1997), drought tolerance (Fatih 1983; 
Molnár et al. 2004; Dulai et al. 2014), salt tolerance (Fatih 1983; Dulai et al. 2010; 
Darkó et al. 2015), micronutrient content and efficiency (Schlegel et al. 1998, Farkas 
et  al. 2014), lodging resistance (Chen et  al. 2012), heat tolerance (Pradhan and 
Prasad 2015), high dietary fibre content (Cseh et al. 2011), and high protein content 
(Pace et al. 2001). Donors for these traits have been identified and some of the traits 
have been transferred to wheat (Gill et al. 2011). Some of the genes responsible for 
the traits have been tagged, and a few of them were even cloned (Feuillet et al. 2008; 
Hajjar and Hodgkin 2007; Jiang et al. 1993). However, the degree of genetic and 
genomic characterization of wild Triticeae species is highly variable and uneven.

Although the potential of wild relatives for wheat improvement has been recognized 
since a long time, the available genetic diversity remains largely underexploited. In 
order to utilize its full potential, it is important to understand genome organization in 
wild wheat relatives, increase the number of genome-specific molecular tools and iden-
tify loci underlying traits of interest (Hajjar and Hodgkin 2007). The poor knowledge 
on genome structure of Triticeae species and the lack of high resolution genetic maps 
hampers identification of genes underlying important traits, identification of unwanted 
sequences and their elimination using suitable large-scale screening platforms.

Elimination of unwanted alleles may be challenging due to low level of recom-
bination between chromosomes of wild relatives and wheat. Two principal 
approaches have been developed to overcome this hindrance. The first is based on 
decreasing the effect of Ph1 locus by the use of wheat genotypes ph1b or PhI (Riley 
and Chapman 1958; Griffiths et al. 2006), which promotes recombination between 
homoeologous wheat and alien chromosomes. The second approach involves 
induction of donor chromosome breakage by ionizing irradiation, or gametocidal 
chromosomes (Jiang et al. 1993) to stimulate insertion of alien chromosome frag-
ments into wheat chromosomes.

Evolutionary chromosome rearrangements broke down the collinearity between 
the homoeologous wheat and alien chromosomes (Devos and Gale 1993). As a con-
sequence, genes on alien chromosome segments may not compensate for the loss of 
wheat genes. This may negatively affect agricultural performance of the wheat–alien 
introgression lines and represents another obstacle in using wheat–alien translocations 
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in breeding. Little is known about different levels of interaction between the host 
genome and the alien chromatin, which may lead to unexpected and even undesir-
able effects. Insertion of alien chromosome segment may interfere with functionality 
of the host genome at genomic, epigenomic, transcriptomic and proteomic levels, 
and may explain the failure of some introgressed genes to function in the host back-
ground, although their sequences remained intact after the introgression.

13.3  �Tools to Support Alien Introgression in Wheat

13.3.1  �Cytogenetics Techniques

The development of alien chromosome addition and translocation lines and their 
characterization greatly profits from the ability to identify chromosomes involved. 
Originally, the repertoire of selection methods was limited to cytological techniques 
that visualize mitotic and meiotic chromosomes. When Sears (1956) transferred 
leaf rust resistance from Ae. umbellulata to wheat, cytological characterization of 
the wheat—Ae. umbellulata addition line was limited to microscopic observation 
of mitotic chromosomes in root tips, and the translocation event was identified 
based on the leaf rust-resistance phenotype (Sears 1956). The advent of chromo-
some banding techniques such as Giemsa C-banding (Gill and Kimber 1974), 
permitted description of genomic constitution in interspecific hybrids, identification 
of alien chromosomes and characterization of translocations at subchromosomal 
level. C-banding was particularly effective in characterizing wheat–rye transloca-
tions because of diagnostic terminal bands of rye chromosomes (Lukaszewski and 
Gustafson 1983; Lapitan et al. 1984; Friebe and Larter 1988). However, it has been 
less useful if chromosomal segments of interest lacked diagnostic bands.

Introduction of techniques for in situ hybridization further stimulated the devel-
opment and characterization of alien introgression lines. Following the pioneering 
work of Rayburn and Gill (1985), fluorescence in situ hybridization (FISH) was 
developed in wheat (Yamamoto and Mukai 1989). The potential of FISH to identify 
chromosomes and their segments depends on the availability of suitable probes. The 
most popular probes included the pAs1 repeat (Rayburn and Gill 1985; Nagaki et al. 
1995), which permits identification of D-genome chromosomes, the rye subtelomeric 
repeat pSc119.2 (Bedbrook et al. 1980), which is useful to identify B-genome chro-
mosomes, and pTa71 DNA clone (Gerlach and Bedbrook 1979), which identifies 
nucleolus organizing regions on satellite chromosomes. FISH with these probes 
discriminates the whole set of D- and B-genome chromosomes and, depending on 
the quality of hybridization, partially or completely the A-genome chromosomes of 
bread wheat. The same set of DNA probes has been applied to examine genetic 
diversity and construct karyotypes of wild species in Aegilops (Badaeva et  al. 
1996a, 1996b), Agropyron (Linc et al. 2012), and Hordeum (de Bustos et al. 1996; 
Szakács et al. 2013;), and to identify their chromosomes introgressed into wheat 
(Molnár et al. 2009; Sepsi et al. 2008; Nagy et al. 2002, Molnár-Láng et al. 2012) 
(see Figs. 13.1 and 13.2)
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Fig. 13.1  Molecular cytogenetic identification of mitotic metaphase chromosomes in (a) T. aesti-
vum cv. Chinese Spring (2n = 6x = 42; BBAADD); (b) Ae. biuncialis MvGB382 (2n = 4x = 28; 
UbUbMbMb); (c) Ae. uniaristata JIC2120001 (2n = 2x = 14; NN); (d) Ae. comosa MvGB1039 
(2n = 2x = 14; MM); and (e) Ae. umbellulata AE740/03 (2n = 2x = 14; UU). Fluorescence in situ 
hybridization (FISH) was done using repetitive DNA probes for Afa family repeat (red), pSc119.2 
repeat (green) and pTa71 repeat (yellow) and allowed identification of all chromosomes in the 
karyotypes. Scale bar = 10 μm

13  Genomics of Wild Relatives and Alien Introgressions



Characteristic FISH labeling patterns of HvT01 tandem repeat (Schubert et al. 
1998), and the Triticeae-specific AT-rich tandem repeat pHvMWG2315 (Busch 
et al. 1995), permitted identification of all chromosomes in barley. In wheat genetic 
background, barley chromosomes could be discriminated with various combina-
tions of repetitive DNA probes (Szakács and Molnár-Láng 2007). In rye, FISH with 
the 120-bp repeat family pSc119.2 together with pTa71 or AAC repeats identifies 
the whole chromosome complement (McIntyre et al. 1990; Szakács and Molnár-
Láng 2008). In order to enrich chromosomes with diagnostic landmarks, microsat-
ellite trinucleotide repeats (GAA, AAC, ACG) were found useful in wheat, barley, 
and rye (Cuadrado et al. 2008) as well as in Aegilops (Molnár et al. 2011a) and 
Dasypyrum (Grosso et al. 2012).

Inserts from DNA libraries cloned in a BAC (Bacterial Artificial Chromosome) 
vector were also tested to identify new repetitive sequences (both dispersed and 
tandem types), and to develop locus-specific cytogenetic markers (Zhang et  al. 
2004a). FISH with BAC clones (BAC FISH) was shown useful to discriminate the 
three subgenomes in hexaploid wheat (Zhang et al. 2004b), and for physical mapping 
of a powdery mildew-resistance gene (Yang et al. 2013). Unfortunately, BAC FISH 
suffers from the presence of dispersed repetitive DNA sequences in BAC clones, 
which often prevent localization of BAC clones to single loci. A possible solution is 
to use short single-copy probes free of repeats (Karafiátová et al. 2013).

Danilova et al. (2014) used wheat cDNAs as probes for FISH to develop cytoge-
netic markers specific for single-copy genic loci in wheat. They localized several 
cDNA markers on each of the 14 homoeologous chromosome arms and studied chro-
mosome structure and homoeology in wild Triticeae species. The work revealed 

Fig. 13.2  Multicolor genomic in situ hybridization (mcGISH) using U- and M-genomic probes 
(a) and FISH with probes for DNA repeats (b) on mitotic metaphase chromosomes of a partial 
meristem root tip cell of wheat-Ae. biuncialis amphiploid plant. (a) McGISH allows discrimina-
tion of Ub genome (red color), Mb genome (green color), and wheat (brown color) chromosomes. 
(b) FISH with probes for pSc119.2 repeat (green color), Afa family repeat (red color), and pTa71 
repeat (yellow color) enables identification of all alien chromosomes in the wheat background. 
Scale bar = 10 μm
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1U-6U chromosome translocation in Ae. umbellulata, showed collinearity between 
the chromosome A of Ae. caudata and group-1 wheat chromosomes, and between 
chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the 
group-7 wheat chromosomes. A limitation inherent to performing FISH on con-
densed mitotic and meiotic chromosomes is the low spatial resolution. This can be 
improved by performing FISH on stretched mitotic chromosomes (Valárik et  al. 
2004), on extended DNA fibers (Fiber-FISH) (Jackson et al. 1998; Ersfeld 2004), and 
on hyper-expanded chromosomes obtained by flow cytometry (Endo et al. 2014).

Genomic in situ hybridization (GISH) uses genomic DNA as a probe 
(Schwarzacher et al. 1989) and permits determination of genomic constitution of 
allopolyploid Triticeae, and to detect alien chromatin introgressed into wheat. 
Combined with chromosome banding and/or FISH, the method allows location and 
identification of wheat–alien translocation breakpoints (Friebe et  al. 1992, 1993; 
Jiang et  al. 1993; Molnár-Láng et  al. 2000, 2005; Liu et  al. 2010; Kruppa et  al. 
2013). While cytogenetic methods are irreplaceable to verify genomic constitution 
in interspecific hybrids, the limited sensitivity and spatial resolution, and especially 
their laborious and time consuming nature seriously limit their suitability for large 
scale selection of wheat–alien introgressions. High-resolution and high-throughput 
methods are needed to increase the screening capacity and to identify micro-
introgressions and chromosome breakpoints. These include the use of DNA mark-
ers and, more recently, DNA sequencing.

13.3.2  �Molecular Markers

Morphological, isozyme, and seed storage protein markers were the first markers 
used in wheat–alien introgression breeding to identify and characterize alien chro-
mosome addition lines (Guadagnuolo et al. 2001; Hart et al. 1980; Tang and Hart 
1975). Because of their limited number, they were not suitable to reveal chromo-
somal rearrangements.

The restriction fragment length polymorphisms (RFLPs), random amplified 
polymorphic DNA (RAPD) (Williams et al. 1990), and amplified fragment length 
polymorphism (AFLP) (Vos et al. 1995), were the first DNA markers used to char-
acterize wheat–alien introgression lines (Fedak 1999), since they do not require 
prior sequence information. They were used in a number of studies to identify chro-
mosome/chromosome-arm addition and substitution lines (Devos and Gale 1993; 
King et al. 1993; Hernández et al. 1996; Qi et al. 1996; Peil et al. 1998; Wang et al. 
1995; Francki et al. 1997; Qi et al. 1997). Despite their temporal popularity, the 
markers suffered from some drawbacks. Their application was time-consuming, 
often labor-intensive and expensive, and they were not appropriate for high-
throughput genotyping. Moreover, the low level of polymorphism revealed by 
RAPD markers, and low transferability/conversion of AFLP markers into STS 
markers, prevented the extensive use of these markers in wheat breeding (Gupta 
et al. 1999).
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RFLPs became the molecular markers of choice for some time due to their 
codominance and locus specificity (Qi et  al. 2007). Wheat RFLPs were used to 
develop high-resolution genetic and physical maps (Qi et al. 2004; Qi et al. 2003), 
characterize homoeology of alien chromosomes, and reveal their rearrangements 
relative to wheat (Devos et  al. 1993; Devos and Gale 1993; Zhang et  al. 1998; 
McArthur et al. 2012). RFLP markers identified cryptic alien introgressions where 
cytogenetic techniques failed (Yingshan et al. 2004), such as the T5DL.5DS-5MgS 
wheat-Ae. geniculata translocation conferring resistance to leaf rust and stripe rust 
(Kuraparthy et al. 2007). With the advances in molecular biology, informative but 
cumbersome to use RFLP markers were converted to PCR-based markers such as 
the sequence-tagged site (STS) markers, which were more suitable for tagging 
interesting genes (Cenci et al. 1999; Seyfarth et al. 1999; Langridge et al. 2001).

Transposable elements, randomly distributed in nuclear genomes have also been 
used as molecular markers (Queen et  al. 2003; Nagy and Lelley 2003). The 
sequence-specific amplified polymorphism (S-SAP) technology (Waugh et  al. 
1997) amplifies regions representing flanking genomic sequences of individual ret-
rotransposons. The advantages of S-SAP for studying genetic diversity are higher 
amount of accessible polymorphism (Waugh et  al. 1997), the markers are more 
evenly distributed throughout the genome (Nagy and Lelley 2003), and the esti-
mated genetic distances are more consistent with physical mapping (Ellis et  al. 
1998). Nagy et al. (2006) used the short interspersed nuclear element (SINE) Au 
identified in Ae. umbellulata (Yasui et al. 2001) to develop S-SAP markers specific 
for U- and M-genome chromosomes of Aegilops (Nagy et al. 2006).

Simple Sequence Repeat (SSR) markers (Tautz 1989), or microsatellite markers, 
were the next generation of molecular markers employed in wheat–alien introgres-
sion breeding. Efficient development of SSRs requires genomic sequence informa-
tion, and thus they were developed concomitantly with expressed sequence tags 
(ESTs), cDNA and BAC libraries. A list of genomic resources currently available 
for Triticeae is given in Table 13.1.

Together with cDNA libraries and draft genome sequences of barley, bread 
wheat, Ae. tauschii and T. urartu (Table 13.2), ESTs are currently the most abundant 
type of sequence information available for not less than 25 species from 15 Triticeae 
genera. The release of 16,000 EST loci mapped to chromosome deletion bins (Qi 
et al. 2004) provided excellent resource for development of markers from specific 
chromosome regions and helped designing locus-specific markers. Because of the 
genic and thus conserved nature of ESTs, EST-derived SSR markers are transfer-
able between Triticeae species (Gupta et al. 2008). As ESTs and cDNA resources 
are much less abundant in other Triticeae, e.g., Elymus, Aegilops and Leymus, 
numerous studies profited from the high transferability of wheat EST-derived SSR 
markers across distantly related species for comparative mapping, trait-marker 
associations and to carry out evolutionary studies to establish the phylogenetic rela-
tionships among the wild relatives of wheat and between them and bread wheat 
(Adonina et al. 2005; Jing et al. 2007; Kroupin et al. 2012).

The conserved orthologous set (COS) markers allowed identification of ortholo-
gous regions between wild species and wheat in order to facilitate alien gene-transfer 
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through a better characterization of the potentially recombining regions (Molnár 
et al. 2013). As the COS markers are PCR based and span exon–intron junctions, 
they are conserved enough to be transferrable across genera, while the intron 
sequences provide relatively high polymorphism that allows variants of genes to be 
discriminated (e.g., between species). Although these markers present interesting 
tools to support alien-wheat gene transfer, they remain underexploited in this area.

13.3.3  �High-Throughput Genotyping

Diversity Arrays Technology (DArT) markers were initially developed as micro-
array hybridization-based sequence-independent marker system, and allowed 
screening thousands of polymorphic loci in a single assay at low cost per data point 
(Jaccoud et  al. 2001). Among other, DArT markers were used to develop high-
density genetic map of wheat × wild emmer (Peleg et al. 2008). A new version of 
DArT marker technology (DArT-seq) is based on next-generation sequencing where 
the polymorphisms are genotyped by sequencing. Because of their advantages, 

Table 13.2  Whole genome sequencing projects in cereals

Species/cultivar
Genome 
size (1C) Sequence description Consortium/team

Oryza sativa ssp. 
Japonica

400–430 
Mbp

Pseudomolecule International Rice 
Genome Sequencing 
Project (2005)

Zea maize cv. B73 2.4 Gbp Pseudomolecule Schnable et al. (2009)

Sorghum bicolor  
cv Moench

750 Mbp Whole-genome draft 
assembly

Paterson et al. (2009)

Brachypodium 
distachyon inbread 
line Bd21

~355 Mbp Pseudomolecule The International 
Brachypodium Initiative 
(2010)

Hordeum vulgare  
cv Morex

~5.3 Gbp Whole-genome draft 
assembly

The International Barley 
Genome Sequencing 
Consortium (2012)

Aegilops tauschii 
ssp. strangulata 
accession AL8/78

4.02 Gbp Whole-genome draft 
assembly

Luo et al. (2013)

Triticum urartu 
accession G1812

4.94 Gbp Whole-genome draft 
assembly

Ling et al. (2013)

Triticum aestivum cv 
Chinese spring (CS)
3B chromosome of 
Triticum aestivum  
cv CS

~16 Gbp
~16 Gbp
(~1 Gbp)

5× whole-genome draft 
assembly
Chromosome-based draft 
assemblies of each 21 
chromosomes
Reference sequence 
assembly of chromosome 3B

Brenchley et al. (2012)
IWGSC (2014)
Choulet et al. (2014)
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DArT has been employed extensively in genetic mapping, genotyping, and diversity 
assessment in wheat (Cabral et al. 2014; Jighly et al. 2015; Bentley et al. 2014; Yu 
et al. 2014; Colasuonno et al. 2013; Iehisa et al. 2014), and more recently in its wild 
and cultivated relatives (Montilla-Bascón et  al. 2015; Kalih et  al. 2015; Castillo 
et al. 2014; Bolibok-Brągoszewska et al. 2014; Alheit et al. 2014; Yabe et al. 2014; 
Cabral et al. 2014; Jing et al. 2009).

The advent of the next generation sequencing technologies changed the para-
digm of wheat genetics and genomic and led to the development of Single Nucleotide 
Polymorphism (SNP) markers. Various platforms have been developed for wheat 
genotyping such as the 9K and 90K Illumina iSelect platforms with 9000 and 90,000 
SNP markers, respectively (Cavanagh et al. 2013; Wang et al. 2014), the Illumina 
infinium platform (up to 1,000,000 SNP markers), as well as the Axiom 820K and 
35K arrays (with up to 820,000 and 35,000 features) (http://www.cerealsdb.uk.net/
cerealgenomics/CerealsDB/axiom_download.php). These platforms provide tools 
to obtain detailed information on germplasm diversity and characterize allelic varia-
tion. However, low representation of wild wheat relatives in the SNP design process 
may limit the utility of the platforms in wheat alien introgression breeding (Wulff 
and Moscou 2014). Consequently, a few studies made use of SNP molecular mark-
ers to support alien gene transfer in wheat (Tiwari et al. 2014) and very few SNPs 
derived from wild species are available.

Due to the low cost per data point and ease of development, Kompetitive Allele 
Specific PCR (KASP) SNP markers (He et al. 2014), a genotyping technology based 
on allele-specific oligo extension and fluorescence resonance energy transfer for 
signal generation, are becoming popular and are used in large-scale projects 
(Petersen et al. 2015). KASP markers can genotype SNP polymorphism, deletions 
and insertions variations, and have been used in screening wheat–alien hybrids and 
their back-crossed derivatives to detect recombinants and isolate desired introgressions 
(King et al. 2013). In order to promote the use of KASP markers, it is important to 
generate new genomic sequences from wild relatives of wheat.

13.3.4  �Genome Sequencing

13.3.4.1  �Whole Genome Approaches

Despite the importance of Triticeae species for the humankind (Feuillet et al. 2008), 
attempts to sequence their genomes were delayed due to the size and complexity. 
The nuclear genome of bread wheat comprises three structurally similar (homoelo-
gous) subgenomes A, B, and D and with the size of about 17 Gb/1C, it is 40 times 
bigger than rice (0.43  Gb) and 126 times bigger than Arabidopsis thaliana 
(0.135 Gb). As the other Triticeae genomes, it is highly redundant and composed 
mostly from various classes of repetitive DNA sequences (IWGSC 2014).

High throughput of the next generation sequencing technologies makes it possi-
ble to sequence even the biggest genomes. However, the problem is to assemble and 
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order the short reads thus obtained (IWGSC 2014). Due to large genome complexity 
and sequence redundancy, high-quality reference genome assemblies are not yet 
available for any of the Triticeae species. To date, only draft genome sequences 
are available for barley (The International Barley Genome Sequencing Consortium 
2012), T. urartu (Ling et al. 2013)—a progenitor of the A genome of bread wheat, 
Ae. tauschii (Luo et al. 2013)—a D genome progenitor of bread wheat, as well as 
the whole genome shotgun assembly of hexaploid bread wheat (Brenchley et al. 
2012) (see Table 13.2).

Due to their nature, draft sequence assemblies are only partial representations of 
the genomes, often accounting for less than 50 % of their estimated size. A signifi-
cant part of expressed genes may be absent, which may compromise efforts with 
gene discovery and cloning, while the fragmentation of genome sequence and large 
numbers of unanchored contigs hamper comparative genome analyses.

Despite their preliminary nature, draft genome sequences provided useful 
insights into the Triticeae genome organization, evolution, and function. They were 
useful to develop protein-coding gene models, analyze genome organization, assess 
recombination rates along chromosomes, and characterize synteny and collinearity 
with other species (Ling et  al. 2013; Luo et  al. 2013; The International Barley 
Genome Sequencing Consortium 2012). They served as templates to characterize 
agronomically important genes and develop genome-specific molecular markers for 
plant breeding (Ling et al. 2013). The utility and extensive use of whole genome 
sequences from the main Triticeae crops confirm the need for such resources in wild 
wheat relatives. Although it may not be possible to sequence genomes of all wild 
species employed in wheat alien introgression breeding, efforts should be made to 
obtain as much information on their genomes as possible in order to understand bet-
ter the genome relationships among Triticeae.

13.3.4.2  �Reduced-Complexity Sequencing

One approach to facilitate sequencing and assembly of the huge Triticeae genomes 
is to reduce sample complexity prior to sequencing. Various strategies have been 
developed to achieve this, and can be classified into two groups: (1) Transcriptome 
sequencing and sequence capture approaches, which sequence only certain parts of 
genomes, and (2) the chromosome-centric approaches, which reduce the complex-
ity in a lossless way by dissecting genomes to small parts (chromosomes and chro-
mosome arms) that are sequenced and assembled separately.

Sequencing conserved genic portions of genomes enables development of 
cross-species transferable tools, and facilitates functional understanding of impor-
tant traits. Haseneyer et  al. (2011) sequenced transcriptome in five winter rye 
inbred-lines and identified over 5000 SNPs between the transcriptomes that were 
subsequently used for genotyping 54 inbred lines using SNP genotyping array. This 
analysis does not require prior knowledge of genome sequence and allows large-
scale molecular marker development for high-throughput genotyping. A recent 
analysis of Agropyron cristatum transcriptome permitted identification of 6172 
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unigenes specific to A. cristatum, including many stress-resistant genes and alleles 
potentially useful in wheat improvement (Zhang et al. 2015).

Another option to reduce sequencing efforts are sequence-capture approaches, 
which are used to enrich samples for sequences of interest before carrying out 
NGS. They are based on hybridization of target sequences to bait probes in solution, 
or on solid support. This approach usually necessitates preliminary sequence infor-
mation. However, since it allows high level of mismatches, it permits capturing 
diverged sequences. Known sequences from more characterized species such as 
wheat, barley, Brachypodium, and rice can be employed to discover uncharacter-
ized sequences from related species and varieties. Accordingly, Jupe et al. (2013) 
developed an exome capture for nucleotide-binding leucine-rich repeat (NB-LRR) 
domain for the so-called Resistance gene enrichment Sequencing (RenSeq) in 
potato. Their work resulted in discovery of 317 previously unannotated NB-LRRs 
and the method could aid in discovery of new resistance genes in wild relatives of 
wheat (Wulff and Moscou 2014).

Alternative approach to reduce complexity of large and polyploid genomes is to 
isolate chromosomes by flow cytometric sorting and sequence them individually 
(Fig.  13.3). This strategy is called chromosome genomics (Dolezel et  al. 2007, 
2014) and has been adopted by the IWGSC for the bread wheat genome sequenc-
ing (IWGSC 2014). The method, originally developed in Vicia faba (Doležel et al. 
1992), relies on cell cycle synchronization of meristem root tip cells of young 
seedlings and their accumulation at mitotic metaphase. After mild formaldehyde 
fixation, intact chromosomes are released into a buffer solution by mechanical 
homogenization of root tips. Chromosome samples are stained by a DNA fluoro-
chrome DAPI and classified at rates of several thousand per second according to 
their relative DNA content using flow cytometry. Chromosomes that differ in DNA 
content from other chromosomes form distinct peaks on histograms of DNA con-
tent (flow karyotypes). Such chromosomes, can be sorted individually at rates of 
about 20 s−1, and several hundred thousand chromosomes of the same type can be 
collected in 1 day.

In a majority of species, chromosomes have similar DNA content and cannot be 
discriminated after DAPI staining alone. The most frequent approach to overcome 
this difficulty has been the use of cytogenetic stocks in which the size of one or 
more chromosomes has been changed so that the chromosome of interest can be 
discriminated and sorted. The stocks included chromosome translocations 
(Kubaláková et al. 2002), deletions (Kubaláková et al. 2005), alien chromosome 
addition (Kubaláková et al. 2003) and alien chromosome arm additions (Suchánková 
et al. 2006). As such stocks are not available for many species, it is important that 
Giorgi et  al. (2013) developed a protocol termed FISHIS, to fluorescently label 
repetitive DNA on chromosomes prior to flow cytometric analysis. This approach 
permits discrimination of chromosomes, which have the same or very similar rela-
tive DNA content (Fig. 13.3), and has been used successfully to sort chromosomes 
in Ae. umbellulata, Ae. comosa, Ae. speltoides, and Ae. markgrafii (Molnár et al. in 
preparation).

To date, chromosome flow-sorting has been reported in at least 29 plant species, 
including 15 Triticeae (Doležel et al. 2014; Table 13.3). High purity in the sorted 
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Fig. 13.3  Mono- (a) and biparametric (b) flow cytometric analysis and sorting of mitotic meta-
phase chromosomes from Ae. umbellulata (2n = 2x = 14; UU). (a) Monoparametric analysis of 
chromosomes stained by DAPI results in a histogram of relative fluorescence intensity (flow 
karyotype) in which three peaks representing chromosomes 1U, 6U and 3U are discriminated. The 
remaining four chromosomes form a composite peak and cannot be sorted individually. 
Biparametric analysis of chromosomes stained by DAPI and with GAA repeats labeled by FITC 
results in a bivariate flow karyotype on which all seven chromosomes (colored regions) can be 
discriminated and flow-sorted at a purity of 90–99 %
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fractions and high molecular weight DNA of flow-sorted chromosomes makes 
them ideal substrate for downstream applications such as PCR-based analysis, 
development of markers, BAC-vector cloning and construction of optical maps 
(for review see (Doležel et al. 2014)). Chromosomal DNA can be sequenced or 
used for other applications either directly, if a sufficient number of chromosomes is 
sorted, or after representative amplification (Šimková et al. 2008). It is now even 
possible to sequence a single flow-sorted chromosome (Cápal et  al. submitted). 
The latter is particularly important in cases when the chromosome of interest cannot 
be discriminated from other chromosomes in karyotype, or if the focus is on the 
analysis of structural chromosome heterozygosity and allele phasing.

For example, BAC-end sequences obtained using 1RS-specific BAC library 
were used to develop Insertion Site-Based Polymorphism markers (ISBP) specific 
for 1RS and to identify loci carrying microsatellites suitable for the development 

[AU3]

Table 13.3  List of Triticeae species in which flow cytometric chromosome sorting has been 
reported (adapted from Doležel et al. (2014))

Genus Species
Common 
name n Referencea

Aegilops biuncialis Goatgrass 14 Molnár et al. (2011b)

comosa 7 Molnár et al. (2011b)

cylindrica 14 Molnár et al. (2015)

geniculata 14 Molnár et al. (2011b); Tiwari  
et al. (2014)

markgrafii 7 Molnár et al. (2015)

speltoides 14 Molnár et al. (2014)

triuncialis 14 Molnár et al. (2015)

umbellulata 7 Molnár et al. (2011b)

Avena sativa Oat 21 Li et al. (2001)

Dasypyrum villosum Mosquito 
Grass

7 Grosso et al. (2012); Giorgi  
et al. (2013)

Hordeum vulgare Barley 7 Lysák et al. (1999); Lee et al. 
(2000); Suchánková et al. (2006); 
Mayer et al. (2009, 2011)

Secale cereale Rye 7 Kubaláková et al. (2003); Bartoš 
et al. (2008); Martis et al. (2013)

Triticum aestivum Bread 
wheat

21 Wang et al. (1992); Schwarzacher 
et al. (1997); Lee et al. (1997); Gill 
et al. (1999); Vrána et al. (2000); 
Kubaláková et al. (2002); Giorgi 
et al. (2013); Hernandez et al. 
(2012); IWGSC (2014); Helguera 
et al. (2015); Tanaka et al. (2014); 
Sergeeva et al. (2014); Lucas et al. 
(2014); Berkman et al. (2011)

durum Durum 
wheat

14 Kubaláková et al. (2005); Giorgi 
et al. (2013)

urartu 7 Molnár et al. (2014)
aReports on chromosome sequencing are underlined
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of 1RS-specific SSR markers (Bartoš et  al. 2008). Next-generation sequencing 
flow-sorted chromosomes of rye enabled establishing linear gene order model com-
prising over 22 thousand genes, i.e. 72 % of the detected set of 31,000 rye genes. 
Chromosome sequencing together with transcript mapping and integration of con-
served synteny information of Brachypodium, rice and sorghum enabled a genome-
wide high-density comparative analysis of grass genome synteny (Fig. 13.4).

Fig. 13.4  Next-generation sequencing of flow-sorted rye chromosomes allowed characterization 
of synteny between rye, barley, and rice genomes. Collinearity of the rye and barley genomes is 
depicted by the inner circle of the diagram. Rye (1R–7R) and barley (1H–7H) chromosomes were 
scaled according to the rye genetic and barley physical map, respectively. Lines (colored according 
to barley chromosomes) within the inner circle connect putatively orthologous rye and barley 
genes. The outer partial circles of heat map colored bars illustrate the density of rice genes hit by 
the 454 chromosome sequencing reads of the corresponding rye chromosomes. Conserved syn-
tenic blocks are highlighted by yellow-red-colored regions of the heat maps. Putatively ortholo-
gous genes between rye and rice are connected with lines (colored according to rye chromosomes) 
and centromere positions are highlighted by grey rectangles. Martis et al., Plant Cell 25: 3685–
3698, 2013. www.plantcell.org Copyright American Society of Plant Biologists. Reproduced with 
permission
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The chromosome genomics approach has been particularly fruitful in genomics 
of wheat. The chromosome-based draft sequence of bread wheat was obtained by 
sequencing flow-sorted chromosome arms (except of chromosome 3B), each of 
them representing only 1.3–3.3  % of the genome. Chromosome arms were 
sequenced with Illumina technology and the reads were assembled to contigs rep-
resenting 10.2 Gb (61 %) of the genome with a L50 of repeat-masked assemblies 
ranging from 1.7 to 8.9 kb. A total of 133,090 loci homologous to related grass 
genes were classified as high-confidence gene calls. Out of them, 93.3  % were 
annotated on individual chromosome arm sequences, and 53.2 % were located on 
syntenic chromosomes compared to brachypodium, rice and sorghum. In total, 
81 % raw reads and 76.6 % assembled sequences contained repeats, explaining the 
difficulty of assembling such genomes from short sequence reads. As demonstrated 
in chickpea, chromosome genomics can be coupled with whole genome next-
generation sequencing to validate whole genome assemblies (Ruperao et al. 2014). 
This powerful combination could speed up production of good quality whole 
genome assemblies in wild wheat relatives.

Chromosome genomics was also shown useful to characterize chromosome seg-
ments of alien origin, develop markers from these regions, and support cloning alien 
genes of interest. In a pioneering study, Tiwari and coworkers sequenced DNA from 
flow-sorted short arm of chromosome 5Mg of Ae. geniculata to develop genome-
specific SNP markers Tiwari et al. (2014). The markers allowed development of two 
SNP markers identifying introgression of a segment of 5Mg to wheat chromosome 
5D carrying resistance to leaf rust (Lr57) and stripe rust (Yr40) (Fig. 13.5). In order 
to simplify the identification of alien chromatin introgressed into wheat, Abrouk 
(pers. comm.) developed a method based on comparative analysis. Briefly, using the 
linear gene order map of a recipient wheat chromosome (IWGSC 2014) and the 
sequence of flow-sorted chromosome carrying alien introgression, the density of 
orthologs is calculated along the wheat chromosome. The variation in density makes 
it possible to detect the alien segment. This approach has been validated recently in 
wheat T. aestivum cv. Tahti—T. militinae introgression line 8.1 (Jakobson et  al. 
2006, 2012), which carries a major QTL for powdery mildew resistance on the dis-
tal part of the chromosome 4AL (Abrouk pers. comm.)

13.4  �Functional Aspects of Alien Gene Transfer

When introducing alien genes to wheat, the function of introgressed chromosomes 
or chromosome segments and their interaction with the host genome needs to be 
considered. It may occur at different levels and concern chromosome behavior dur-
ing meiosis, changes in chromosomes structure and genome organization, as well as 
gene expression. Understanding the interaction between the host and alien genomes, 
the evolution of this relationship from the moment of F1 hybrid formation to a sta-
bilized wheat–alien introgression line, and the way the final equilibrium impacts the 
performance of the introgression line may contribute to the success of alien gene 
transfer in wheat improvement.
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13.4.1  �Interaction Between Host and Donor Genomes

Alien gene transfer involves hybridization and creation of interspecific hybrids, 
followed by genome duplication to establish fertile amphiploids. A consequence is 
a shock for both genomes, which may result in activation of mobile genetic ele-
ments, various structural changes and lead to changes in epigenetic status of chro-
matin and novel patterns of gene expression (Comai 2000).

Elimination of specific sequences is commonly reported as rapid genomic rear-
rangement accompanying allopolyploidization in wheat. The changes include elim-
ination of noncoding and low-copy DNA sequences, and gain of novel fragments 

Fig. 13.5  Distribution of validated 5MgS-specific SNPs developed from flow-sorted ditelosomic 
5Mg in different alien introgression-based addition, translocation, and released wheat lines. (a) 
disomic addition line TA7657, (b) disomic substitution line TA6675, (c) translocation line TA5599, 
(d) terminal translocation line TA5602, (e) TA5602 (with very small 5Mg segment), (f) SNPs vali-
dated in germplasm KS11WGGRC53-J and (g) SNP validated in germplasm 
KS11WGGRC53-O. Tiwari et al., BMC Genomics 15: 273, 2014. http://www.biomedcentral.com/
bmcgenomics BioMed Central Ltd. Reproduced with permission
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(Feldman et al. 1997; Liu et al. 1998). Elimination of rye-specific fragments often 
representing transposable elements (TEs) and their derivatives was observed in 
allopolyploid triticales (Ma and Gustafson 2006, 2008; Bento et al. 2008). The anal-
ysis of a newly synthesized triticale (Bento et al. 2008; Han et al. 2003) revealed 
rapid changes in coding sequences upon the induction of allopolyploidy, but the 
changes did not extend to alterations discernible at cytological level. The molecular 
mechanisms underlying genome reorganization are not yet fully understood (Tayalé 
and Parisod 2013). ‘Genomic stress’ due to polyploidization may activate TEs and 
promote their proliferation and mobility. At the same time, massive elimination in a 
TE family-specific manner may be observed (Comai et  al. 2003; Parisod and 
Senerchia 2012). It seems that the degree of TE sequence divergence between pro-
genitors correlates with the degree of restructuring in polyploid TE fractions 
(Senerchia et al. 2014).

A general observation made in newly created polyploids and synthetic allotetra-
ploids, including wheat, is a change in gene expression immediately after poly-
ploidization (Kashkush et  al. 2002; Levy and Feldman 2004). Both genetic and 
epigenetic mechanisms may alter gene expression (Lynch and Conery 2000; Lee 
and Chen 2001; Osborn et al. 2003; Soltis et al. 2004). The analysis of cytosine 
methylation in Aegilops–Triticum F1 hybrids and their derivative allotetraploids 
revealed 13 % of the loci with altered patterns of methylation affecting both repeti-
tive DNA and low-copy DNA (Xiong et al. 1999; Shaked et al. 2001). In leaves of 
Arabidopsis autopolyploids and allotetraploids and their progenitors, Ng et  al. 
(2012) could associate rapid changes in gene expression with quantitative pro-
teomic changes, suggesting rapid changes in posttranscriptional regulation and 
translational modifications of proteins as a consequence of polyploidization.

Epigenomic rearrangements after allopolyploidization seem to be involved in the 
processes of uniparental chromosome elimination, a phenomenon observed fre-
quently in interspecific hybrids between T. aestivum and H. bulbosum (Bennett 
et al. 1976), H. vulgare (Islam et al. 1981) and Zea mays (Laurie and Bennett 1986). 
The loss of centromere-specific histone H3 (CENH3) caused centromere inactivation 
and triggered mitosis-dependent uniparental chromosome elimination in unstable 
H. vulgare × H. bulbosum hybrids (Sanei et al. 2011). Bento et al. (2010), found that 
chromosome structural rearrangements were more drastic in wheat–rye disomic 
addition lines than in triticale, indicating that the lesser the amount of rye genome 
introgressed into wheat, the higher the likelihood of wheat chromosome breakage, 
chromosome elimination, and chromosome structural rearrangement, including 
sequence-specific elimination, translocations and TE movement (Fu et al. 2013).

13.4.2  �Alien Gene Expression

Various studies indicate complex relationships between the alien and host genes 
(Pumphrey et al. 2009; Jeffrey Chen and Ni 2006; Bougas et al. 2013; Wu et al. 
2015; Yoo et al. 2013; Wulff and Moscou 2014) and, as a result, in some cases 
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alien genes may not function as expected. For example, weaker effect in the wheat 
background as compared to the wild species was observed in studies involving 
resistance gene transfer (Wulff and Moscou 2014; Chen et  al. 2005; Riley and 
Chapman 1958; Riley and Macer 1966). One explanation may be that the intro-
gressed genes are involved in polygenic resistance together with other loci, which 
are not introgressed simultaneously. However, in some cases, resistance genes had 
no effect at all, as was the case of resistance to wheat leaf rust (Puccinia triticina 
Erikss.) introduced to wheat from rye (Riley and Macer 1966). It seems that the 
polyploid status of wheat itself may impact alien gene expression. When Kerber 
and Dyck (1973) transferred stem rust resistance from diploid einkorn wheat (T. 
monococcum L.) to tetraploid durum and hexaploid bread wheat, a progressive 
loss of the resistance with increasing ploidy from diploid to hexaploid was 
observed. Chen et al. (2005) described different levels of scab resistance in prog-
enies that involved the same wheat-Leymus racemosus alien chromosome translo-
cation, or the same alien chromosome addition, possibly related to other 
components of resistance in the genetic background.

Suppression of resistance due to negative interaction of homoeologous and non-
homoeologous loci between genomes is another effect observed in hexaploid 
wheat, and the examples include a conserved gene on chromosome 7DL that sup-
presses stem rust resistance, and suppression of powdery mildew locus Pm8 by 
Pm3 locus (Kerber and Aung 1999; Wulff and Moscou 2014). The suppression of 
introgressed Pm8 resistance gene by its Pm3 host ortholog in some wheat–rye 
1BL.1RS translocation lines was not due to gene loss, mutation or gene silencing 
(Hurni et al. 2014). A coexpression analysis of Pm8 and Pm3 genes in Nicotiana 
benthamiana leaves followed by co-immunoprecipitation analysis showed that the 
two proteins interact and form a heteromeric complex, which might result in inef-
ficient or absent signal transmission for the defense reaction. Stirnweis et al. (2014) 
suggested that the frequently observed failure of resistance genes introduced from 
the secondary gene pool into polyploid crops could be the result of the expression 
of closely related NB-LRR-resistance genes or alleles in the host genome, leading 
to dominant-negative interactions through a posttranslational mechanism involving 
LRR domains. A recent study showed that genes with low similarity between rye 
sequences and their closest matches in the Triticum genome have a higher probability 
to be repressed or deleted in the allopolyploid genome (Khalil et al. 2015).

13.4.3  �Spatial Genome Organization and Function

Little is known how alien chromosome(s) and/or translocated alien chromosome 
segments influence behavior and position of wheat chromosomes within the 3D 
space of interphase nucleus, how the position and behavior of alien chromosome 
differs from that in the nucleus of donor wild relative, and how changes in chro-
mosome position influence gene expression of wheat and alien genes. Numerous 
studies in human and mouse indicate that chromosome territories are not 
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randomly positioned in the nucleus (Gibcus and Dekker 2013). Small and gene-rich 
chromosomes localize near the center of nucleus, whereas larger and less-gene-rich 
chromosomes are more frequently located near the nuclear periphery. In plants, 
however, 3D-nuclear genome organization has been studied only in a few cases 
and mostly in Arabidopsis (Schubert et  al. 2014; Grob et  al. 2014) and rice 
(Mukhopadhyay et al. 2013) with small genomes, whose interphase organization 
may differ from that of large genomes. The results obtained in rice (Mukhopadhyay 
et  al. 2013) correlated transcriptional regulation with alteration in nucleosome 
positioning, histone modifications and gene looping, but not DNA methylation. 
A recent observation using 3D-FISH in wheat–rye chromosome arm introgression 
lines indicated that the rye alien chromosomes were positioned at the periphery of 
nuclei (Veronika Burešová, pers. comm.). These preliminary results are consistent 
with the general observation of negative regulation of the expression of the alien 
genes introgressed in wheat.

13.5  �Concluding Remarks

During more than one century of wheat–alien introgression breeding, a significant 
progress has been made in developing strategies to produce hybrids of wheat with 
distant relatives, in devising chromosome engineering techniques to integrate alien-
chromosome segments into wheat genome, in the improvement of cytogenetic tech-
niques to identify and characterize introgressed chromatin, and in phenotypical 
characterization of new introgression lines. These advances led to development of a 
formidable panel of introgression lines of various types and from a number of wild 
wheat relatives, carrying important traits. Nevertheless, only a small number of 
commercially successful wheat cultivars benefitted from these advances, and the 
potential of alien introgression breeding remains underused.

In order to fully explore it and benefit from the extant genetic diversity of wild 
wheat relatives, implementation of improved and novel approaches and tools is 
needed. It is fortunate that new methods of cytogenetics, genomics and phenomics 
are becoming available for better and, in case of genomics and phenomics, high-
throughput characterization of genetic diversity, and identification of donors of 
important traits. On the other hand, improvement of chromosome engineering 
methods and better knowledge of molecular mechanisms controlling meiotic recom-
bination are needed to facilitate introgression of alien chromatin. This will require a 
better knowledge of genome structure of wild relatives to assess chances for chro-
mosome recombination and predict its outcomes, in order to decide the best experi-
mental approach to be applied.

The advances in DNA sequencing and DNA marker technologies make it pos-
sible to compare genomic organization of wheat and wild relatives, and judge the 
degree of collinearity. In order to cope with the huge and complex genomes of 
Triticeae, strategies have been developed to reduce genome complexity prior to 
sequencing and mapping, such as exome capture and chromosome genomics. 
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The advances in DNA sequencing technologies make it possible to develop powerful 
and high-throughput DNA marker technologies such as SNP, DArT and KASPAR, 
which are suitable for development of markers linked tightly to traits of interest, 
large-scale screening of progenies of wild hybrids and support production of lines 
with the introgressed genes of interest and minimum of unwanted chromatin.

Altogether these advances provide a toolbox to develop wheat lines enriched for 
gene(s) of interest with the smallest amount of undesired alien chromatin. At the 
same time, it is obvious that we are still at the beginning of what one day may 
become a routine transfer of alien genes to wheat by interspecific hybridization. In 
fact, there is another potential obstacle, which so far has received little attention, 
and that is the genome biology. Almost nothing is known on the behavior of intro-
gressed chromosomes, chromosome segments and/or minute amounts of alien chro-
matin introgressed into the wheat genome. It is not clear how the wheat genome 
interacts with introgressed genes and how it influences their function. At the same 
time, it is important to understand if and how the alien DNA affects the function of 
the recipient wheat genome. There is an urgent need to clarify the interaction 
between the host and alien genomes to avoid failed attempts. Luckily, the recent 
advances in genomics, transcriptomics, epigenomics, proteomics, as well as in cyto-
genetics, and the analysis 3D organization of interphase nuclei in particular, are 
promising to deliver the much needed insights.
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