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ABSTRACT 
This paper presents a novel numerical procedure for computation of limit and 

shakedown using node-based smoothed finite element method (NS-FEM) in combination 
with second-order cone programming (SOCP). The obtained discretization formulation 
is then cast in a form which involves second-order cone constraints, ensuring that the 
underlying optimization problem can be solved by highly efficient primal-dual interior 
point algorithm. Furthermore, in the NS-FEM, the system stiffness matrix is computed 
using the smoothed strains over the smoothing domains associated with nodes. This 
ensures that the size of the resulting optimization problem is kept to a minimum. The 
efficiency of the present approach is illustrated by examining several numerical examples.
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1. INTRODUCTION
Limit and shakedown analysis 

(LSA) plays an important role in structural 
design and safety assessment of many 
engineering components and structures, 
from simple metal forming problems to 
large-scale engineering structures and 
nuclear power plants. Current research 
in the field of LSA is focussing on the 
development of numerical tools which are 
sufficiently efficient and robust to be of 
use to engineers working in practice [1]. 

Recently, a class of smoothed element 
methods (SFEMs) has been developed and 
applied to a variety of practical problems. 
The strain smoothing technique, which 
was originally proposed by Chen et al. 
[2] to stabilize a direct nodal integration 
in mesh-free methods, has been applied 
to the framework of FEM to formulate 
various smoothed finite element methods 

(SFEM) [3], including a cell-based SFEM, 
a node-based SFEM, an edge-based SFEM 
and a face-based SFEM [3]. Each of four 
new smoothing methods has different 
characters and advantages. In limit and 
shakedown, Tran et al. [4] have applied 
the ES-FEM and primal–dual algorithm 
based on a Newton iterative method to the 
problems using Koiter’s theorem, in which 
fictitious elastic stresses are assumed. 

Following this line of research, the 
main objective of this paper is to further 
develop NS-FEM for LSA of structures 
made of elastic-perfectly plastic material. 
However, in this paper the underlying 
optimization problem is transformed 
into the form of a SOCP problem with a 
large number of variables and nonlinear 
constraints so that it can be solved using the 
state-of-the-art primal-dual interior point 
algorithm. Moreover, in the NS-FEM the 
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system stiffness matrix is computed using 
the smoothed strains over the smoothing 
domains associated with nodes of element 
mesh. This ensures that the size of the 
resulting optimization problem is kept 
to a minimum. Numerical examples are 
presented to demonstrate the accuracy and 
effectiveness of the proposed method.

2. BRIEF OF THE NS-FEM 
In NS-FEM, using the mesh of 

elements we further discretize the problem 
domain into smoothing domains based 

on nodes of the elements such that 
 and , , in 

which Nn is the total number of nodes of 
all elements in the entire problem domain. 
Moreover, NS-FEM shape functions are 
identical to those in the FEM. However, 
instead of using compatible strains, the 
NS-FEM uses strains smoothed over 
local smoothing domains. These local 
smoothing domains are constructed based 
on nodes of elements as shown in Fig.1. 
A strain smoothing formulation is now 
defined by the following operation:

Fig 1. Three-node triangular mesh and smoothing domains

where Φ(x) is a given smoothing function that satisfies at least unity property 

(1)

(2)

(3)

(4)

and in this work Φ(x) is assumed to be a step function given by 

where  is the area of the 
smoothing domain Ωk and computed by  

 in which  is the 
number of elements connected to the node k 

and  is the area of the ith element around the 
node k.

In term of nodal displacement vectors 
dI, the smoothing strains  can be written as:
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where  is the number of nodes 
that are directly connected to node k, and 

 is the smoothed strain-displacement 

matrix on Ω(k) the domain which is 
calculated numerically by an assembly 
process similarly as in the standard FEM 

(5)

(6)

(7)

in which matrix is the 
compatible strain-displacement matrix 
for the jth element around the node k. It 
is assembled from the compatible strain-
displacement matrices  BI(x) of nodes in 
the set  which contains nnel nodes of 

the jth linear element. Since linear shape 
functions are used, the entries of  are 
constants and therefore of  are also 
constants.  

The smoothed domain stiffness 
matrix is then calculated by

where C is the matrix of material 
constants, note that because the smoothed 
strains  in Eq. (1) are constants, the 
stresses  are also constants in the 
smoothing domain Ω(k).

3. LIMIT AND SHAKEDOWN 
ANALYSIS BASED ON ES-FEM

3.1. Kinematic formulation
Considering a continuum body is 

subjected to variable loads which may 
assume any value inside a bounded load 

domain. Let us now assume that the load 
domain is a convex hyperpolyhedron 
with m vertices  (i=1,..,m). At each 
load vertex, the kinematical condition 
may not be satisfied, however the 
accumulated strains over a load cycle  
must be kinematically compatible. Let 
the fictitious elastic stress vector be σE. 
According to Koiter’s theorem [5], the 
upper bound shakedown limit a+ may be 
found by the solution of the following 
optimization problem [6].

Min

s.t.

(a)

(b)

(c)

(d)

in which  is the plastic 
dissipation power per unit domain. 
Equation (7) implies the normalized 
condition, i.e. the external load power is 
equal to one. By discretizing the entire 

problem domain into smoothing domains, 
applying the strain smoothing technique 
and using Von Mises yield criterion, 
formulations (7) can be rewritten in the 
following form:

min
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where σ0 is yield stress and 

 for plane stress problem. It 

is worth noting that when m = 1, formulation 
(8) reduces to a limit analysis problem.

3.2. Solution procedure with second 
order cone programming

The above LSA problem is a non-
linear optimization problem with equality 
constraints. The plastic dissipation, i.e. the 
objective function can now be written in 
the form:

(8)
s.t.

(9)

where  are additional variables defined by

(10)

Introducing auxiliary variables t1, t2, . . . ,tm*Nn
, optimization problem (8) can be cast 

as a SOCP problem:

(11)min

s.t.

4. NUMERICAL EXAMPLE
In this section, the performance of the 

proposed solution procedure is illustrated 
via a benchmark problem in which 
analytical and other numerical solutions 
are available. The example deals with a 
square plate with a central circular hole 
with constant modulus of elasticity and 
thickness under independently varying 
pressure loads p1 and p2 as in Fig.2(a). The 
limit load factor was obtained analytically 
by Gaydon and McCrum [7] using plane 

stress hypothesis and von Mises yield 
criterion. Numerical limit and shakedown 
analyses were also investigated by some 
authors, e.g. Garcea et al. [8] for the case 
of D/L=0.2 and Heitzer [9], Vu [10], 
Tran [11] for different ratios of D/L to 
evaluate the elastic–plastic behaviour 
of the structure. Owing to its symmetry, 
only the upper-right quarter of the plate 
is modeled, see Fig2.(b). Symmetry 
conditions are enforced on the left and 
bottom edges.
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Limit analysis
The procedure is first applied to the 

case of D/L=0.2 to verify the convergence 
of NS-FEM solutions in comparison 
with those of the FEM-Q4 and ES-FEM. 
Numerical solutions obtained for different 
models with variation of N are shown in 
Table 1. From these results, it  is observed 

that all numerical limit load factors 
converge to the exact one, and NS-FEM 
can produce more accurate solutions than 
FEM and ES-FEM. Moreover, the present 
solution procedure with the use of second-
order cone programming (SOCP) is more 
effcient and robust.

Fig 2. A square plate with a circular hole: 
(a) geometry and loading, (b) finite element mesh

Table 1: Collapse load multiplier of the plate with variation of N (p2 = 0)

Formulation
N x N Analytical 

solution6 x 6 12 x 12 24 x 24 48 x 48

FEMQ4 0.8238 0.8090 0.8041 0.8021

0.8ES-FEM 0.8217 0.8077 0.8030 0.8013

Present method 0.8103 0.8035 0.8012 0.8004

Next, in order to examine the 
geometric effect of the circular hole, 
various values of ratio D/L are considered. 
The obtained solutions were reported in 

Table 2. It can be observed that in case 
when N = 12 are used, p1 = 1 and p2 = 0, the 
present solutions are in good agreement 
with those obtained previously.
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Furthermore, Table 3 compares 
the best solutions obtained using the 
present method with solutions obtained 
previously by different limit analysis 
approaches (kinematic or static) using 
other FEM and meshfree models for case. 
Again, it can be seen that the NS-FEM 
solutions agree well with published 
ones. Specially, the NS-FEM produces 

the solutions that are more accurate 
(lower) compared with those obtained 
by Zouain et al. [15] using the mixed 
formulation (when p2 = 0), despite 
the fact that our model uses only 544 
degrees of freedom (DOFs) compared 
with 2014 DOFs used in [15]. The 
plastic dissipation distribution for the 
case D/L=0.2 is shown in Figure 3.

D/L Heitzer [9] Tran [12] Tran et al. [11] ES-FEM Present 
method

0.1 0.8951 0.9017 0.8932 0.9054 0.9021

0.2 0.7879 0.8015 0.7967 0.8077 0.8035

0.3 0.6910 0.7022 0.6930 0.7084 0.7039

0.4 0.5720 0.5914 0.5760 0.5961 0.5820

0.5 0.4409 0.4012 0.4011 0.4120 0.4022

0.6 0.2556 0.2425 0.2429 0.2524 0.2448

0.7 0.1378 0.1254 0.1277 0.1343 0.1288

0.8 0.0565 0.0523 0.0521 0.0573 0.0535

0.9 0.0193 0.0123 0.0133 0.0155 0.0131

Table 3: Collapse load multiplier with different loading cases and N = 16 
compared with previously obtained solutions D/L=0.2

Approach Authors
Loading cases

p2 = p1 p2 = p1/2 p2 = 0

Kinematic

(upper bound)

da Silva and Antao [13] 0.899 0.915 0.807

Le et al. [14] 0.895 0.911 0.801

ES-FEM [4] 0.896 0.911 0.801

Present method 0.894 0.911 0.802

Mixed formulation Zouain et al. [15] 0.894 0.911 0.803

Analytical solution Gaydon and McCrum [7] – – 0.800

Static

(lower bound)

Chen et al. [16] 0.874 0.899 0.798

Gross-Weege [17] 0.882 0.891 0.782

Table 2: Collapse multiplier when p1 = 1 and p2 = 0
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5. CONCLUSION
A novel numerical LSA procedure 

that uses the node-based smoothed finite 
element method (NS-FEM) and second-
order cone programming has been 
proposed. Advantages of applying the 
NS-FEM to LSA problems are that the 
size of optimization problem is reduced 

Shakedown analysis
The exact solution of this problem is 

not available and the first numerical study 
on this problem was shown by Belytschko. 
Table 4 compares the present solution with 

those in the literature for three special load 
combinations of p1 and p2. It can be seen 
that solutions obtained using the proposed 
numerical procedure are close to those 
obtained previously.

Table 4: Elastic shakedown load factors for D/L = 0.2

Approach and Methods Authors
Loading cases

p1 = p2 p2 = p1/2 p2 = 0

Lower bound Zhang [18] 0.431 0.514 0.596

Nonlinear inequality approach (LB)  Genna [19] 0.478 0.566 0.653

BEM (LB)  Liu et al. [20] 0.477 0.549 0.647

Reduced basis technique (LB) Gross-Weege [17] 0.446 0.524 0.614

Mixed approach Zouain et al. [15] 0.429 0.500 0.594

Adaptive approach  Krabbenhøft et al. [23] 0.430 0.499 0.595

Iterative method  Garcea et al. [8] 0.438 0.508 0.604

Dual algorithm  Tran et al. [11] 0.444 0.514 0.610

Linear programming approach (UB) Corradi and Zavelani [21] 0.504 0.579 0.654

Upper bound   Carvelli et al. [22] 0.518 0.607 0.696

Present method 0.518 0.593 0.694

and accurate and stable solutions can be 
obtained with minimal computational 
effort. Numerical examples are given to 
demonstrate the efficiency and accuracy 
of the present method. It is shown that the 
proposed procedure is able to solve large-
scale problems in engineering practice.
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