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ABSTRACT  
Recently, a cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the first-

order shear deformation theory (FSDT) was proposed for static and free vibration analyses of Mindlin 
plates. The CS-FEM-DSG3 uses three-node triangular elements that can be easily generated 
automatically for arbitrary complicated geometric domains. This paper further extends the CS-FEM-
DSG3 for static, free vibration, and dynamic response of the stiffened plate resting on viscoelastic 
foundation subjected to a moving vehicle. The viscoelastic foundation is modeled by discrete springs and 
dampers whereas the stiffened plate can be considered as the combination between the Mindlin plate and 
the Timoshenko beam elements. The moving vehicle is transformed into one concentrated load at its 
central point. Some numerical examples are investigated and numerical results show that the CS-FEM-
DSG3 overcomes shear-locking phenomena and has a fast convergence. The results also illustrate the 
good agreement of the CS-FEM-DSG3 for static and free vibration analyses of un-stiffened plate 
compared with the previous published methods. In addition, the numerical results for dynamic analysis of 
stiffened plates by the CS-FEM-DSG3 also show the expected property in which the deflection of the 
stiffened plate is much smaller than those of the un-stiffened plate.  
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1. Introduction 

Studying behaviors of the plates 
resting on the foundation subjected to 
moving loads is important in civil structures 
and the real life applications. Modeling plate 
resting on the foundation may be used to 
analyze the behavior of building 
foundations, reinforced concrete pavements 
of highways, airport runways etc. The 
foundation is usually classified into two 
models: (1) the Winkler’s foundation and 
(2) the two parameters elastic foundation. In 
addition, the model of plate is based on two 
kinds of assumption namely: (1) the 
Kirchhoff plate and (2) the Mindlin plate. In 
the beginning, the analytical solutions were 
adopted to solve the problem Error! 
Reference source not found.], Error! 
Reference source not found.]; however, 
this method was difficult to apply for the 
general cases of the problem because it 
required the problem have to be simplified 
such as the behavior of road was assumed 
by the 1D beam instead of by the 2D plate. 
The numerical methods were also adopted 
to solve the problems such as: the finite 
element method (FEM) Error! Reference 
source not found.], the boundary element 
method (BEM) Error! Reference source 
not found.], Error! Reference source not 
found.] and other methods Error! 
Reference source not found.], Error! 
Reference source not found.]. 

The numerical methods are superior 
to the analytical methods because of their 
simplicity and ability to be easily applied 
to several problems whose boundary 
conditions are complex. One of the most 
superior numerical methods is the finite 
element method (FEM). Nevertheless, the 
FEM also has some drawbacks when it is 
applied to specific problems. Especially, 
when analyzing behavior of plates, the 
isoparametric elements and high order 
conforming elements are usually adopted 
but simultaneously they also exist some 

different disadvantages. The isoparametric 
elements are simplest; conversely, they 
encounter “shear-locking” phenomena and 
get a low convergence rate. While the high 
order conforming elements usually are 
very complex and require high 
computational cost in spite of their higher 
convergence rate. In the trend of 
developing the FEM for plate/shell, new 
kinds of the isoparameter element were 
introduced. These elements not only 
overcome shear-locking but also improve 
the convergence rate of the original 
elements. Along with these trends, 
Nguyen-Thoi et al. Error! Reference 
source not found.] recently proposed a 
new modified isoparametric element by 
combining the cell-based smoothed 
technique with the discrete shear gap 
method, namely the cell-based smoothed 
discrete shear gap method (CS-FEM-
DSG3). The CS-FEM-DSG3 shows that it 
is very suitable to apply for analyses of 
both thin and thick plates. Furthermore, it 
can be extended to several kinds of plate 
such as stiffened plate Error! Reference 
source not found.], FGM plate Error! 
Reference source not found.], composite 
plate Error! Reference source not 
found.], etc. 

In this paper, a study on the static and 
dynamic analyses of plates resting on the 
homogeneous Winkler viscoelastic 
foundation subjected to a moving vehicle is 
presented. In addition, an analysis to 
interpret the effect of stiffeners to the plate 
is performed. After reinforced by beams, 
the stiffness of structure is increased 
significantly. In the paper, the triangular 
Mindlin plate element, CS-FEM-DSG3, is 
incorporated with the linear two-node 
Timoshenko beam element. The 
displacement compatible condition 
between the plate and the stiffener is 
imposed so that displacement fields of the 
stiffener can be expressed in terms of the 
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midsurface displacement of the plate. 
Some numerical results by CS-FEM-DSG3 
are performed and compared with those by 
other methods to illustrate its accuracy and 
reliability. Moreover, some comments and 
discussions about the effect of stiffened 
plate on viscoelastic foundation, which 
have not been mentioned much before, are 
presented. 

2. Weak-form for stiffened plates resting 
on viscoelastic foundation 

The model of a plate resting on 
viscoelastic foundation is shown as in 
Figure 1 where the viscoelastic foundation 
is considered as a system including discrete 
springs and dampers. The foundation has 

the parameters given by: (1) foundation 
stiffness fk ; and (2) damping coefficients 

fc . The plate resting on foundation based 
on Mindlin plate theory is stiffened by the 
beams based on Timoshenko beam theory 
as shown in Fig 2. Some assumptions for 
the stiffened plate on viscoelastic 
foundation are followed as: (1) the 
displacements of plate and stiffeners at the 
contact positions is the same, (2) the total 
strain energy of the stiffened plate is the 
sum of that of plate and stiffeners, and (3) 
there are no splitting between stiffened 
plate and foundation Error! Reference 
source not found.]. 

 

Figure 1. Model of a plate resting on viscoelastic foundation subject  
to a moving load 

According to the second assumption, 
the total strain energy of stiffened plate 
resting on viscoelastic foundation can be 
expressed as 

1

stN

p st k di
U U U U U


    ; (1) 

where stN  is the number of stiffeners and 

pU , stU , kU , dU  are the energies of plate, 
stiffeners, springs, and dampers, 
respectively. Particularly, the components 
of the total strain energy in of structures 
have formulations as following Error! 
Reference source not found.], Error! 
Reference source not found.], Error! 
Reference source not found.]. 

1 1 1d d d
2 2 2p p p

T T T
pU

  
       ε D ε κ D κ γ D γ ; (2) 

 1 d
2 

  ε D ε
st

Tst st st
st stU ; (3) 

d


  T
k fU w k w ; (4) 

d


  T
d fU w c w . (5) 

In Equation (2), ε L um m , κ L ub , and 
γ L us  are the membrane, bending, and 

shear strains of the plate, respectively, 

where  0 0 0, , , ,
T

x yu v wu    is the 
displacement field of the plate and 

, , ,i i m b sL , the gradient operator matrices, 
are given in Error! Reference source not 
found.Error! Reference source not 
found.] and Error! Reference source not 
found.]. The displacement field uis 
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defined by five components 0u , 0v , w, x , 
and y  which are the displacements in the 
plane of the plate, the out-of-plane 
deflection, and the rotations of the normal 
to the un-deformed middle surface in the x-
z and y-z, respectively, with positive 
direction are defined as Fig 2. Lastly, the 
integral domain 2

p R   is middle surface 
of plate as shown in Fig 2 and , , ,i i m b sD  
which are the material matrices can be 
found in Error! Reference source not 
found.]. 

In Equation (3), st st
stε L u  is strain 

matrix of a stiffener where 
stu is the 

displacement field of stiffener in local 
coordinate; and stL , the gradient operator 
matrix, is also given in Error! Reference 
source not found.].  , , , , T

st r s z r su u uu    
where ru  is the axial displacement; su  is 
the lateral displacements in the plane of the 
plating; zu  is the transversal deflection; r  
and s  are the rotations made by the 
normal of the middle surface about the s 
and r axes, respectively. The relationship 
between stiffener’s displacements in the 
local and global coordinate can be found in 
Error! Reference source not found.]. 
Furthermore, the displacements of 
stiffeners can be linked with those of plate 
by using the assumptions as discussed in 
Error! Reference source not found.]. 
Finally, the integral domain  st R  is 
middle line of stiffener Fig 2 and stD , the 
material matrix of stiffener, have the 
formulation as in Error! Reference 
source not found.], Error! Reference 
source not found.]. 

In Equation (5), w  is the time 
derivative of the deflection of plate.  

Next, in dynamic analysis of the 

problem, it is necessary to find the total 
potential energy of the stiffened plate 
subject to a moving vehicle. Similar to the 
way to find the total strain energy, the total 
potential energy has the form of 

1

stN

p sti
T T T


  ; (6) 

where pT  is the potential energy of plate 
given by 

1 d
2 

  u m u 
p

T
pppT  (7) 

and stT  is the potential energy of a stiffener 
given by 

 1 d
2 

  Tu m Tu 
st

T
st st stT  (8) 

in which u  denotes derivative with respect 
to time of the displacement field and pm , 

stm  are mass matrices of the plate and 
stiffener, respectively, defined by 

 3 3diag , , , 12, 12p h h h h hm  (9) 

and 

 
2

2

01 0 0
0 1 0 0
0 0 1 00

00 0
0 0 0

st
s

s z

e
e

A
I Aee

I AIe e







 
   

m (10) 

in which   is the density of the plate; h is 
the thickness of plate; A is section area of 
the stiffener; Is is second moment of the 
stiffener cross-sectional area about an axis 
parallel with the s-axis and touching the 
centroid of the stiffener; Iz is second 
moment of the stiffener cross-sectional 
area about the z-axis; and e is the 
eccentricity between plate and stiffener as 
in Fig 2. 
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Fig 2. Model of a stiffened plate and the global and local coordinate systems of 

stiffener. 
Finally, the standard Galerkin weak-form of the transient analysis of stiffened plate 

resting on viscoelastic foundation can now be written as 

 

 
d d d d

d d

d d d

stst
stst

T T T T
m m m b s p

T T Tst st st
st p st

NN

T T T
f fw k w w c w

   

 

  

   

 

  

   

   

   

   
  

  

ε D ε κ D κ γ D γ u m u

ε D ε u T m Tu

u b







  (11) 

 

where   0 0 , 0 0
T

p x yb  in which 

 ,p x y  is the distributed load applied on 
the plate. The discrete system of equations 
by FEM will be obtained by replacing the 
displacement field in Equation (11) by 
approximation of it as in the following 
section. 

3. Brief of the CS-FEM-DSG3 
formulation  

In this paper, the middle plane of the 
plate is divided to a set of the triangular 
elements. In each triangular element, the 
CS-FEM-DSG3 is used to analyze 
behavior of plate resting on elastic 
foundation. The CS-FEM-DSG3 is a 
combination of the discrete shear gap 
method using three-node triangular 
element (DSG3) with the cell-based 
gradient smoothing technique (CS-FEM). 
In the formulation of CS-FEM-DSG3, each 
of the original elements is divided to three 
sub-triangular elements, and then in each 
sub-triangle, the stabilized DSG3 is used to 
compute the strain field of plate. Finally 

the strain smoothing technique on the 
whole triangular element is used to smooth 
the strains on these three sub-triangles. 
Details of the formulation of the CS-FEM-
DSG3 can be found in Error! Reference 
source not found.], Error! Reference 
source not found.]. 

After above-mention process, we 
obtained the smoothed membrane, bending 
and shear strains as, respectively  

, ,m m b s  ε B d κ B d γ B d     (12) 

where , , ,i i m b sB  are smoothed strain 
gradient matrices that defined by 

3 31 1 2 2
iii

i e

A A A
A

     


B B BB   (13) 

where  1 2 3, ,iA i   is the area of the ith 
sub-triangle and Ae is the area of the whole 
triangular element. 

Substituting Equation (12) into 
Equation (11), the equilibrium equations 
for static, free vibration and dynamic 
analysis are, respectively  
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 0; ; t     Ku F Mu Ku Mu Cu Ku F     (14) in which K, M, C are defined as

 

 

 

 

d d d d

0,0, ,0,0 d

d d

0,0, ,0,0 d

st
st

st
st

TTTT st st st
m m m b b b s s s st

N

T
f

T T T
p p st

N

T
f

k

c

   







    

 

  

 

   


 



K B D B B D B B D B L D L

N N

M N m N N T m TN

C N N

     

  (15) 

where N, a diagonal matrix, contains three 
node linear shape functions. The dynamic 
behavior of stiffened plate resting on 
viscoelastic foundation is deduced by using 
Newmark’s constant acceleration method 
Error! Reference source not found.]. 

4. Numerical results 

In this section, various numerical 
examples including static, free vibration, 
and dynamic response analyses of un-
stiffened and stiffened plates resting on 
homogeneous Winkler viscoelastic 

foundation are performed to verify the 
accuracy and reliability of the CS-FEM-
DSG3 element in comparison to others 
existing numerical solutions.  

The non-dimensional coefficient of 
homogeneous Winkler elastic foundation is 
given by  

4
fK k B D   (16) 

where  3 12 1D Et v   is the bending 
stiffness of the plate. 

 

 
(a) 

 
(b) 

Fig 3. A plate stiffened by  
(a) double stiffener along x-axis; (b) double stiffener along y-axis 

4.1. Static analysis of a stiffened 
plate resting on the elastic foundation 

Firstly, a rectangular plate resting on 
Winkler elastic foundation with the non-
dimensional elastic foundation coefficient K of 
1000 is considered. The plate is subjected to a 
concentrated load P = 1000N at its center. The 
width and the thickness are B = 10m, t = 0.5m 

respectively as shown in Fig 3 (a). The plate is free 
along two longer edges and is simply supported 
along two remaining edges. The material 
parameters of the plate are Young’s modulus 

103.1 10E   N/m2 and Poisson’s ratio 0.2v  . 
The non-dimensional deflection at middle line 
along the longitudinal direction x of the plate with 
various length L is shown in Fig 4 (a). 
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(a) 

 
(b) 

Fig 4. The non-dimensional deflection at middle line 2( )w w D PB  

This example was previously studied 
by Huang and Thambiratnam Error! 
Reference source not found.] using finite 
strip method. From the Figure 9 of the 
reference Error! Reference source not 
found.] on page 2556, it can be seen that 
the solution of the CS-FEM-DSG3 has 
good agreement to the reference solution. 
When the length of the plate is changed 
whereas the width is remained, the 
deflection of plate at load point is almost 
unchanged. 

Next, the effect of stiffener to plate 
resting on elastic foundation is considered. 
The plate is stiffened by single and double 
stiffeners, respectively, parallel to x-axis as 
shown in Fig 3 (a). The geometrical 
parameters of the stiffener are h = 2m, b = 
0.5m and the material properties of the 
stiffener are the same as those of the plate. 
As shown in the Fig 4 (b), the deflections 
of the plate are presented for three cases: i) 
the unstiffened plate, ii) the plate is 
stiffened by a single stiffener, and iii) the 
plate is stiffened by double stiffeners. It is 
obvious that the rigidity of the plate is 
significantly improved when the stiffeners 
are attached along x direction of the plate. 
However, the central deflection of the plate 

with single stiffener is smaller than that of 
the plate with double stiffeners. It can be 
explained that the stiffest positions of 
stiffened plate is at the contact ones 
between plate and stiffeners.  

4.2. Free vibration of a stiffened 
plate resting on the elastic foundation 

Free vibration analysis of the above 
structure is considered in this example. The 
plate is simply supported along all of 
edges. The dimensions of the plate are L = 
30m, B = 10m and t = 0.5m. The material 
parameters of the plate are given: Young’s 
modulus 103.1 10E   N/m2, Poisson’s ratio 

0.3v  and the mass density of the plate 
2500   kg/m3. The non-dimensional 

foundation coefficient is K = 100. 
Non-dimensional frequencies of the 

first five modes are shown in Table 1. It is 
seen that the results by present method 
agree well with those by Huang and 
Thambiratnam [13]. The results also 
illustrate that the fundamental frequencies 
of the plate resting on foundation depend 
on the stiffness of the foundation.
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Table 1. Convergence of first five non-dimensional frequencies of the plate on the 

elastic foundation 4ω ω ρhB D  
Meshing 

Stiffness factor K Mode 
24 x 8 48 x 16 72 x 24 

Reference solution 

1 11.0927 10.9563 10.9313 10.9658 

2 14.4714 14.2397 14.1973 14.2558 

3 20.1532 19.7082 19.6271 19.7390 

4 28.2106 27.3562 27.2007 27.4157 

0 

5 38.7398 37.1758 36.8907 37.2861 

1 14.9272 14.8262 14.8077 14.4279 

2 17.5820 17.3919 17.3572 16.8449 

3 22.4888 22.0911 22.0187 19.7390 

4 29.9212 29.1173 28.9712 28.4173 

100 

5 40.0003 38.4877 38.2125 38.6348 

 
Next, the effect of the stiffeners to free 

vibration frequencies of the plate resting on 
foundation is considered. Fig 3 (b) shows 
the plate stiffened by the stiffeners parallel 
to the y-axis. The material parameters of 
the stiffeners are the same as those of the 

plate in the example 4.1. Table 2 compares 
the non-dimensional first five frequencies 
of the un-stiffened plate and stiffened ones. 
It is observed that frequencies of the plate 
significantly increase when the plate is 
stiffened, as expected. 

Table 2. First five non-dimension frequencies  
of the un-stiffened and stiffened plates 

Mode 
Number of stiffeners 

1 2 3 4 5 

0 14.8077 17.3572 22.0187 28.9712 38.2125 

1 17.4462 18.0048 28.7950 28.9987 40.2121 

2 22.1467 22.6871 23.8013 38.9191 39.0821 

3 28.4480 28.6639 28.8977 29.1359 38.0381 
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First three mode shapes of un-stiffened 
and stiffened plate are shown in Figure 5. 
From these figures, it can be observed that 

the mode shapes of plate are changed 
considerably because of the effect of the 
stiffeners. 

 
 

Un-
stiffened 

 
Mode 1 

 
Mode 2 

 
Mode 3 

 
 

Single 
stiffener 

 
Mode 1 

 
Mode 2 

 
Mode 3 

 
 
Double 

stiffeners 
 

Mode 1 
 

Mode 2 
 

Mode 3 

 
 

Three 
stiffeners  

Mode 1 
 

Mode 2 
 

Mode 3 
Figure 5. Comparison of the first three mode shapes of the un-stiffened and 

stiffened plates rested on elastic foundation 

4.3. Dynamic analysis of a stiffened 
plate resting on viscoelastic foundation 
subjected to a moving vehicle 

Finally, a rectangular plate simply 
supported along two shorter edges 
subjected to a moving vehicle at velocity v 
= 40m/s in T = 0.5s on the middle line 
along the longitudinal direction x as shown 
in Fig 3 (a) is investigated. The mass of the 

vehicle is M = 1000kg. The dimension of 
the plate are L = 20m, B = 10m and t = 
0.3m. The material parameters of the plate 
are Young’s modulus 103.1 10E   N/m2, 
Poisson’s ratio 0.2v   and the density 
mass 1000 kg/m3. The non-dimensional 
foundation stiffness coefficient is K = 1000 
and the damping coefficient is 

5 25 10 Ns mfc   . 
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Figure 6. Deflections of the un-stiffened and stiffened plates resting on viscoelastic 

foundation 

 
Un-

stiffene
d  

T/4 
 

T/2 
 

3T/4 

 
Single 
stiffene

r  
T/4 

 
T/2 

 
3T/4 

Figure 7. Deformation corresponding to un-stiffened and stiffened plates 

It is assumed that the vehicle weight 
is transformed into only one concentrated 
load at the central point of the vehicle. 
Figure 6 and Figure 7 presents the 
deflection results of the un-stiffened and 
stiffened plates resting on viscoelastic 
foundation at T/4, T/2, 3T/4. The results 
show that the deflection of the stiffened 
plate is much smaller than those of the un-
stiffened plate, as expected.  

5. Conclusion  

The paper presents an extension of 
the CS-FEM-DSG3 using triangular 
element for static, free vibration, and 
dynamic response of the stiffened plate 
resting on viscoelastic foundation 

subjected to a moving vehicle. The 
viscoelastic foundation is modeled by 
discrete springs and dampers whereas the 
stiffened plate can be considered as the 
combination between the Mindlin plate and 
the Timoshenko beam elements. The 
moving vehicle is transformed into one 
concentrated load at its central point. Some 
numerical examples are investigated and 
numerical results show that the CS-FEM-
DSG3 overcomes shear-locking 
phenomena and has a fast convergence to 
the solution. In the case of un-stiffened 
plates, the numerical results by the CS-
FEM-DSG3 for static and free vibration 
analyses agree well with the previous 
published results. While to stiffened plates, 
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the numerical results by the CS-FEM-
DSG3 illustrated logically the expected 
property in which the deflection of the 
stiffened plate is much smaller than those 
of the un-stiffened plate. 
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