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ABTRACT
This paper presents a novel numerical procedure based on edge-based smoothed 

finite element method (ES–FEM) in combination with the C0-type higher-order shear 
deformation theory (HSDT) for static and dynamic analysis of laminated composite 
plate. In the present ES–FEM, only the linear approximation is necessary and the discrete 
shear gap method (DSG) for triangular plate elements is used to avoid the shear locking 
and spurious zero energy modes. In addition, the stiffness matrices are computed based 
on smoothing domains associated with the edges of the triangular elements through a 
strain smoothing technique. Using the C0-type HSDT, the shear correction factors in the 
original ES-DSG3 can be removed and replaced by two additional degrees of freedom 
at each node. Several numerical examples are given to show the performance of the 
proposed method and results obtained are compared to other available ones.
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1. Introduction
Laminated composites are made of 

two or several laminae layers which are 
stacked together to obtain desired properties 
with requirement characteristics such as: 
higher strength, long fatigue life, corrosion 
resistance, etc. With the advantageous 
features they have been used in many 
practical applications such as aircrafts, 
aerospace, vehicles, buildings, etc.

Laminated composite plates were 
widely researched with many various 
methods. Khdeir and Librescu [1] gave 
exact solution for static of symmetric 
cross-ply laminated elastic plates. 
When the laminated plates becomes 
thicker, layer- wise (LW) model [2] 
or 3D elasticity solution [3-5] can be 
recommended to improve the accuracy 
of transverse shear stresses. However, 
3D has much computational cost. Thus, 
reduction a 3D problem to a 2D problem 

based on the equivalent single layer (ESL) 
theory is considered. Nowadays, ESL 
theory is developed rapidly with different 
theories based on various suppositions 
of displacement field. The simplest 
theory is classical laminate plate theory 
(CLPT) – the Kirchoff hypothesis due to 
ignoring the transverse shear deformation. 
However, CLPT is inadequate for analysis 
of thick plates, and hence, the first-order 
shear deformation theory (FSDT), which 
considers the effect of shear deformation, 
is developed. However, in FSDT, strain 
energy strongly depends on shear 
correction factor which is based on many 
factors such as: length to thickness ratio, 
espect ratio, material, laminated scheme, 
geometry, boundary condition, etc. In 
order to overcome the limitations of the 
FSDT, HSDT was constructed. Reddy et 
al. [6] proposed element for bending, free 
vibration and stability of laminated plates 
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according to third order deformation theory 
(TSDT). The theory that satisfies the free 
of transverse shear stresses at top and 
bottom plate’s surface needs just 5 degree 
of freedoms (DOFs) per node like FSDT. 
But this model requires C1-continuity of 
generalized displacements which gets 
very difficult in calculating derivative. 
More recently, Shankara and Iyengar [7] 
developed C0-continuity element based 
on Reddy’s HSDT with two additional 
variables have been introduced into the 
displacement field, and hence only the 
first derivative of transverse displacement 
is needed in computing. 

In this paper, the ES–DSG approach 
with some interesting properties such as: 
(1) super-accurate and super-convergent 
properties of displacement and stress 
solutions;  (2) be temporally stable and 
work well for free and forced vibration 
analyses and (3) be simple to implement 
without any penalty parameter or 
additional degrees of freedom [8-14] is 
further formulated for static analysis of 
laminated composite plate. In the ES–

DSG, the stiffness matrices are obtained 
basing on the strain smoothing technique 
over the smoothing domains associated 
with the edges of the elements. In addition, 
discrete shear gap technique [15] is used to 
avoid the shear locking and spurious zero 
energy modes.

In next section, the formulation is 
established to analyze laminated composite 
plate for static and dynamic problem. 
Some numerical examples are studied to 
show that present element achieves the 
high accuracy and agrees well with several 
other existing elements in the literatures. 

2. Problem formulation
2.1. C0-type higher-order shear 

deformation theory (HSDT) 
Let u0={u0 v0}

T, w,  and 
 be the membrane displacements, 

the transverse displacement of the mid-
plane, the rotations in the y-z and x-z planes 
and warping function, respectively. The 
displacements of any point in the plates 
can be expressed as [7]

 In-plane strains through the following equation:

(1)

(2)

and transverse shear strains are basically defined as

where 

(3)

(4)with 

From Hook’s law the stress in plane is  (see more [7])

(5)
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A weak form of the static model for laminated composite plates can be briefly 
expressed as:  

(6)

where p is the transverse loading per unit area and

(7)

(8)

(9)

(10)

For the free vibration analysis, a weak form of composite plates can be derived 
from the following dynamic equation

with

2.2. The formulation of three-node 
triangular element with stabilized discrete 
shear gap technique (DSG3)

The geometry domain W is discretized 
into Ne triangular elements with Ne number 
of nodes. The displacement field u in the 
element domain can be approximate as

              (11)

where n is total number of nodes located 
in the element domain, N is the shape function 
and the nodal degrees of freedom associated 
to node I is 

The strains in Eq.(7) and (8) can be 
expressed to following nodal displacements as:

where m is defined as :

(12)
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where BI are generalized strain-displacement matrices gained from derivative of 
shape function. 

(13)

It is well known that with the lower-
order degree elements shear locking 
often occurs in the limit of thin plates. 
To overcome this drawback, we based on 
the Discrete-Shear-Gap (DSG) technique 

to approximate the shear strain field. (cf. 
Bletzinger et al. [15] for more detail)

          (14)

In DSG3 technique,  is directly 
derived from the nodal coordinates. 

with  
and det J=ac - bd where xi, yi i=1,2,3 are 
the coordinates of node.

2.3. A formulation of ES-FEM
In the ES-FEM, the strains are 

“smoothed” over local smoothing domains, 
and naturally the computation for the 
stiffness matrix is no longer based on 
elements, but on these smoothing domains. 
These smoothing domains are constructed 

based on the edges of the elements such 

that and  for , in 

which Ned is the total number of edges of 
all elements in the entire problem domain. 
For triangular elements, the smoothing 
domain Ω(k) associated with the edge k is 
created by connecting two end-nodes of 
the edge to centroids of adjacent elements 
as depicted in Figure 1.

: centroid of triangles (I , O, H ): field node

boundary 
edge m (AB)

inner edge k (CD)

(k)

(k)Γ

Γ
(m)

(m)

A

B

C

D

H

O

I

(lines: CH , HD, DO, OC)
(4-node domain CHDO)

(lines: AB, BI , IA)

(triangle ABI )

Figure 1: Division of domain into triangular element and smoothing cells Ω(k) 
connected to edge k of triangular elements.

55Ho Chi Minh City Open University Journal of Science- No.1(1) 2011



Introducing smoothing membrane, 
curvature and shear strains over the smoothing 
domain Ω(k) , we have 

            (16)

where  smoothing function Φ(x) is 
assumed to be a piecewise constant function 
and is given by

           (17)

Substitute Eq.(17) into Eq.(16), the 
smoothed strains of the ES-DSG3 become

               (18)

where A(k) is the area of the smoothing 
cell Ω(k) and is computed by

            (19)

where  is the number of elements 
containing the edge k ( =1 for the 
boundary edges and =2 for inner edges 
as shown in Figure 1 and Ai is the area of 
the ith element around the edge k.   

Then smoothed strain matrix is 
expressed as 

         (20)

In the triangular DSG3 element, a 
shape function is linear. Hence, Eq. (20) 
can be reformulated for the constant strain 
matrices

(21)

Only the linear strain matrix  needs to be refined

where

(22)

(23)

(24)

(25)

Therefore, the global stiffness matrix of the ES-DSG3 element is assembled by

in which the edge-based stiffness matrix is computed as follows
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To solve Eq.(6), the solution of static 
equilibrium equation is expressed

                         (26)

where the load vector

                    (27)

For free vibration problem, we solve 
Eq. (9) to find natural frequency 
such that

                  (28)

where M is the global mass matrix 
given by

                  (29)

3. Nummerical results
3.1. Convergence study
First, let’s consider the model of 

an isotropic square plate with simply 
supported condition and length-to-thickness 
ratio a/h = 10. The plate having the Young’s 
modulus E and the Poisson’s ratio v=0.25 
subjected to uniform load.

The central displacement and axial 
stress are normalized as  

, respectively. Figure 2 
plotted the comparision between present 
result with several other methods such as:  
DSG3, MITC4, MRBF [19] and the exact 
solution [18]. It can be seen that ES-DSG3 
solutions are closed to those of MITC4. 
The results are in good agreement with 
solutions by Akhras [18]. With uniform 
mesh 16x16x2, the error between them is 
0.84% for deflection and 0.40% for axial 
stress, respectively. 

Figure 2. Simply supported isotropic square plate (a/h=10)

(a) Central displacement (b) Axial stress 

3.2. Composite square plate
a) Static analysis
In this section, material properties 

of plate are assumed E1 = 25E2; G12 =  
G13 = 0.5E2; G23 = 0.2E2; v12 = 0.25. The 
simply supported square [0/90/90/0] 
laminated plate subjected to sinusoidal 
load . The normalized 
displacement , normal 
inplane stresses  and normal 

transverse shear stresses  are 
presented in Table 1. Some comments are 
given here: (1) the present results agree 
well with those of [3, 2, 6,16 18, 19, 21], 
especially for thick plates and compared 
with the solution of 3D elasticity results 
[3], the solution of the ES-DSG3 is slightly 
nearer than those of Reddy [6], Ferreira 
[1919], and finite strip method [18]; (2) 
HSDT models give higher transverse 
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deflection and in-plane streses than FSDT 
models and the difference between them is 
lessened according to decrement of plate’s 
thickness; (3) however, the opposite 
results are obtained for shear stress . 
Figure 3 plots the distribution of stresses 

through thickness plate with a/h=4, 10 
respectively. It can be seen that the shear 
stresses are free on the bounding planes 
and distribute parabolically through 
thickness of laminae. They are as same as 
that given in Reddy’s theory[16]

Table 1: simply supported [0/90/90/0] square laminated plate under sinusoidal load

a/h method w

4

Strip HSDT [18] 1.8939 0.6806 0.6463 0.045  0.2109

RBF-PS [21] 1.9023 0.7057 0.6309 0.0461  0.2138

MRBF HSDT [19] 1.8864 0.6659 0.6313 0.0433  0.1352

Layerwise [2] 1.9075 0.6432 0.6228 0.0441  0.2166

3D Elasticity [3] 1.9540 0.7200 0.6660 0.0467  0.2700

TSDT (Reddy) [6] 1.8937 0.6651 0.6322 0.044 0.239 0.2064

ES-DSG3 1.9046 0.7005 0.6236 0.0476 0.2387 0.2071

FSDT (Reddy) [6] 1.710 0.4059 0.5765 0.0308 0.196 0.1398

HCM [21] 1.7095 0.4059 0.5764 0.0308  0.2686

10

Strip HSDT [18] 0.7149 0.5589 0.3974 0.0273  0.2697

RBF-PS [21] 0.7204 0.5609 0.3911 0.0273  0.2843

MRBF HSDT [19] 0.7153 0.5466 0.4383 0.0267  0.3347

Layerwise [2] 0.7309 0.5496 0.3956 0.0273  0.2888

3D Elasticity [3] 0.743 0.559 0.403 0.0276  0.301

TSDT (Reddy) [6] 0.7147 0.5456 0.3888 0.0268 0.1530 0.2640

ES-DSG3 0.7179 0.5554 0.3867 0.0288 0.1560 0.2793

FSDT (Reddy) [6] 0.6628 0.4989 0.3615 0.0241 0.130 0.1667

HCM [21] 0.6627 0.4989 0.3614 0.0241  0.3181

100

Strip HSDT [18] 0.4343 0.5507 0.2769 0.0217  0.2948

RBF-PS [2121] 0.432 0.5387 0.2697 0.0213  0.3154

MRBF HSDT [19] 0.4365 0.5413 0.3359 0.0215  0.4106

Layerwise [2] 0.4374 0.542 0.2697 0.0216  0.3232

3D Elasticity [3] 0.4347 0.539 0.271 0.0214  0.339

TSDT (Reddy) [6] 0.4343 0.5387 0.2708 0.0213 0.139 0.2897

ES-DSG3 0.4310 0.5331 0.2680 0.0213 0.1365 0.3222

FSDT (Reddy) [6] 0.4337 0.5382 0.2705 0.0213 0.139 0.178

HCM [21] 0.4337 0.5382 0.2704 0.0213  0.339
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b) Dynamic analysis
Let’s consider a [0/90/0] laminated 

square plate with clamped boundary and 
the material properties which are assumed 
as E1 = 40E2; G12 =  G13 = 0.6E2; G23 =  
0.5E2; n12 = 0.25; r = 1. This problem has 
been previously investigated by a number 
of authors. For example, it was reported 
by Liew [22] using the p-Ritz method; 
Zen and Wanji [24] based on global-
local higher-order theory (GLHOT); 
Ferreira and Fasshauer [23] applied RBF-
Pseudospectral method based on FSDT 
and SongXiang et al. [25] with nth-order 

shear deformation theory (nOSDT). The 
first six frequency  with 

 are listed in Table 
2 corresponding several different values of 
length-to-thickness ratio a/h. It is obvious 
that, results of ES-DSG3 are closer to 
solutions of [23] than those of MITC4 and 
DSG3. However, for thin plates (a/h ≥100) 
the error of frequencies between present 
element and the element in [23] is larger 
because of predominant transverse shear 
effect. The first six mode shapes of plate 
with a/h =10 are plotted in Figure 4.
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Table 2: Effect of a/h ratio on frequency parameters 
for clamped [0/90/0] laminated plate

a/h method 1 2 3 4 5 6

5

ES-DSG3 4.5179 6.5328 8.0316 9.3844 9.5085 11.7461

MITC4 4.5290 6.5691 8.0944 9.4127 9.6190 11.7727

DSG3 4.5534 6.6407 8.1327 9.5640 9.7983 12.1304

p-Ritz [22] 4.447 6.642 7.700 9.185 9.738 11.399

GLHOT[24] 4.450 6.524 8.178 9.473 9.492 11.769

nOSDT[25] 4.5299 6.7573 7.9514 9.4432 9.9118 11.9357

RBF-PS[23] 4.5141 6.508 8.0361 9.3468 9.3929 11.5749

10

ES-DSG3 7.4938 10.3571 14.2525 15.1791 16.1445 19.7699

MITC4 7.5140 10.4044 14.4102 15.4531 16.1828 19.8828

DSG3 7.5675 10.5724 14.4863 15.6636 16.6419 20.5875

p-Ritz [22] 7.411 10.393 13.913 15.429 15.806 19.572

GLHOT[24] 7.484 10.207 14.340 14.863 16.070 19.508

nOSDT[25] 7.5237 10.5178 14.2499 15.6112 16.1393 19.9320

RBF-PS[23] 7.4727 10.2544 14.244 14.9363 15.9807 19.4129

20

ES-DSG3 11.0510 14.2606 20.8535 23.5526 25.6538 29.9509

MITC4 11.0643 14.2039 20.9486 23.8088 25.5792 30.0418

DSG3 11.1696 14.5723 21.5668 23.9760 26.4457 31.1711

p-Ritz [22] 10.953 14.028 20.388 23.196 24.978 29.237

GLHOT[24] 11.003 14.064 20.321 23.498 25.350 29.118

nOSDT[25] 11.0583 14.1351 20.5235 23.5759 25.3572 29.5575

RBF-PS[23] 10.968 13.9636 20.0983 23.3572 25.0859 28.6749

100

ES-DSG 14.6428 18.0439 25.9557 38.8029 39.0436 41.5313

MITC4 14.6029 17.7088 25.3614 38.3778 38.9773 40.6314

DSG3 14.9188 18.9300 27.9059 39.8095 42.4919 43.7475

p-Ritz [22] 14.666 17.614 24.511 35.532 39.157 40.768

GLHOT[24] 14.601 17.812 25.236 37.168 38.528 40.668

RBF-PS[23] 14.4305 17.3776 24.2662 35.5596 37.7629 39.3756
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4. Conclusions
The paper presents the combination of 

the ES-DSG3 and the C0-type higher-order 
shear deformation theory (HSDT) to give 
a new linear triangular plate element for 
static and dynamic analysis of laminated 
composite plates. In this element, the 
stiffness matrices are simply obtained 
based on the strain smoothing technique 
over smoothing domains associated with 

the edges of triangular elements. Using the 
C0-type HSDT, the shear correction factors 
in the original ES-DSG3 can be removed 
and replaced by two additional degrees of 
freedom at each node. The results of the 
ES-DSG3 element also agree well with 
analytical solution and show remarkably 
excellent performance compared to results 
of several other published elements in the 
literature. 

Figure 4. The first six mode shapes of a clamped [0/90/0] 
laminated plate with ratio a/h = 10.
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