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Abstract. Three-dimensional convex bodies can be classified in terms of the

number and stability types of critical points on which they can balance at rest
on a horizontal plane. For typical bodies these are nondegenerate maxima,

minima, and saddle-points, the numbers of which provide a primary classi-

fication. Secondary and tertiary classifications use graphs to describe orbits
connecting these critical points in the gradient vector field associated with each

body. In previous work it was shown that these classifications are complete in

that no class is empty. Here we construct 1- and 2-parameter families of con-
vex bodies connecting members of adjacent primary and secondary classes and

show that transitions between them can be realized by codimension 1 saddle-

node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields.
Our results indicate that all combinatorially possible transitions can be real-

ized in physical shape evolution processes, e.g. by abrasion of sedimentary

particles.
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1. Introduction

1.1. Motivation and background. The evolution of shapes of abrading bodies,
such as pebbles in river beds and on beaches, has been studied for over 70 years
(e.g. [23, 24, 25, 12, 3]). Data from NASA’s Curiosity Rover on Mars [29, 18]
has rekindled interest in the subject. In addition to classical shape indices such as
axis ratios and roundness [27, 17], a recent approach considers the evolution of the
number of static equilibrium points N(t) on the surface of an abrading body, i.e.,
points on which the body can balance at rest on a horizontal plane [28, 9, 6, 5].
Unlike shape indices, which require length measurements, the integer N(t) can be
counted in simple experiments [9].

Abrasion occurs primarily on a body’s convex hull, so to formulate a precise
and relatively simple model we restrict our analysis to convex bodies K of uniform
density, with surfaces described by scalar Euclidean distance functions rK measured
from the center of mass CK . For such bodies static equilibria are critical points of
rK at which the gradient ∇rK = 0.

The surface ∂K of a generic convex body K can exhibit three types of nonde-
generate critical points: local minima, maxima and saddle-points, which are sinks,
sources and saddles of the gradient vector field v = ∇rK . Let S,U,H respectively
denote the number of each of these points. Since ∂K is a topological 2-sphere, the
Poincaré-Hopf Theorem [2] implies that

(1) S + U −H = 2.
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Figure 1. Primary equilibrium classes. Left: examples of convex
bodies; rows and columns correspond to the numbers S and U of
sinks and sources, respectively. Right: the ‘Columbus Algorithm’
of [28] defines a hierarchy among primary classes. Arrows indi-
cate arbitrarily small truncations of the convex body, creating one
additional sink or source and a saddle-point.

The classification schemes introduced in [28] are based on these numbers. Specif-
ically, the primary class of a generic convex body K is defined as the pair of integers
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{S,U}. In [28] it was shown that no primary class {i, j} is empty and a hierarchy
among these classes was defined via the Columbus algorithm. Using explicit trun-
cations that remove small portions from K by slicing along convex surfaces, this
algorithm generates a pair of convex bodies K ′ ∈ {i + 1, j} and K ′′ ∈ {i, j + 1},
as shown in Figure 1. Thus, starting from the gömböc {1, 1}, every row and col-
umn can be populated, implying that the primary classification is complete in this
‘static’ sense.
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Figure 2. Graph representations of the gradient flow on the tri-
axial ellipsoid in primary equilibrium class {2, 2}. (a) Distance
function rK given in spherical polar coordinates. (b) 3-colored
quadrangulated primary representation Q3(v). (c) 3-colored tri-
angulated representation T 3(v). (d) Quasi-dual, 2-colored quad-
rangulated representation Q2(v). The colors refer to vertices, iden-
tifying them as sinks, sources, and (in (b,c)) saddles.

More refined methods exist for classifying the properties of gradient vector fields
v = ∇rK , including graph representations of their Morse-Smale complexes [10].
The vertices of these graphs are fixed points of v, and the edges can be either iso-
lated heteroclinic orbits connecting saddle-points, representative non-isolated het-
eroclinic orbits connecting saddles with sinks and sources, or both. These are
called, respectively, the primary representation Q3(v), the triangulated represen-
tation T 3(v), and the quasi-dual representation Q2(v) Figure 2 illustrates these
representations for the tri-axial ellipsoid. For brevity, we call all three types the
topology graphs associated with v. Note that all three graphs Q3(v), T 3(v), and
Q2(v) are embedded on S2 and we will also consider their abstract, non-embedded
versions Q̄3(v), T̄ 3(v) and Q̄2(v). We remark that an abstract graph may have
several, non-homeomorphic embeddings in S2. Precise definitions will be given in
Section 2, and these graphs will play a key role in the paper.

We call the class of convex bodies with isomorphic abstract graphs the secondary
equilibrium class and the class of convex bodies with homeomorphic embedded
graphs the tertiary equilibrium class associated with K. See Figure 3(a), which
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also illustrates that a primary class can contain different secondary classes: e.g.,
the ellipsoid is not alone in class {2, 2}. In [8] it was shown that the secondary and
tertiary schemes are also complete in the sense that no secondary or tertiary class
is empty.
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Figure 3. Secondary and tertiary equilibrium classes. (a) Sec-
ondary and tertiary classes are contained in primary classes. (b)
Metagraph G with vertices at tertiary classes and edges correspond-
ing to codimension 1 bifurcations; thin edges: saddle-nodes, thick
edges: saddle-saddle bifurcations. Note that all illustrated sec-
ondary classes contain one tertiary class, so in the figure the ver-
tices of the metagraph G correspond simultaneously to secondary
and to tertiary classes. (c) Quasi-dual topology graphs Q2(v) of
the tertiary classes labeled a through k in panels (a,b) and illus-
trations of a through g as convex bodies

One can ask whether transitions between different primary, secondary and ter-
tiary classes are possible within generic families K(λ) of smooth convex bodies,
parametrized by λ, as their shapes change. In generic one-parameter families of
gradient vector fields only two codimension 1 bifurcations occur: saddle nodes and
saddle-saddle connections, and they do so at isolated, critical values λ = λcri [14].
Saddle-nodes involve local changes in topology in which pairs of non-degenerate
equilibria, either a saddle and a sink or a saddle and a source, emerge or disappear.
Saddle-saddle bifurcations are global bifurcations at which an orbit connecting two
saddle-points exists, but the numbers and types of equilibria do not change. In the
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former, one of the integers S,U characterizing the primary class of K increases or
decreases by one; in the latter, the primary class remains unchanged.

(a) (b) (c)

Figure 4. Topology graphs (a) and (c) corresponding to two ver-
tices of G in primary equilibrium class {4, 4} and the tertiary edge
(b) connecting them. Graphs are shown in the triangulated repre-
sentation of graph class T 3. Note the saddle-saddle connection on
(b), and that (a) and (c) are isomorphic as abstract graphs, but
not homemorphic as embedded graphs on S2.

To visualize these transitions we introduce the metagraph G with vertices rep-
resenting the embedded topology graphs associated with generic gradient fields on
S2. The metagraph distinguishes primary edges, on which saddle-node bifurcations
occur between vertices in different primary classes, from secondary edges that con-
tain saddle-saddle bifurcations between vertices within the same primary class but
in distinct secondary classes, and tertiary edges between vertices in the same sec-
ondary class. In Figure 3(b) primary and secondary edges are identified by thin and
thick lines respectively. Figure 3 shows only primary classes with values S+U ≤ 6;
here tertiary edges cannot be illustrated since secondary classes with so few critical
points contain only one tertiary class, and therefore have unique embeddings on the
2-sphere. Figure 4 illustrates a tertiary edge conecting two vertices in the primary
class {4, 4}.

Our goal, which we will formally define in subsection 1.2, is to show that not
only the vertices, but also the primary and secondary edges of G can be represented
by convex bodies, i.e., physical processes describing their shape evolution may be
represented by paths on G. It is an intriguing question which of these paths are
preferred by physical abrasion processes. The investigation of this question lies
beyond the scope of the current paper, but we have some physical intuition on how
primary classifications of convex bodies might evolve. In [5] it is shown that the
evolution of S and U under the partial differential equations governing collisional
abrasion processes can be modeled by letting S and U be random variables whose
expected values decrease with time. While this trend has been verified both in
laboratory experiments [6] and in the field [19], almost no pebbles in the primary
classes {1, i}, {j, 1}, (i, j = 1, 2, . . . ) have been found. In [7] a purely geometrical
reason for this phenomenon was pointed out. The difficulty of reducing either the
number of sinks or sources can be measured by the fraction of volume that must



6 G. DOMOKOS, Z. P.J. HOLMES AND Z. LÁNGI

be removed from a solid, referred to as robustness. In [7] it was shown that the
robustness of classes {2, i}, {j, 2} is maximal so it is very unlikely that any natural
pebble in these classes will be transformed into any of the classes {1, i}, {j, 1} by
natural abrasion.

Much less is known about the secondary, let alone tertiary classification of con-
vex bodies, and theories for their evolution by abrasion are lacking. Nevertheless,
as for the primary case, field data indicate that natural shapes strongly prefer some
secondary classes while other classes remain virtually empty. Already in [15] it was
observed that coastal pebbles tend to be ellipsoidal. While Rayleigh [23, 24, 25]
Bloore [3] and Firey [12] ultimately showed that the classical exact ellipsoid is
not an attracting state in collisional abrasion processes, nearly ellipsoidal shapes
nonetheless dominate pebble beaches. Without exception, all those shapes in pri-
mary class {2, 2} for which the secondary classes were determined have topology
graph ‘d’ of Figure 3(c), while the other secondary class ‘c’ in {2, 2} appears to be
missing. Similar observations apply to other primary classes.

As a first step towards understanding these phenomena we show that the sec-
ondary classification scheme of [8] is also complete in the following ‘dynamical’
sense. Primary and secondary edges in the metagraph G, containing codimension
1 saddle node and saddle-saddle bifurcations respectively, exist in the space of gra-
dient vector fields v = ∇rK on the 2-sphere associated with convex bodies K.
In the next subsection we use the metagraph G to formulate our statements and
relate them to earlier results. Before doing so, we note that the gradient vector
field v = ∇rK cannot describe the Newtonian dynamics of the body K rocking
on a horizontal plane, which would require a system of second order differential
equations, but that the stability types of its fixed points correctly reflect those of
the equilibria of K.

1.2. Definitions and main result. We first define the metagraph G, whose ver-
tices are embedded topology graphs representing tertiary equilibrium classes as-
sociated with the Morse-Smale complexes [20] of gradient vector fields of convex
bodies. For simplicity we use the primary representation Q3(v), but the triangu-
lated or quasi-dual representations may also be used to construct G. The edges of G
correspond to codimension 1 bifurcations connecting these classes, and all possible
one-parameter families of gradient vector fields on the 2-sphere appear in G. We
define the edges and vertices of G and we will use these concepts to formulate our
results and relate them to earlier results.

Definition 1. Two vector fields v and w on the 2-sphere are topologically equivalent
[26, 14] if their embedded topology graphs (of the same type) are homeomorphic.

As noted earlier, in case of generic vector fields [26], topology graphs can be
defined by the Morse-Smale complex associated with the vector field [10]. Now we
proceed to define the metagraph G.

Definition 2. A vertex of G is an embedded topology graphQ3(v) on S2, associated
with the Morse-Smale complex of a generic gradient vector field v on S2.

Definition 3. The primary class of a vertex Q3(v) is the pair of integers {S,U},
where S and U denote the number of sinks and saddles of v. The secondary and
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tertiary class of a vertex are the abstract graph Q̄3(v) and the embedded graph
Q3(v), respectively, both associated with the Morse-Smale complex of v.

Definition 4. An edge of G is a one-parameter family v(λ), λ ∈ [0, 1] of gradient
vector fields connecting two distinct vertices Q3(v(0)) and Q3(v(1)) of G. We
require that v is generic except for a unique value λ = λ? ∈ (0, 1), for which v(λ?)
exhibits a codimension 1 bifurcation [14].

Definition 5. We call an edge v(λ), λ ∈ [0, 1] primary if the primary classes of
Q3(v(0)) and Q3(v(1)) are different. We call an edge v(λ), λ ∈ [0, 1] secondary
if the primary class of Q3(v(0)) and Q3(v(1)) are identical, but their secondary
classes are different. We call an edge v(λ), λ ∈ [0, 1] tertiary if both the primary
and the secondary class of Q3(v(0)) and Q3(v(1)) are identical.

Definition 6. We call a vertex Q3(v) of G physical if there exists a convex body
K such that ∇rK is topologically equivalent to v.

Definition 7. We call a primary, secondary or tertiary equilibrium class physical
if it contains at least one physical vertex.

Definition 8. We call an edge v(λ), λ ∈ [0, 1] of G physical if there exists a one-
parameter family K(λ), λ ∈ [0, 1] of convex bodies such that∇rK(λ) is topologically
equivalent to v(λ) for all values of λ ∈ [0, 1].

Now we can formulate earlier and current results. Regarding primary equilibrium
classes we have

Theorem 1. All primary classes are physical.

This result, proved in [28], was generalized in [8] to include secondary and tertiary
classes:

Theorem 2. All vertices of G are physical.

In the current paper our goal is to further extend Theorems 1 and 2 by proving
the physical existence of an important subset of edges of G:

Theorem 3. All primary and secondary edges of G are physical.

1.3. Sketch of proof. As noted above, the local truncations constructed in [8]
modify the Morse-Smale complex of K to produce one-parameter families of con-
vex bodies in which either S or U is increased by 1. However, these families do
not (necessarily) represent edges in the metagraph G since the genericity of the
bifurcation was not guaranteed by the construction in [8]. One-parameter families
connecting vertices at the ends of secondary edges (saddle-saddle bifurcations) were
not even discussed in [8].

Here we extend these results by constructing a 2-parameter family of convex bod-
ies whose gradient vector fields are generic in the sense that certain codimension 1
subsets (curves) in the parameter plane correspond to vector fields with codimen-
sion 1 local saddle-node and global saddle-saddle bifurcations, forming primary and
secondary edges of G. We also show that the codimension 1 bifurcation curves meet
in a codimension 2 saddle to saddle-node bifurcation point.

Because secondary edges correspond to codimension 1 global saddle-saddle bi-
furcations, the local methods of [8] do not apply directly. Rather, we achieve our
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goal in two steps. In Section 2 we prove Combinatorial Lemma 1, stating that any
secondary edge of the metagraph G bounds a triangular face of G of which the two
other edges are primary. As shown in Figure 9 below, the vertices of such a face
represent three topology graphs that lie in adjacent primary classes of G. The tri-
angles (b,c,d) and (f,j,k) in Figure 3(b) above provide examples. We then appeal to
dynamical systems theory [14] in Section 3 to show that such a triangular face could
contain a codimension 2 bifurcation point for the gradient flow v = ∇rK(λ) and
describe how codimension 1 saddle-node and saddle-saddle bifurcations emanate
from this point.

In Section 4 we take the second step, providing an explicit geometrical construc-
tion that realizes the codimension 2 bifurcation via an arbitrarily small truncation
of K depending on two parameters. First, in Subsection 4.1 we prove that a trun-
cation exists under the assumption that the resulting displacement of the body’s
mass center has no effect on the topology of its gradient flow. Then, in Subsection
4.2 we construct a simultaneous, auxiliary truncation such that the mass center
remains fixed under the combined truncations, implying that the topology of the
flow is preserved. Finally, in Section 5 we summarize our results and point out
some possible consequences.

2. Combinatorial part

Before stating the combinatorial lemma, we define three classes of graphs associ-
ated to Morse-Smale complexes on the 2-sphere, of which the graph representations
introduced above and illustrated in Figure 2(b-d) are examples. As in [8], we denote
by a quadrangulation a finite planar undirected multigraph on the 2-sphere in which
each face is bounded by a closed walk of length 4 (cf. [1, 4]). A multigraph contains
no loops but may have multiple (parallel) edges, and it is usually permitted that the
boundary of a face may contain a vertex or an edge of the graph more than once
(e.g. the faces with saddle-source and source-sink connections in Figure 5(a,c)).
In addition, we follow Archdeacon et al. [1] and regard the path graphs (cf. [13])
P2 and P3 as quadrangulations, where Pk denotes a tree on k vertices, each with
degree at most 2.

Dong et al. [10] introduced three different kinds of graph to represent a Morse-
Smale complex on the 2-sphere, as follows:

• Q2 is the class of 2-vertex-colored quadrangulations. Note that as no quad-
rangulation contains odd cycles, each is 2-colorable (cf. [1, 21]). Further-
more, the coloring of the graph is unique up to switching the colors.
• Q3 is the class of 3-vertex-colored quadrangulations with deg(p) = 4 for

any p ∈ H, and |S| + |U| − |H| = 2, where S, U and H denote the sets of
vertices of each given color.
• T 3 is the class of 3-vertex-colored triangulations with deg(p) = 4 for any
p ∈ H, and |S|+ |U|−|H| = 2, where S, U and H denote the sets of vertices
of each given color.

Examples of each class appear in Figure 5, panels (c,a,b) respectively.

It was shown in [11] (cf. [30]) that a Morse-Smale complex on the 2-sphere can
be uniquely represented by a 3-vertex-colored quadrangulation in Q3, where the
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sink
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saddle

a) b) c)

Figure 5. Different representations of a part of a Morse-Smale
complex. (a) Primary topology graph in classQ3. (b) Triangulated
topology graph in class T 3. (c) Quasi-dual topology graph in class
Q2.

vertex colors represent the 3 types of critical points (maxima, minima and saddles)
and edges correspond to stable and unstable manifolds: isolated integral curves
that end and start at saddle points. Each quadrangle is bounded by a closed walk
consisting of a source, a saddle, a sink and a saddle in cyclic order around the face
and, and every saddle has degree 4; see Figure 6(a). Following Dong et al. [10] we
call this the primary topology graph.

Saddle points can be removed from the primary graph without losing informa-
tion [10]: first we connect sources and sinks inside each quadrangle, producing a
triangulated topology graph in class T 3; we then remove all saddle points and edges
incident to them, as in Figures 5(b,c). Since non-degenerate saddles have degree
4, the resulting graph is a 2-vertex-colored quadrangulation in class Q2: the quasi-
dual topology graph (cf. [10]). Here we use the latter; however, in Section 4, the
primary graph representation is preferable. All three representations are equivalent
in the sense that they are mutually uniquely identified.

Let F = (p1, p2, p3, p4) be a face of any Q ∈ Q2 (cf. Figure 6(a), left). Pairs
of vertices, and/or edges connecting them, may coincide. Nonetheless, a quasi-
dual representation admits only two kinds of coincidences: two diagonally opposite
vertices, say p2 and p4 may coincide, and in this case two consecutive edges, say
(p4, p1) and (p1, p2) may coincide: these two cases are illustrated in Figures 6(b)
and (c), left. Note that in Figure 6(c) the internal domain bordered by the edges
(p4, p1) and (p1, p2) is not a quadrangular face and necessarily contains at least one
additional vertex, as indicated by the triangles in the inner region. Figure 6(d)
shows the remaining two exceptional cases: the trees Q = P3 and Q = P2.

The algorithm in [8] is based on repeated application of a combinatorial graph
operation called face contraction (cf. [1, 4] or [22]). Applied to the face F de-
fined in the previous paragraph, this operation results in the contraction of the
vertices p1 and p3 into the same vertex, and the disappearance of F ; the mod-
ified graphs, depending on the ‘shape’ of the original face F are shown on the
right of each panel in Figure 6. The inverse operation of face contractions is called
vertex splitting. Combinatorially, for graphs with at least three vertices it can
be defined as follows. Let p be a vertex of the quadrangulation Q, with adja-
cent edges E1, E2, . . . , Ek, Ek+1 = E1 in counterclockwise order, and note that the
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other endpoints of some of these edges may coincide. Choose two, not necessar-
ily distinct edges: Ex and Ey. Then we split p into two vertices p1 and p3, and
Ex and Ey into two pairs of edges Ex,1 and Ex,3, and Ey,1 and Ey,3, such that
Ex,1, Ex+1, . . . , Ey−1, Ey,1 are connected to p1, and Ey,3, Ey+1, . . . , Ex−1 and Ex,3
are connected to p3. This operation can be naturally modified for primary and tri-
angulated representations: in the primary representation, instead of two edges we
choose two (not necessarily distinct) faces, whereas in a triangulated representation
we choose two edges connecting a sink and a source.

a) b)

c) d)

p4

p1

p2

p3

p3

p1

p3

p1

p2

p = p1

p4 p3

p1

p = p2

3

4 p = p2 4

p = p1 3

p = p2 4 p = p2 4

p = p1 3

p = p2 4

p = p2 4

p = p1 3

Figure 6. Face contractions on a graph in class Q2. As in [4],
triangles incident to some vertices indicate that one or more edges
may occur at that position around the vertex. Here p1 and p3 are
sinks; analogous face contractions, each removing a source from
the graph, can be performed by switching the colors.

In a quasi-dual graph, a transition via a saddle-saddle connection can be realized
as a diagonal slide [22], defined as follows: consider two faces (v1, v2, v3, v4) and
(v4, v3, v5, v6) of the quadrangulation sharing an edge (v3, v4), and replace this edge
either by (v1, v5) or (v2, v6). Then the two faces (s1, u3, s2, u2) and (u1, s3, u2, s2)
are replaced by (s1, u3, s3, u2) and (u1, s3, u3, s2).

To formulate the lemma, we need the following definition.

Definition 9. Let Q ∈ Q2 be a quadrangulation. Two vertex splittings W and
W ′ of Q are called twin, if:

• The same vertex p is split.
• Let A1 and A2 denote the sets of edges connected to the two split vertices

in W , and define A′1 and A′2 similarly for W ′. Then A1 differs in exactly
one element from A′1 or A′2.

In this case Q is called the ancestor of the two split graphs. This definition can
also be naturally interpreted for primary and triangulated representations.

Note that the second property in Definition 9 implies that A2 also differs in
exactly one element from A′1 or A′2. The graphs in columns B and C of rows (a)
and (b) in Figure 7 can be obtained from the graph in column A of the same row
via twin vertex splittings, but the graphs in columns B and C of Figure 7(c) are



GENEALOGY OF CONVEX SOLIDS 11

isomorphic and hence have no ancestor graph. This corresponds to the degenerate
case 3 in the Proof of the Combinatorial Lemma 1 below.

Lemma 1 (Combinatorial Lemma). Let B,C ∈ Q2 be embeddings of two distinct
abstract graphs B̄, C̄ in S2, respectively, such that there is a diagonal slide that
transforms B into C. Then there is an embedding A ∈ Q2 and a pair of twin
vertex splittings WB and WC of Ā such that WB transforms A into B, and WC

transforms A into C.

We remark that, as we will see in the proof of Lemma 1, there are diagonal slides
between non-homeomorphic drawings of the same graph which cannot be derived
from the same ancestor via twin vertex splittings. Note also the essential condition
that the abstract graphs B̄, C̄ should be non-isomorphic; this condition excludes
tertiary edges from our argument.

Proof. To simplify the proof, we use the triangulated variants of B and C, which
with a little abuse of notation, we also denote by B and C. Let the two saddles
that are connected by the saddle-saddle bifurcation be denoted by h1 and h2. This
edge belongs to two faces of B, say (s2, u1, h1) and (s2, u1, h2), and similarly, two
faces of C, say (s1, u2, h1) and (s1, u2, h2). We note that, due to the degeneracy
of the graph, some of the vertices or edges may coincide; nevertheless, due to the
saddle-saddle connection, h1 and h2 are distinct.

s s s s s s shhh 121212 111

u uh 12 2u uh 12 2u uh 12 2 u uh 12 2

s s s s s shhh 121212 111

u uuu

h2

h2 h2

h2

uuu

s s s

h2
h2h2

h1
h1h1

CB A

(a)

(b)

(c)

s

Figure 7. The connection between diagonal slides and twin ver-
tex splittings for T 3-class graphs. The graphs in row (c), columns
B and C are isomorphic, and thus have no common ancestor, hence
no graph appears in column A of row (c). See the proof of Lemma 1
for further details.

Case 1, s1 and s2, and also u1 and u2 are distinct. Figure 7 row (a) shows
the corresponding faces of B, the saddle-saddle bifurcation, C, and the common
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ancestor A from left to right. Face contractions are carried out by collapsing the
edges (s1, h1) and (s2, h1) into a single vertex s, and the dotted edges starting at s1,
h1 and s2 are contracted into the single dotted edge of A. Furthermore, the edges
(s2, u1), (h1, u1) and (s1, u1) are contracted to (s, u1) in B, whereas (s2, u2), (h1, u2)
and (s1, u2) are contracted to (s, u2) in C. Since (s, u1) and (s, u2) are consecutive
edges of A in the quasi-dual representation, the vertex splittings belonging to the
two face contractions are indeed twin. We remark that in Case 1 another ancestor
can be found by contracting (u1, h2) and (u2, h2).

Case 2, exactly one of the pairs {s1, s2} or {u1, u2} coincide. Without loss of
generality, we may assume that u1 = u2 = u and s1 6= s2. Note that as the degree
of a saddle point is 4, in this case there are two edges starting at h2 and ending at u.
Figure 7 row (b) shows the corresponding faces of B, the saddle-saddle bifurcation,
C, and the common ancestor A from left to right. Face contraction is carried out
by collapsing the edges (s1, h1) and (s2, h1) into a single vertex s.

Case 3, s1 = s2 = s, and u1 = u2 = u. In this case B and C are isomorphic
graphs: Figure 7 row (c). We note that in this case the two edges starting at s and
ending at u may also coincide.

�

3. Dynamical part

In this section we describe how codimension 1 saddle-node and saddle-saddle
bifurcations can meet in a codimension 2 bifurcation of a gradient vector field v
on S2. Such a bifurcation point can be associated with each triangular face of the
metagraph G having two primary edges and one secondary edge. We construct an
explicit polynomial function Vµ1,µ2

(x, y), depending on two parameters µ1, µ2, that
captures the behavior of v near a degenerate saddle-node whose strong stable man-
ifold contains one branch of the unstable manifold of a non-degenerate (hyperbolic)
saddle point. The parameters µ1, µ2 provide local coordinates on the face of the
metagraph near the codimension 2 point. Since the saddle-saddle or heteroclinic
connection is a global phenomenon, our vector field will necessarily be non-local, but
we can nonetheless find a cubic potential function that captures the local saddle-
node and the global heteroclinic connection. A homoclinic orbit to a saddle-node
bifurcation point was previously shown to occur in the averaged equations for the
periodically forced van der Pol oscillator [16], cf. [14, Sec. 2.1,Figs. 2.1.2-3].

We first recall the normal form of an isolated codimension 1 saddle-node in a
gradient vector field on the plane, which can be described by a potential function
depending on one parameter [14]:

(2) Vµ1
(x, y) =

x3

3
+
y2

2
− µ1x,

The corresponding vector field

(3)
ẋ = −∂Vµ1

∂x = −x2 + µ1,

ẏ = −∂Vµ1

∂y = −y,

has no fixed points for µ1 < 0, a saddle-node at (x, y) = (0, 0) for µ1 = 0, and a
hyperbolic saddle and a sink at (x, y) = (−√µ1, 0) and (+

√
µ1, 0) respectively for

µ1 > 0.
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We now add further cubic terms and a linear term containing another parameter
µ2 to Vµ1 to produce a second hyperbolic saddle that can be displaced relative to
the saddle and sink described above. We set

(4) Vµ1,µ2,α(x, y) =
x3

3
+
y2

2
+
y3

3
− αx2y − µ1x− µ2xy, with α ≥ (1/4)1/3,

so that the vector field (3) becomes

(5)
ẋ = −x2 + 2αxy + µ1 + µ2y,
ẏ = αx2 − y − y2 + µ2x.

Elementary calculations and linearization at the fixed points show that, for µ1 =
µ2 = 0, the saddle node remains at (0, 0) and a hyperbolic saddle lies at (0,−1).
Moreover, the y-axis is an invariant line, because ẋ ≡ 0 for any solution with
initial condition (0, y0). The unstable manifold of the saddle (0,−1) is the line
segment {x = 0|y ∈ (−∞, 0)}, the upper part of which coincides with the the
lower part of the strong stable manifold {x = 0|y ∈ (−1,+∞)} of the saddle-
node. A disk containing these two fixed points constitutes a chart, containing the
codimension 2 degenerate vector field, that can be mapped onto a an open set
of S2: see Figure 8(b). The term −αx2y is necessary to make the lower saddle
hyperbolic (its eigenvalues are −2α and +1). A second hyperbolic saddle lies at
(2α/(4α3 − 1), 1/(4α3 − 1), but this fixed point is irrelevant to the bifurcations of

interest, and it can be driven out of any compact region by letting α→ (1/4)1/3 def
=

α∗ ≈ 0.62996. For the cases shown in Figure 8(b-j) we set α = 0.62996.

We now describe the codimension 1 bifurcations and structurally stable vector
fields that emerge from the codimension 2 bifurcation point for small µ1, µ2. Setting
ẋ = ẏ = 0 in (5), and noting that y = (x2−µ1)/(2αx+µ2) from the first equation,
we may eliminate y from the second equation to obtain the fixed point condition

(6) Fµ1,µ2,α(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0,

where

a4 = 4α3 − 1, a3 = 2α(4αµ2 − 1), a2 = 2µ1 + 5αµ2
2 − µ2,

a1 = 2αµ1 + µ3
2 and a0 = µ1µ2 − µ2

1.(7)

For µ1 = µ2 = 0 Eqn. (7) becomes ((4α3−1)x−2α)x3 = 0, with a triply-degenerate
root at x = 0 and the irrelevant root at x = 2α/(4α3 − 1). Setting α = α∗ so that
the latter root lies at∞, the quartic polynomial becomes a cubic with discriminant

(8) ∆ = 18a0a1a2a3 − 4a0a
3
2 + a2

1a
2
2 − 4a3

1a3 − 27a2
0a

2
3.

To obtain an explicit approximation for the saddle-node bifurcation curve µ1 =
f1(µ2;α∗), we consider this special case. Substituting the expressions (7) into (8)
and setting ∆ = 0 yields a polynomial relating µ1 and µ2 for which Fµ1,µ2,α∗(x0) =
F ′µ1,µ2,α∗(x0) = 0 and one of relevant roots x0 is multiple. Except for µ1 = µ2 = 0,
for which x0 = 0 and F ′′µ1,µ2,α∗(0) = 0, this is a double root, and it corresponds
either to a saddle-node bifurcation, or to the heteroclinic saddle-saddle connection
discussed below. Expanding µ1 in integer powers of µ2 and using the fact that
a3 = −2α+O(µ2) to determine the leading terms, we find the following expression
for the saddle-node bifurcation:

(9) µ1 = f1(µ2;α∗) = −µ
4
2

4
− 3 · 21/3µ5

2

8
− 5 · 22/3µ6

2

8
+O(µ7

2).
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(d)
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(e) (f)

(c)

m
2
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2
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2
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m
2

m
1

m
1
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1
(m

2
,a*)

f

(a)
e d
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h i
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Figure 8. Bifurcations of the gradient vector field (5). (a) The
bifurcation set in (µ1, µ2)-space near the codimension 2 point (0, 0):
saddle-nodes occur on the curve µ1 = f1(µ2;α) 6= 0; saddle-saddle
connections exist on the curve µ1 = f2(µ2;α) = {µ2

2/4α
2|µ2 ∈

(0,
√
α)}. (b) At µ1 = µ2 = 0 the unstable manifold of the saddle

at (0,−1) lies in the strong stable manifold of the saddle-node at
(0, 0). (c) For µ1 > max{f1(µ2;α), f2(µ2;α)} two unconnected
hyperbolic saddles coexist with a sink. (d) Along µ1 = f2(µ2;α) <
α2 with µ2 > 0 a codimension 1 saddle-saddle connection exists on
the invariant line x = −√µ1. (e) For f1(µ2;α) < µ1 < f2(µ2;α)
and µ2 > 0 two hyperbolic saddles and a sink exist with the lower
saddle’s unstable manifold passing left of the upper saddle’s stable
manifold. (f) On µ1 = f1(µ2;α) < 0 with µ2 > 0 a codimension
1 saddle-node occurs with the lower saddle’s unstable passing to
its left. (g) For µ1 < f1(µ2;α) only the lower saddle exists. (h)
On µ1 = f1(µ2;α) < 0 with µ2 < 0 a codimension 1 saddle-node
occurs with the lower saddle’s unstable entering from its right. (i)
Along µ1 = f2(µ2;α) with µ2 < 0 the lower saddle’s unstable
manifold lies on the invariant line x = −√µ1 and intersects the
strong stable manifold of the sink; this is not a bifurcation point.
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As in Eqn. (3), µ1 primarily controls the saddle-node bifurcation, but the second
parameter µ2 shifts the relative x positions of the upper and lower saddles, allowing
a codimension 1 heteroclinic connection to form with µ1 6= 0. Specifically, along
the curve

(10) µ1 = f2(µ2;α) =
µ2

2

4α2
, with µ2 ∈ (0,

√
α),

both saddle points lie on the invariant line x = −√µ1 and a connecting orbit from

the lower to the upper saddle exists (their y coordinates are 1
2

[
−1∓

√
1− µ2

2/α
]

respectively). This bifurcation curve is shown in Fig. 8(a) for α = α∗, together
with the saddle-node curve µ1 = f1(µ2;α∗) (the latter’s curvature is exaggerated
for clarity). Note that the discriminant ∆ = 0 for µ1 = µ2

2/4α
∗2 since both saddles

have the same x-coordinate. A similar invariant line x = +
√
µ1 connects the lower

saddle to the strong stable manifold of the sink for µ1 = µ2
2/4α

2 with µ2 < 0,
but since saddle-sink connections are structurally stable, no bifurcation occurs here
(Figure 8(j)).

In addition to the degenerate codimension 2 vector field at (µ1, µ2) = (0, 0) shown
in panel (b), panels (c-h) show representative vector fields on the codimension 1
bifurcation curves and structurally-stable vector fields in the three open regions in
the bifurcation set of panel (a). For the unfolding parameters used here, the saddle-
node and saddle-saddle connection bifurcation curves meet in a quadratic tangency
at (µ1, µ2) = (0, 0). The geometrical parameters (d, φ) chosen in the construction
that follows produce bifurcation curves that meet transversely at (0, 0), as shown
in Figure 9.

4. Geometrical part

In this section we prove Theorem 3. To do this, it suffices to create for any pri-
mary or secondary edge E = {v1, v2} of the metagraph G a suitable, one-parameter
family K(λ) of convex bodies, where λ ∈ [λ1, λ2], with a unique value λ? ∈ (λ1, λ2)
such that the graph of K(λ) is homeomorphic to v1 for any λ ∈ [λ1, λ

?), homeomor-
phic to v2 for any λ ∈ (λ?, λ2], and to the graph of the 1-codimension bifurcation
defined by E = {v1, v2} at λ = λ?. In this case we can choose a re-parametrization
of this family that will satisfy the topological equivalence condition of the theorem.

We prove the assertion only for secondary edges of G, because for primary edges
we may apply a simpler version of the same argument. As noted before, our ar-
gument does not apply to tertiary edges. Secondary edges correspond to non-local
bifurcations, so it is hard to construct by local truncations a suitable one-parameter
family of convex bodies that corresponds to any given secondary edge. To ensure
that local truncations suffice, we rely on Lemma 1, stating that any secondary edge
belongs to a triangular face of G of which the two other edges are primary. Since the
latter correspond to local saddle-node bifurcations, we can use local truncations.
We will show that any face of G spanned by two primary edges and one secondary
edge can be realized by a suitable 2-parameter family K(d, φ) of convex bodies (cf.
Definition 10). Such a family has (among others) the property that it collapses to
family described above if we restrict to any of the three edges of G, so the existence
of this suitable 2-parameter family proves the Theorem.
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d 

ϕ 
ϕB  

ϕBC(d)  

ϕC  

dBC 

dA AB ABC AC 

BC 

B C 

A 

Locus of saddle-nodes 

Figure 9. A codimension 2 bifurcation on a triangular face of
the metagraph G. The generic graphs A,B,C can be regarded as
subgraphs of a topology graph. For example, by adding one sta-
ble point, they are identical to triangulated representations of the
graphs (f,j,k) in figure 3. The degenerate graphs AB, AC, con-
taining codimension 1 saddle-node bifurcations SN, correspond to
primary edges fj, fk of G. The degenerate graph BC, containing
a codimension 1 saddle-saddle connection H2-H3 corresponds to
the secondary edge jk of the metagraph. Finally, the degenerate
graph ABC, containing the codimension 2 bifurcation, corresponds
to the triangular face fjk of the metagraph G

.

Let B and C be the primary graph representations of two gradient vector fields
that are connected via any given saddle-saddle bifurcation. Furthermore, let A be
their common ancestor, that is, B and C can be derived from A by twin vertex
splittings. By Lemma 1, such a graph exists and from [8] we know that each of
the three graphs A,B,C can be associated with the gradient vector fields of the
smooth, convex bodies KA,KB ,KC , respectively. We denote the degenerate graphs
belonging to the corresponding transitions by AB, AC, BC and ABC, respectively.
See Figure 9.

Definition 10. A 2-parameter family K(d, φ) of convex bodies, where d ∈ [0, dBC ]
and φ ∈ [φB , φC ] is called suitable if the function (d, φ) 7→ K(d, φ) is continuous
with respect to Hausdorff distance, and there is a value dA ∈ (0, dBC) and a function
φBC : [dA, dBC ] ∈ (φB , φC) such that the following holds:
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(10.1) for every φ ∈ [φB , φC ], K(0, φ) = KA,
(10.2) for every φ ∈ [φB , φC ] and d < dA, the graph of K(d, φ) is homeomorphic

to A,
(10.3) for every d > dA and φ < φBC(d), the graph of K(d, φ) is homeomorphic

to B,
(10.4) for every d > dA and φ > φBC(d), the graph of K(d, φ) is homeomorphic

to C,
(10.5) for every φ < φBC(dA), the graph of K(dA, φ) is homeomorphic to AB,
(10.6) for every φ > φBC(dA), the graph of K(dA, φ) is homeomorphic to AC,
(10.7) for every d > dA, the graph of K(d, φBC(d)) is homeomorphic to BC,
(10.8) the graph of K(dA, φBC(dA)) is homeomorphic to ABC.

If the same properties hold with the center of mass of KA as a fixed reference
point, we say that K(d, φ) is weakly suitable.

This definition is illustrated in Figure 9. We remark that, in the context of
Section 3, the line {d = dA|φ ∈ [φB , φC ]} and the curve {φ = φBC(d)|d ∈ [dA, dBC ]}
form the bifurcation set associated with the gradient vector field.

We prove the assertion in two steps: in the first step (Subsection 4.1), we con-
struct a weakly suitable family. In the second step (Subsection 4.2), we modify the
construction in such a way that the center of mass of every member of the family
coincides with that of KA, showing that the previously constructed family is not
only weakly suitable but can be made suitable.

4.1. Neglecting the motion of the center of mass. In the first step of the
proof we assume that the graph of every convex body is taken with respect to the
center of mass of KA, i.e. we assume that the displacement of the center of mass
does not influence the topology of the flow. For brevity we set K = KA, and we
consider only the case that the equilibrium point of K to be split is stable; if it
is unstable, a similar argument with an arbitrarily small, conical extension of the
surface can be applied.

Let s denote this stable point and the descendant points in the graphs B and C,
obtained by splitting s, be s′B , s

′′
B , s

′
C , s
′′
C , respectively. Appealing to Lemma 5 of

[8], we may assume that a neighborhood of s in ∂K belongs to a sphere S. Without
loss of generality, let the origin o be the center of this sphere, where the radius of S
is assumed to be one. Furthermore, let c denote the center of mass of K, and note
that, because s is a stable point, c is contained in the interior of the segment [o, s].

Let Γi, where i = 0, 1, 2, . . . ,m denote the edges of A starting at s, in counter-
clockwise order around s, from outside K. Clearly, for each value of i, the part of Γi
in S is a great circle arc. These edges are labeled in such a way that the edges of B
starting at s′B correspond to the Γi’s with i = 1, 2, . . . , k (and those starting at s′′B
correspond to the remaining edges), and the edges starting at s′C correspond to the
Γis with i = 1, 2, . . . , k + 1 (and those starting at s′′C correspond to the remaining
ones). Observe that, measured in counterclockwise order, either the angle from Γ1

to Γk+1, or the angle from Γk+1 to Γm is less than π. Without loss of generality,
we may assume that the angle from Γ1 to Γk+1 is less than π.

First, we truncate the spherical neighborhood of s by a plane P sufficiently close
to but outside s, and investigate the equilibrium points of the truncated body with
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respect to c. In the generic case we have two possibilities for the graph of the
truncated body KP . If K ∩ P does not contain a new stable point, then the graph
of KP remains homeomorphic to A. Furthermore, if K∩P does contain a new stable
point s′′, then a new saddle point is created on P ∩∂K, and every heteroclinic orbit
on K intersecting P ends up at s (cf. Figure 10), whereas those not intersecting it
remain the same. Finally, note also that K ∩P contains a stable point if, and only
if, the orthogonal projection of c onto P is contained in the interior of K ∩ P . (If
the projection is contained on the boundary of this circle, it is a degenerate case
corresponding to a saddle-node bifurcation.) We will find a 2-parameter family
of planes such that, if the intersection circle contains the projection of o on any
member, then the edges meeting the circle are either Γ1, . . . ,Γk, or Γ1, . . . ,Γk+1:
see Figure 10.

k

k

1
m

+1

s''

s

Figure 10. Truncation by the plane P (dBC , θ, φ) to create a body
with graph B containing a new saddle on P ∩ ∂K and a sink s′′.

An arbitrary plane in 3-space, and thus, in particular, the truncating plane, can
be defined with three parameters. For this purpose we use the following coordinates:

(i) d: the depth of the cut (i.e. the height of the truncated spherical cap),
measured from the point of the sphere where the tangent plane is parallel
to the cutting plane;

(ii) θ: the arc distance of the center cP of the intersection circle (the one created
by the cutting plane on the sphere), from s, measured on S;

(iii) φ: the angle of the great circle arc between cP and s, and from some fixed
great circle arc starting at s.

Up to a linear transformation, these parameters correspond to the polar coor-
dinates of the vector pointing from the origin o to its orthogonal projection onto
the truncating plane P , where the North Pole of S is s. Henceforth we denote the
plane by P (d, θ, φ).

Observe that, measured in counterclockwise order, we have ∠(Γ1,Γk) < ∠(Γ1,Γk+1) <
∠(Γ0,Γk+1) < ∠(Γ0,Γk+2). Choose some angle 0 < α < π satisfying

(11) ∠(Γ1,Γk+1) < α < ∠(Γ0,Γk+1).

Furthermore, for any sufficiently small, fixed value θ > 0, there is a value dBC =
dBC(θ, α) independent of φ such that for any plane P with parameters P (dBC , θ, φ),
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α is the angle between the two great circle arcs on the sphere, starting at s and
touching the intersection circle. Hence, by (11), there are some φB < φBC < φC ,
with φB and φC depending only on α, and φBC = φBC(d) depending on α and d,
such that

(12)

• for any φ ∈ [φB , φBC(d)) the plane P (dBC , θ, φ) intersects Γi if and
only if i = 1, 2, . . . , k;

• the plane P (dBC , θ, φBC(d)) intersects Γi if and only if i = 1, 2, . . . , k,
and it is tangent to Γk+1;

• for any φ ∈ (φBC(d), φC ] the plane P (dBC , θ, φ) intersects Γi if and
only if i = 1, 2, . . . , k + 1 (cf. Figure 10).

Now, consider the one-parameter family P (dBC , θ, φ), with θ fixed and depending
only on φ ∈ [φB , φC ]. If, for any value of φ in this interval, the projection of c lies
on K ∩ P (dBC , θ, φ), then, depending on the value of φ, the graph of the body
truncated by the plane is homeomorphic to either B or C, or in the degenerate case
to BC (cf. Figure 10). Since we intend to use local truncations only, we would
like to guarantee this property for any sufficiently small value of θ > 0. Before
proceeding further, we recall two lemmas from [8].

Lemma 2. Let r > |s − c| and δ > 0 be arbitrary. Then there is a convex body
K ′ ⊆ K satisfying the following:

(i) The graph of K ′ is homeomorphic to A.
(ii) Denoting the critical point of K ′ corresponding to s by s′, s′ has a spherical

cap neighborhood in ∂K ′, of radius arbitrarily close to r.
(iii) Denoting the integral curve of K ′ corresponding to Γi by Γ′i for every i, and

by ti and t′i the unit tangent vectors of Γi and Γ′i at s′, respectively, we have
that |t′i − ti| < δ.

We note that the same statement is proven in [8] for the case that s is an unstable
point, and the radius of its spherical neighborhood is arbitrarily close to any given
value 0 < r < |s− c|.

Lemma 3. Let C be the unit circle in the plane R2 with the origin o as its center,
and let c = (0, τ), where τ > 0. Let q1 = (µ1, ν1) and q2 = (µ2, ν2) be two points of
C such that v1 > 0.

(i) If [q1, q2] is perpendicular to [s, q1], then lim
µ1→0

µ2

µ1
= 2τ

1−τ .

(ii) If the angle of [q1, q2] and [c, q1] is π
2−Cµ1 for some constant C ′ independent

of µ1, then lim
µ1→0

µ2

µ1
= 2τ

1−τ + 2C ′.

Now, consider a plane P = P (dBC , θ, φ) with an arbitrary value of φ (cf. Fig-
ure 10), and let the closest and the farthest points of the circle C̄ = P ∩∂K from the
segment [o, s] be denoted by q2 and q1, respectively. For convenience, we imagine,
for the moment, the plane containing q1 = (µ1, ν1), q2 = (µ2, ν2) and c = (0, τ) as
R2 in Lemma 3: Figure 11.

For any sufficiently small θ > 0, we require that the orthogonal projection of c
on P lie in the interior of the segment [q1, q2]. Since ∠(q1, q2, c) <

π
2 , this property

holds if and only if ∠(q2, q1, c) <
π
2 for any sufficiently small θ > 0. Recall that

dBC is defined by the fact that the angle of the two tangent lines of C̄, passing
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Figure 11. An illustration for Lemma 3. The sinks s and s′′

(filled circles) and the saddle (circle with cross) of Figure 10 are
identified.

through p, is equal to α. Let C̄s, qs1 and qs2 denote the central projections of C̄,
q1 and q2, respectively, onto the tangent plane of K at s. Then, as θ → 0, the
limit of the angle of the two tangent lines of C̄s, passing through s, is equal to α.
Thus, an elementary computation yields that, as θ → 0, the limit of the ratio of the

x-coordinate of qs2 to that of qs1 is equal to
1+sin α

2

1−sin α
2

, implying that the same holds

for lim
θ→0

µ2

µ1
.

We conclude that our requirement that the orthogonal projection of c on P lies

inside [q1, q2] for any sufficiently small θ > 0 is satisfied if 2τ
1−τ <

1+sin(α/2)
1−sin(α/2) , but not

if 2τ
1−τ >

1+sin(α/2)
1−sin(α/2) . To guarantee the former, we apply Lemma 3, and choose δ > 0

sufficiently small, i.e., such that for the truncated body K ′ and heteroclinic orbits
Γi, the inequalities (11) remain true with the same value of α. Let c′ be the center
of mass of K ′ and o′ be the center of the spherical neighborhood of s. Furthermore,

let τ ′ = |s−c′|
|s−o′| . Note that for a suitable choice of r, we have 2τ ′

1−τ ′ >
1+sin(α/2)
1−sin(α/2) .

According to the previous paragraph, with a little abuse of notation, we assume
that for the original body K, for any sufficiently small θ > 0, the orthogonal pro-
jection of c on P = P (dBC , θ, φ) lies in the interior of P ∩K. Let dA = dA(θ, α)
denote the value of d, independent of φ, at which the projection of c lies on the
boundary of P ∩K.

We have shown that, for φ ∈ [φB , φC ] and θ is sufficiently small, the intersection
circle P (dBC , θ, φ) ∩K contains in its interior a new stable point with respect to
c. Thus, the graph of any such truncated body K̄ is homeomorphic to either B or
C, or to BC. Then we fix a sufficiently small value of θ, and take the 2-parameter
family of convex bodies K(d, φ), where d ∈ [0, dBC ], and φ ∈ [φB , φC ], defined
as the truncation of K by the plane P (d, θ, φ): see Figure 12). Finally, for any
value of φ, K(0, φ) = K, which shows that (10.1) in Definition 10 is satisfied. The
remaining properties in Definition 10 of a weakly suitable family follow from (3).
This completes the first step of the proof.

We note that the bifurcation diagram of Figure 9 in the geometric parameters
d, φ used for the construction of the truncating plane and that of Figure 8(a) in
the unfolding parameters µ1, µ2 of Section 3 are topologically but not differentiably
equivalent. As noted in Section 3, the bifurcation curves meet in a tangency in
Figure 8(a); however, they meet at a nonzero angle in Figure 9.
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Figure 12. The 2-parameter family of truncations used in the
construction. Variation of the angle φ of rotation of the truncating
plane results either in a saddle-saddle bifurcation, or in no bifur-
cation. Variation of the depth d of the truncation results in a
saddle-node bifurcation; the graphs belonging to the two extremal
values of φ are identified with capital letters.

4.2. Annihilating the motion of center of mass by an auxilary truncation.
In this subsection we modify the family K(d, φ) in such a way that the center of
mass of every member in the modified family remains at c. To do this we need
some additional assumptions on K.

Let L be the line passing through s and c, and let w denote the point of L∩ ∂K
different from s. We show that K = KA can be chosen in such a way that q is
not an equilibrium point, and that it does not belong to any edge of A. First we
modify the convex body K0 in class (1, 1) in [28] to satisfy this property. Since the
graph of K0 does not contain edges, we need only show that no line through the
center of mass passes through more than one equilibrium point.

Since K0 has D4 rotational symmetry, in a suitable coordinate system, its two
equilibrium points and center of mass c lie on the z-axis, and K0 is symmetric with
respect to the (x, y)-coordinate plane. Thus, all the tangent planes of K0, parallel
to the x-axis (i.e. satisfying the property that one of their translates contains the
x-axis), touch K0 at points in the (y, z)-plane. Clearly, cutting off a sufficiently
small part of K0 near the positive half of the x-axis does not change the number of
equilibria nor the primary equilibrium class {1, 1} of the body. The center of mass
c′ of the modified body K ′0 is in the open half space {x < 0}. Hence, if the tangent
plane of K ′0 at some point p is perpendicular to the segment [c′, p], then the outer
normal vectors of this plane have positive x-coordinates, implying that p is in the
open half space {x > 0}. To show that any graph A can be associated to a convex
body KA satisfying this property, we observe that, by [8, Theorem 1], KA can be
obtained from K ′0 by a finite sequence of local deformations.
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In [8] we also showed that a neighborhood of any point of a non-isolated hetero-
clinic orbit, or a sink, or a source can be truncated by a sphere without changing
the class of the graph of the body. Furthermore, by [8, Lemma 1], we obtain that,
applying a sufficiently small truncation at w, the line connecting the modified sta-
ble point and the modified center of mass intersects this spherical surface. Thus,
we may also assume that a neighborhood of w is a sphere S′. Nevertheless, note
that the center of S′ is not necessarily on the line L. Let cd,φ denote the center
of mass of the truncated spherical cap G(d, φ) near s. To obtain a modified body
K ′(d, φ), we truncate KA near q by a second plane P ′(d′, θ′, φ′), such that the cen-
ter of mass of the union of B, and the second truncated (open) spherical cap G′, is
c (cf. Figure 13). Clearly, in this case the center of mass of the doubly truncated
body K ′(d, φ) is identical to the center of mass c of K.

s

c(d,  )

G(d,  )

G'(d') L(d,  )

L

o

c

w

Figure 13. The second truncation near the critical point w op-
posite to s; the circular arcs lie on the spherical caps G and G′.

Let L(d, φ) denote the line connecting c and c(d, φ). First, let d′ be fixed. Then,
changing θ′ and φ′, the locus of the centers of mass of G′ is a part of a sphere S′d′ ,
concentric to S′, and the radius of this sphere depends on d′ and S′ only. Thus, if
θ > 0 is sufficiently small, for every line L(d, φ) and every (small) value of d′ there
is a unique position of G′ such that its center of mass lies on L(d, φ). Let us call
this cap G′ = G′(d′). Note that the center of mass of the union of G(d, φ) and
G′(d′) is c if and only if, the torques about c exerted by the two caps are equal.
Here, the distance of the center of mass of G′(d′) from c is approximately |q − c|;
that is a fixed value. Thus, by continuity, for every pair of values d, φ, there is
at least one value of d′ such that the center of mass of G(d, φ) ∪ G′(d′) is c. Let
G′(d, φ) be the spherical cap G′(d′), where d′ is the smallest value for which this
property holds. Then, clearly, G′(d, φ) depends continuously on d and φ, and the
2-parameter family K \ (G(d, φ) ∪G′(d, φ)) has the required properties.

5. Summary

In this paper we showed that the secondary classification of smooth convex solids,
based on the Morse-Smale complexes of their gradient vector fields, is not only
complete in the sense that all combinatorially possible Morse-Smale complexes can
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be realized on smooth, convex bodies, but it is also complete in the more gen-
eral, ‘dynamical’ sense that all generic transitions between Morse-Smale complexes
represented by non-isomorphic abstract graphs can be realized on one-parameter
families of convex bodies. Among trajectories of physical convex shape evolution
processes we find examples of such transitions, so our result implies that from a
purely geometrical viewpoint, there is no restriction on these trajectories.

Theorem 3 admits only one-parameter families exhibiting one single bifurcation.
However, if we only admit saddle-node bifurcations then, based on our argument in
Section 4 we can formulate a more general claim. A codimension one, generic saddle-
node is either a creation or an annihilation, depending on whether the number of
generic critical points increases or decreases by two. As stated before, at saddle-
saddle bifurcations the number of generic critical points does not change.

To formulate the claim we introduce

Definition 11. A generic, one-parameter family v(λ) of gradient vector fields on
the 2-sphere is called strictly monotone if it contains either only creations or only
annihilations and it does not contain any saddle-saddle bifurcations.

Using this concept, we can state the following corollary to Theorem 3:

Corollary 1. For any generic, strictly monotone, one-parameter family v(λ) of
gradient vector fields on the 2-sphere there exists a one-parameter family K(λ) of
(not necessarily smooth) convex bodies such that ∇rK(λ) is topologically equivalent
to v(λ) for every value of λ.

To extend this statement further, we make

Conjecture 1. Every equivalence class on the family of convex bodies, defined by
the tertiary classification system, is connected. That is, for any two convex bodies
K1 and K2 with the same topology graph A there is a one-parameter family K(λ)
of convex bodies, where λ ∈ [0, 1], such that K(0) = K1, K(1) = K2, and the graph
of K(λ) is A for every value of λ.

If Conjecture 1 is true, Corollary 1 can be extended to include not only strictly
monotone, but also generic families. Although our techniques do not admit the
investigation of tertiary edges of G, we also formulate

Conjecture 2. All tertiary edges of G are physical.

Regarding geophysical applications, we remark that in primary class {2, 2} one
of the secondary classes (that of ellipsoids) appears to be dominant and the other
appears to be entirely missing among natural pebble shapes. Our results show that
one could continuously transform members of one class into members of the other
class. Apparently, this process exists in natural abrasion only in one direction.
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