
ON MULTIPLE BORSUK NUMBERS IN NORMED SPACES

ZSOLT LÁNGI AND MÁRTON NASZÓDI

Abstract. Hujter and Lángi defined the k-fold Borsuk number of a set S in Eu-
clidean n-space of diameter d > 0 as the smallest cardinality of a family F of subsets
of S, of diameters strictly less than d, such that every point of S belongs to at least
k members of F .

We investigate whether a k-fold Borsuk covering of a set S in a finite dimensional
real normed space can be extended to a completion of S. Furthermore, we determine
the k-fold Borsuk number of sets in not angled normed planes, and give a partial
characterization for sets in angled planes.

1. Introduction

In 1933, Borsuk [5] posed the problem whether any set S of diameter d > 0 in
Euclidean n-space Rn is the union of n + 1 sets of diameters less than d. A proof of
the affirmative answer for n = 2 appeared in [5], and for n = 3 in [6] (for finite S, see
[9], [11]). Sixty years after the problem appeared, Kahn and Kalai [14] proved that for
large values of n the answer is negative. For surveys on Borsuk’s problem, see [3, 18].

Boltyanski [1] gave a characterization of bounded sets according to their Borsuk
number (that is, the least number of smaller diameter pieces that they can be par-
titioned into) in the Euclidean plane: Let ∅ 6= S ⊂ R2 be a bounded set that is not
a singleton. Then the Borsuk number of S is 3 if S has a unique completion (see
Definition 2.1) and 2 otherwise.

Grünbaum [8] was the first to consider the Borsuk numbers of sets with respect to
a metric distinct from the Euclidean, and determined the Borsuk numbers of sets in
the plane equipped with the `∞ norm. The problem was solved for arbitrary normed
planes in [4]:

Theorem 1.1 (Boltyanski-Soltan). Let S be a compact set in the normed plane with
unit ball B. Then the Borsuk number of S is

• a(S) = 4 if, and only if, B and S are homothetic parallelograms;
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• a(S) = 3 if, and only if, a(S) 6= 4, there is a unique completion C of S with
respect to B, and S satisfies the supporting line property: for any pair of
parallel supporting lines of C, S has a point on at least one;
• a(S) = 2 otherwise.

As a generalization of Borsuk’s problem, Hujter and Lángi [12] defined the k-fold
Borsuk number, ak(S), of a set S of diameter d > 0 as the smallest cardinality of a
family F of subsets of S, of diameter strictly less than d, such that every point of S
belongs to at least k members of F . Among other results, they determined the k-fold
Borsuk numbers of any set in the Euclidean plane.

Motivated by Boltyanski’s result, we investigate whether a (k-fold) Borsuk covering
of a set S can be extended to a completion of S. Theorem 1 states that such an
extension is possible in certain Minkowski spaces (ie. finite dimensional real normed
spaces) provided that S has a unique completion. The class of these Minkowski spaces
include Euclidean n-space for all n. This result has been known in the Euclidean plane
[1] but is new in higher dimensional Euclidean spaces. In Theorem 2, we extend this
result to not angled Minkowski planes (see Definition 3.2).

In Theorems 3, 4 and 5, we find the k-fold Borsuk numbers of sets in not angled
normed planes, and of sets that cannot be completed uniquely to a Reuleaux polygon
in angled planes.

2. Definitions and notations

We denote the closed unit ball centered at a point x ∈ Rn of a Minkowski space by
B(x), and its boundary, the unit sphere by S(x). For a set A, the intersection of unit
balls centered at the points of A is denoted as

BA =
⋂
x∈A

B(x).

Definition 2.1. A bounded set C in an n-dimensional Minkowski space is complete,
if no set of the same diameter properly contains C. (Note that a complete set is
clearly compact and convex.) A set S is a set of unique completion if there is a unique
complete set C containing S of the same diameter as S.

Proposition 2.2. Let S be a set of unit diameter in an n-dimensional Minkowski
space. Then

• S is complete if, and only if S = BS,
• S is a set of unique completion if, and only if, BS = B2S ie. BS is complete.

The first statement is due to Eggleston [7], where it is called the spherical intersection
property, the second is due to Moreno (Corollary 3 in [16]). Note that in the second
case the completion of S is BS.

We define the distance of a set A of a Minkowski space and a point x as dB(x,A) =
inf{dB(x, a) : a ∈ A}, where dB(x, a) is the distance of the points a and x in the
normed space with unit ball B.
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3. Extending a Borsuk covering in certain Minkowski spaces

Our goal is to extend a Borsuk covering of a closed set S of unique completion in
a Minkowski space to its unique completion BS. In general, a Borsuk covering of a
compact set may not extend to any of its completions: consider a pair of points which
in Euclidean space have many completions, all of whose Borsuk number is above two.

3.1. Extension of a Borsuk covering in certain Minkowski spaces. We define
the following “Lens Cutting Condition” which holds in certain Minkowski spaces:

(LCC)
For any two distinct points u and v in Rn with dB(u, v) ≤ 1 and x ∈
S(u) ∩ S(v) and ε > 0, there is a w ∈ Rn such that x /∈ B(w) but
B(w) ⊃ B(u) ∩B(w) \ εB(x).

Remark 3.1. It is not hard to see that (LCC) holds in all Euclidean spaces.

Theorem 1. If (LCC) holds in a Minkowski space then any k-fold Borsuk covering of
a closed set of unique completion extends to a k-fold Borsuk covering of its completion.

Proof. We prove the Theorem for k = 1, the general case follows from the same ar-
gument. Let S = Q1 ∪ . . . ∪ Qk be a Borsuk covering of a closed set S of unique
completion by closed sets of diameter at most r < 1. Note that a Borsuk covering of
the boundary of a set may be extended to the set in a straightforward way (cf. also
Remark 4.3). Thus, we will define sets Q′1 ∪ . . . ∪ Q′m = bd BS that form a Borsuk
covering of the boundary of the completion BS of S.

For all i, Q′i will contain Qi ∩ bd BS and some more points of bd BS. For an
x ∈ (bd BS) we take the index i such that d(x,Qi) is minimal (if it is not unique, we
take all such i), and include x into Q′i. Clearly, Q′i is closed.

Note that for any x ∈ BS \ S we have that
(*) there are no two distinct points u, v ∈ BS with dB(x, u) = dB(x, v) = 1.
Suppose the contrary. Then S ⊆ B2S ⊆ B(u) ∩ B(v). On the other hand, B2S is

the intersection of all unit balls that contain S, and hence by (LCC), B2S ⊆ (B(u) ∩
B(v)) \ {x}, contradicting x ∈ BS = B2S.

The family of the sets q′i is a Borsuk partition of bd BS. Indeed, let x, y ∈ Q′i. If x
or y is in S then clearly, d(x, y) < 1. If both are in Q′i \S then, by (*), d(x, y) < 1. �

3.2. Extension of a Borsuk covering in certain Minkowski planes. It is not
difficult to see that a strictly convex normed plane (that is, when the unit disk B is
strictly convex) satisfies (LCC), and thus has the extension property of Theorem 1.
Next, we consider a class of Minkowski planes that is wider than the class of strictly
convex planes, and where (LCC) does not hold, but the extension property still does.
The following definition is from [3] (cf. also [4]).

Definition 3.2. A normed plane with unit ball B is angled, if for some non-collinear
points a, b, c, we have [a, b] ∪ [b, c] ⊂ S.
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Theorem 2. Let S be a set of unique completion in a not angled normed plane, and
let C be the completion of S. Then any k-fold Borsuk covering F of S can be extended
to a k-fold Borsuk covering of C.

From this point on throughout this section, we assume that the Minkowski plane we
work with is not angled.

The following monotonicity lemma appeared in [15].

Lemma 3.3 (Lassak). Let t 7→ p(t) (with t ∈ [0, 1]) be a simple, closed, continuous
curve, defining the boundary of a complete body of diameter one in a Minkowski plane.
Let p = p(0), and let t1 and t2 be the smallest and the largest values of t such that
distB(p, p(t)) = 2. Then the function t 7→ distB(p, p(t)) is

• strictly increasing on the interval [0, t1],
• equal to one on [t1, t2], and
• strictly decreasing on [t2, 1].

Corollary 3.4. Let C be a complete body of diameter one in a Minkowski plane. Then,
for any p ∈ bdC we have the following.

• The set of points of C at unit distance from p is a connected arc of S(p)∩bdC.
• If ||q − p||B = ||r− p||B for some q, r ∈ bdC, then the arc of bdC, connecting
q and r and not containing p, belongs to the circle S(p).

Lemma 3.5. If C is a complete body in a Minkowski plane, and [a, b], [c, d] are two
disjoint diameters of C such that a, b, c, d are in counterclockwise order in bdC, then
[a, d], [b, c] ⊂ bdC and they are parallel.

Proof. Consider the quadrangle Q = conv{a, b, c, d}. Observe that as [a, b] and [c, d]
are diameters of C, neither C nor Q ⊆ C contains a translate of neither [a, b] nor [c, d]
in its interior. Thus, [a, c] and [b, d] are parallel, and they belong to bdC. �

Lemma 3.6 is a straightforward consequence of Theorems 33.7 and 33.9 of [3].

Lemma 3.6. Let S be a compact set of unique completion in a not angled normed
plane, and let C be its completion. Then, for any parallel supporting lines L and L′

of C, L or L′ contains a point of S. In other words, S satisfies the supporting line
property (see page 2).

Lemma 3.7. Let S be a compact set of diameter one and of unique completion, C.
Then, for any point x ∈ (bdC)\S, there is an open circle arc of radius one, containing
p and being contained in bdC, such that its endpoints and its center belong to S.

Proof. Let x ∈ (bdC) \ S. Then, since BS = C, there is a point p ∈ S such that
x ∈ S(p). Clearly, [p, x] is a diameter of C, and thus, p ∈ bdC. Let L and L′ be a
pair of parallel supporting lines of C such that x ∈ L and p ∈ L′. For simplicity, we
imagine these lines as vertical such that L is to the left of L′. Let [a, b] = C ∩ L and
[c, d] = C ∩ L′, and note that these segments might be degenerate. Without loss of
generality, we assume that a, b, c and d are in this counterclockwise order in bdC.
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First, we show that at least one of a and c belongs to S. Indeed, consider a sequence
of supporting lines Lm of C, with positive slopes, such that the limit of Lm ∩ C is
{a}. For any m, let L′m be the supporting line of C, parallel to and different from Lm.
Clearly, the limit of L′m ∩ C is {c}. Now, by Lemma 3.6, we have that for any m, Lm

or L′m contains a point of S. Thus, the observation follows from the compactness of S.
We may show similarly that at least one of b and d belongs to S.

Now we prove the assertion. If both [a, x] and [x, b] contain a point of S, then we
may observe that [a, b] ⊂ S(p), and thus, our lemma follows. Assume that exactly one
of these segments, say [x, b], contains a point of S. Then a /∈ S, and thus, c ∈ S. Let
G be the arc of (bdC) ∩ S(c), starting at x and above the line connecting x and c. If
G does not contain a point of S, then for some point c′ ∈ L′ \ [c, d], we have S ⊂ B(c′);
or in other words, c′ ∈ BS = C; a contradiction. Thus, G contains a point of S, which
yields the assertion.

We are left with the case that [a, b] ∩ S = ∅, which, in particular, implies that
c, d ∈ S. Note that if c 6= d, then, by Lemma 3.5, for any y ∈ relint[c, d], we have
C ∩S(y) = [a, b]. Thus, moving y slightly to the right, we can find a point y′ such that
S ⊂ B(y′), but [a, b] ∩B(y′) = ∅. This yields that C 6⊂ B(y′), or in other words that
y′ /∈ BC = C, contradicting y′ ∈ BS = C. Thus, we obtain that c = d. In this case,
similarly like in the previous paragraph, one can show that both arcs of (bdC)∩B(c),
starting at x, contain a point of S, and the assertion readily follows. �

Proof of Theorem 2. Note that it suffices to extend F to a k-fold Borsuk covering of
bdC.

Let F = {Q1, Q2, . . . , Qm} be a k-fold Borsuk covering of S. Without loss of general-
ity, we may assume that S is compact. Let ε be chosen in such a way that the diameter
of every member of F is at most 1− 3ε. Now, for every i, we set Q∗i = Qi + εB, and
observe that F∗ = {Q∗1, Q∗2, . . . , Q∗m} is still a k-fold Borsuk covering of S.

Consider the connected components of bdC \S. By Lemma 3.7, they are open circle
arcs of unit radius, with their centers contained in S. Note that F∗ is a k-fold covering
of any such arc not longer than 2ε. Since bdC has a bounded length, there are only
finitely many arcs that are not covered k-fold by F∗. Thus, by induction, it suffices to
prove that F∗ can be extended to cover k-fold at least one such arc.

Consider an arc G that is not covered by F∗ k-fold. Let p ∈ S denote the center,
and q, r ∈ S denote the endpoints of G. If, for every x ∈ G, p is the only point of C
at unit distance from x, then we can apply the argument in the proof of Theorem 1.
Thus, assume that for some x ∈ G and p′ ∈ C with p 6= p′, we have x ∈ S(p′), where
without loss of generality, we may assume that, say, [p, r] and [p′, x] are disjoint. Note
that since [p, r] and [p′, x] are diameters of C, we have that [p, p′] and [x, r] are parallel,
and are contained in bdC.

Let L and L′ be the line containing [r, x] and [p, p′], respectively. Observe that the
points diametrically opposite to any point in the relative interior of L ∩ C are the
points of L′∩C. Let y be the endpoint of L∩bdC closer to x than to r. If q ∈ L, then
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we may add the segment [q, x] to any Q∗i containing q, and [x, r] to any Q∗i containing
r. Thus, we may assume that y is a point of G.

Consider the case that the points diametrically opposite to y are only the points of
L′ ∩ C. Then we may add the segment [y, r] to any Q∗i containing r. On the other
hand, note that if some u ∈ bdC is diametrically opposite to any point of the arc
between y and q, then it is diametrically opposite to q as well. Thus, we may add this
arc to any Q∗i containing q.

p

p'

p''

q

r

x
y

L L'

Figure 1. An illustration for the proof of Theorem 2

Finally, assume that there is some point p′′ /∈ L′ ∩ C that is diametrically opposite
to y (cf. Figure 1). Then, clearly, the points p′, p, p′′, y are in this cyclic order in bdC,
and [y, p′′] and [q, p] are disjoint diameters of C, which yields, by Lemma 3.5, that
[p, p′′] and [q, y] are parallel, and both are contained in bdC. Thus, bdC, and also
S(p), contains an angle, which contradicts the conditions of the theorem. �

Corollary 3.8. Let S be a set of unique completion in a not angled normed plane, and
let C be the completion of S. Then for any value of k, ak(S) = ak(C).

4. The multiple Borsuk numbers of sets in a not angled normed plane

We start with three observations, which, for sets in a Euclidean space, appeared as
Remarks 1–3 in [12]. Their proofs are straightforward modifications of those in [12],
and hence we omit them.

Remark 4.1. The sequence ak(S) is sub-additive for every set S in any normed (or
metric) space. More precisely, for any positive integers k, l, we have ak+l(S) ≤ ak(S) +
al(S).
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Remark 4.2. Let S be a set of diameter d > 0 in a normed (or metric) space. Then
for every set S of diameter d > 0 and every k ≥ 1, we have ak(S) ≥ 2k. Furthermore,
for every value of k, if a(S) = 2, then ak(S) = 2k, and if a(S) > 2, then ak(S) > 2k.

Remark 4.3. Let S ⊂ Rn be a set of positive diameter in a normed space. Then for
every value of k, ak(S) = ak(bdS).

Let S be a bounded set in a normed plane. By Theorem 1.1, if S is not a set of
unique completion then a(S) = 2, which yields that for any k, ak(S) = 2k. Combined
with Corollary 3.8, it yields that it suffices to characterize the k-fold Borsuk numbers of
complete sets. To do this, we need a generalization of the notion of Reuleaux polygons
for normed planes (cf. also [21], [19] and [10]).

Definition 4.4. Let C be a complete set in a normed plane. If C is the intersection of
finitely many translates of B, we say that C is a Reuleaux polygon. If m is the smallest
number such that C is the intersection of m translates of B, then we say that C has
m sides.

Theorem 3. Let C be a complete set of diameter one in a normed plane, which is not
a Reuleaux polygon. Then for every k, ak(C) = 2k + 1.

Proof. Clearly, by Remark 4.2, for every k, we have ak(C) ≥ 2k + 1. Thus, we need
to show that if C is not a Reuleaux polygon, then C, or equivalently, bdC, can be
covered k-fold by 2k + 1 subsets of smaller diameters.

To do this, we prove the existence of 2k + 1 diameters [pi, p2k+1+i], where i =
1, 2, . . . , 4k + 2 of C, such that for any j 6= 2k + 1 + i, [pi, pj] is not a diameter of
C. Observe that from this, the assertion follows. Indeed, by Lemma 3.3, we have that
any two of these diameters intersect. Thus, we may label their endpoints in such a way
that p1, p2, . . . , p4k+2 are in counterclockwise order in bdC. Let Ai be the arc of bdC,
connecting pi and p2k+i and not containing p2k+1+i. Then Ai is of diameter less than
one, and the arcs A1+ks, where s = 1, 2, . . . , 2k + 1, form a k-fold Borsuk covering of
bdC.

For simplicity, for any point x ∈ bdC, we set G(x) = C ∩ S(x) ⊂ bdC. We choose
the required diameters as follows. Let [p1, p2k+2] be an arbitrary diameter of C. Let
q1, r1 and q2k+2, r2k+2 be the endpoints of the arcs G(p1) and G(p2k+2), respectively. It
follows from Lemma 3.3 that G(p2k+2) ⊆ G(q1)∪G(r1) and G(p1) ⊆ G(q2k+2)∪G(r2k+2).
Then, as no finitely many unit circle arcs cover bdC, X2 = bdC \ (G(q1) ∪ G(r1) ∪
G(q2k+2) ∪G(r2k+2)) 6= ∅.

Observe that for any x ∈ X2, ||x − p1||B and ||x − p2k+2||B are strictly less than
one, and any point diametrically opposite to x is also contained in X2. Let p2 ∈ X2

arbitrary. Since C is complete, there is some p2k+3 ∈ bdC such that [p2, p2k+3] is a
diameter of C. Then p2k+3 ∈ X2; that is, ||p2k+3 − p1||B and ||p2k+3 − p2k+2||B are
strictly less than one. Let us define q2, r2, q2k+3, r2k+3 similarly as for p1 and p2k+2.
Now, set X3 = X2 \ (G(q2) ∪ G(r2) ∪ G(q2k+3) ∪ G(r2k+3)). Since bdC is not covered
by finitely many unit circle arcs, we have X3 6= ∅. Thus, using the argument as for
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[p2, p2k+3], we can find a diameter [p3, p2k+4] with p3, p2k+4 ∈ X3, satisfying the required
conditions. Since C is not a Reuleaux polygon, repeating this procedure we may choose
the required 2k + 1 diameters for any value of k. �

Theorem 4. If C is an m-sided Reuleaux polygon of diameter one in the not angled
norm with unit disk B, then

(1) m is an odd integer,
(2) if m = 2s + 1, then the k-fold Borsuk number of C is ak(C) = 2k +

⌈
k
s

⌉
.

Proof. Let Gi, where i = 1, 2, . . . ,m, be unit circle arcs that cover bdC, and let pi, qi
and ri be the center and the two endpoints of Gi, respectively. Clearly, we may assume
that no Gi is a proper subset of any unit circle arc in bdC.

We label the points in such a way that in counterclockwise order, qi is the starting
and ri is the endpoint of Gi, and the points q1, q2, . . . , qm are in this counterclockwise
order in bdC. For simplicity, we call the Gis the sides, and their endpoints the vertices
of C. Note that r1, r2, . . . , rm are in this counterclockwise order as well, as otherwise
Gi ⊂ Gj for some i 6= j, which contradicts the assumption that C is m-sided. By
Lemma 3.3, we have that p1, p2, . . . , pm are also in this counterclockwise order.

Since C is complete, pi ∈ bdC for every value of i. Furthermore, since m is the
minimal number of unit circle arcs that cover bdC, there is no point that belongs to
more than two arcs. We observe also that if pi is in the relative interior of a segment
[x, y] ⊂ bdC, then, by Lemma 3.5, Gi = [qi, ri] is a segment. Thus, replacing Gi by,
say S(x)∩C, we still have a family of m unit circle arcs that cover bdC. This implies
that, without loss of generality, we may assume that no pi is in the relative interior of
a segment on bdC.

Consider, first, the case that two consecutive sides, say Gi and Gi+1 overlap. Then
qi, qi+1, ri and ri+1 are in this counterclockwise order in bdC. Thus, [pi, ri] and
[pi+1, qi+1] are disjoint diameters, which yields, by Lemma 3.5, that [pi, pi+1], [qi+1, ri] ⊂
bdC, and that they are parallel. Hence, for any two overlapping sides of C, the com-
mon part is a straight line segment.

Now we show that the intersection of any two consecutive sides of C contains the
center of exactly one side. Consider the sides Gi and Gi+1.

Case 1, Gi and Gi+1 do not overlap. Then ri = qi+1. Observe that pi, pi+1 ∈ S(ri)∩C.
Let G be the arc of bdC connecting pi and pi+1 and not containing ri. We show that
there is a point in the relative interior of G which is diametrically opposite only to ri.
Note that since C is a Reuleaux polygon, it yields that in this case C ∩ S(ri) must be
a side of C.

Let p be an arbitrary relative interior point of G, and assume that C ∩S(p) contains
not only ri, but some other point x as well. Without loss of generality, we may assume
that x ∈ Gi, which yields that [pi, ri] and [p, x] are disjoint diameters of C. Thus, by
Lemma 3.5, [p, pi], [ri, x] ⊂ bdC, and they are parallel. Since here p is an arbitrary
relative interior point of G, we have that either G = [pi, pi+1] or there is some relative
interior point z of G such that G = [pi, z] ∪ [z, pi+1]. Observe that G ⊂ C ∩ S(ri), and
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hence, as B is not angled, it follows that G = [pi, pi+1]. Furthermore, for some point
x ∈ C, we have that [ri, x] ⊂ bdC, and that [ri, x] and [pi, pi+1] are parallel. This
means that [ri, x] belongs to both S(pi) and S(pi+1), which contradicts our assumption
that Gi and Gi+1 do not overlap.

Case 2, Gi and Gi+1 overlap; or in other words, ri 6= qi+1. Then, similarly like in
Case 1, we have that [ri, qi+1], [pi, pi+1] ⊂ bdC, and they are parallel. Let L and L′

denote the line containing [pi, pi+1] and [ri, qi+1], respectively. Observe that S(pi) and
S(pi+1) both contain C ∩ L′, and thus, we have C ∩ L′ = [ri, qi+1]. Furthermore, note
that, for any point p in the relative interior of [pi, pi+1], the points of C diametrically
opposite to p are exactly the points of [ri, qi+1]. Thus, the center of any side of C
containing p is a point of [qi+1, ri]. Since we chose the sides of C in such a way that
no center is contained in a straight line segment in bdC, we have that only qi+1 or ri
can be the center of a side, and also that L ∩ C = [pi, pi+1].

Suppose, for contradiction, that both qi+1 and ri are centers, and let these sides be
Gj and Gj+1. Then, we have [pi, pi+1] ⊆ Gj ∩Gj+1, and, similarly like in the previous
paragraph, we may obtain that [pi, pi+1] = Gj ∩ Gj+1. Thus, qj+1 = pi and rj = pi+1.
Since qi 6= qi+1 = pj and qj 6= qj+1 = pi, it follows that [qi+1, qj] and [pi, qi] are disjoint
diameters of C. Hence, by Lemma 3.5, we have that [qi, qi+1] and [qj, pi] are parallel
and contained in bdC. Thus, [qi, qi+1] and [qi+1, ri] are both contained in S(pi), which
contradicts our assumption that the normed plane is not angled.

We have shown that the intersection of any two consecutive sides contains the center
of exactly one side. Since any point of bdC belongs to at most two sides of C, these
intersections are pairwise disjoint. As the number of centers is equal to the number of
intersections, it follows that the center of every side of C is contained in one of these
intersections. In fact, we showed a bit more: every center is the vertex of some other
side.

For every value of i, consider a point zi that belongs to Gi but no other side of C.
Note that since no point of bdC belongs to more than two sides of C, this is possible,
and also that, by Lemma 3.5, the segments [pi, zi], where i = 1, 2, . . . ,m, are pairwise
intersecting diameters of C. Clearly, the 2m points pi and zj form an alternating
sequence S in bdC, and each of the two open arcs of bdC, starting at, say, p1 and
ending at z1, contains exactly m− 1 points. Since the subsequence of S in any of the
above two arcs, starts with some zi and ends with some pj, we have that m− 1 is an
even number, and thus, m is odd.

Now we prove the second part. Let m = 2s+1. According to the previous paragraph,
we have that for every i, pi ∈ Gi+s ∩Gi+s+1. First, we show that the points zi can be
chosen in such a way that the set Z = {zi : i = 1, 2, . . . ,m} contains no diametrically
opposite pair.

Assume that for every i, zi belongs to only Gi, but Z contains a diametrically
opposite pair, say zi and zj. Then j = i− s or j = i+ s. Without loss of generality, we
may assume that zi and zi+s are diametrically opposite. From this, by Lemma 3.5, we
obtain that [zi, pi+s] and [zi+s, pi] are parallel and are contained in bdC. Let L be the
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line containing [pi+s, zi]. Note that pi+s is an endpoint of L∩C, and let x be the other
endpoint. Observe that pi−s /∈ L, as otherwise zi+s ∈ Gi−s, which is a contradiction.
In addition, x is not diametrically opposite to zi−s. Indeed, if [x, zi−s] is a diameter,
then [x, zi−s] and [pi−s, pi] are disjoint diameters, and thus Lemma 3.5 yields that
[x, pi−s], [zi−s, pi] ⊂ bdC, which contradicts our assumption that the normed plane is
not angled (cf. Figure 2). Now we choose any point y ∈ (bdC) \ L sufficiently close
to x, and replace zi by y. Then, clearly, y is diametrically opposite to neither zi−s nor
zi+s. Thus, to choose a subset Z that does not contain diametrically opposite points,
we start with any set and then, applying the argument of this paragraph, we may
replace the points one by one to reduce the number of diametrically opposite points.

pi+s zi x

i-sp

zi+s

zi-s

pi

L

Figure 2. An illustration for the proof of Theorem 4

We constructed a subset Z = {zi : i = 1, 2,m} such that for every i, zi belongs only
to Gi, and Z contains no diametrically opposite pair. Let Ai denote the closed arc of
bdC, which, in counterclockwise order, starts at zi and ends at zi+s. Observe that by
Lemma 3.3 and the choice of Z, no such arc contains a diametrically opposite pair. On
the other hand, the sets Ajs, where j = 0, 1, . . . , 2k+

⌈
k
s

⌉
− 1 and the indices are taken

mod m, covers bdC k-fold, and thus, they are a k-fold Borsuk covering of bdC. This
proves that ak(C) ≤ 2k +

⌈
k
s

⌉
.

To prove the other direction, we note that the k-fold Borsuk coverings of the set
{pi : i = 1, 2, . . . ,m} can be identified with the k-fold vertex-colorings of a (2s + 1)-
cycle. Since it is known (cf. [20]) that the k-fold chromatic number of such a cycle is
2k +

⌈
k
s

⌉
, the assertion follows. �

From Theorems 1.1, 3 and Remark 4.2, we immediately obtain the following.

Theorem 5. Let S be a set of positive diameter in a normed plane B.
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• If S is not a set of unique completion, or S does not satisfy the supporting line
property, then for every value of k, ak(S) = 2k.
• If S is a set of unique completion that satisfies the supporting line property (see

page 2) and the completion of S is not a Reuleaux polygon, then for every k,
ak(S) = 2k + 1.

5. Remarks and Questions

Remark 5.1. We note that our results cannot be extended to angled planes. For
example, Theorem 2 fails if the unit disk B is a parallelogram. Besides, any centrally
symmetric polygon with 4m sides is a Reuleaux polygon with 2m sides in its norm
(and thus, it has even sides according to our definition).

Remark 5.2. The k-fold Borsuk number of an o-symmetric polygon P with 2m sides
in its own norm is ak(P ) = 2k +

⌈
2k

m−1

⌉
.

Proof. Let the vertices of the polygon be p1, p2, . . . , p2m in counterclockwise order.
Then pi is diametrically opposite to pi+k−1, pi+k and pi+k+1. Thus, the inequality
ak(P ) ≥ 2k +

⌈
2k

m−1

⌉
follows from the Pigeonhole Principle. On the other hand, if Gi

denotes the shorter arc in bdP , connecting the midpoints of [pi, pi+1] and [pa+k−1, pi+k],
then, clearly, Gi contains the vertices of no diameter of P . Thus, the arcs Gi+t(k−1),

where t = 1, 2, . . . , 2k +
⌈

2k
m−1

⌉
, form a k-fold Borsuk-covering of bdP . �

Remark 5.3. It is proven in [4] that in any angled normed plane there is a complete
set of Borsuk number two. In other words, for a normed plane, the result in [1] about
the Borsuk numbers of sets in the Euclidean plane holds in the same form if, and only
if the plane is not angled. According to our results, the same can be observed about
the multiple Borsuk numbers of sets.

Remark 5.4. In any angled normed plane, there is a Borsuk covering of a set of
unique completion, satisfying the supporting line property (see page 2), that cannot
be completed to a Borsuk covering of its completion.

Proof. If the norm is a parallelogram norm, the remark trivially follows. Hence, we
may assume that the unit disk B is not a parallelogram, and that its boundary contains
[x, y] ∪ [y, z] and [−x,−y] ∪ [−y,−z]. Without loss of generality, we may assume that
the lines, containing [x, y] and [y, z], intersect B in [x, y] and [y, z], respectively.

Let C be the truncation of B with a line connecting the relative interior points w1

and w2 of [x, y] and [y, z], respectively. Clearly, the unique completion of C is B, and
C satisfies the supporting line property. Let w be the midpoint of [w1, w2]. Let u1

and u2 be relative interior points of [−x,−y] and [−y,−z], respectively (cf. Figure 3).
Then the shorter arcs of bdC connecting w to u1, u1 to u2, and u2 to w, is a Borsuk
covering of bdC. On the other hand, y cannot be added to any of these arcs, which
yields that this covering cannot be extended to any Borsuk covering of B. �
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x

-x

w1

w2

w y

z

-y

-z
u2

u1

Figure 3. A Borsuk covering may not be extended in an angled plane

Note that if B is a parallelogram, then the only complete sets of unit diameter are
the translates of B (cf. [22], [17] or [13]).

Remark 5.5. Let S be a compact set with a(S) = 3 in the normed plane where B is
a parallelogram. Then ak(S) = 3k for every k.

Proof. Without loss of generality, let B be the unique completion of S. By the sup-
porting line property, S contains at least two consecutive vertices of B. Furthermore,
since B is the unique completion, S contains a point of the opposite side of B. Thus,
S contains three points at pairwise normed distances equal to diamS, which yields
ak(S) ≥ 3k. By sub-additivity, we have ak(S) ≤ 3k, and the assertion readily fol-
lows. �
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