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Introduction
The development of the materials 

science now aims to answer to service 
conditions and it requires that materials 
performance vary with location within 
the component. These considerations 
form the essential elements of the logic 
underlying the conception of the majority 
of functionally graded materials (FGMs). 
They are special composite materials in 
which material properties vary smoothly 
and continuously from one surface 
to the other to achieve the desirable 
requirements. This is achieved by 
gradually varying the volume fraction of 

the constituent materials. Since introduced 
in the 1980s, FGMs have been used in 
many technical areas such as aviation, 
aerospace, defense industry, power and 
biotechnology. Because of the widespread 
applications, these structures made of 
FGMs have attracted the attention. The 
developments and applications of FGMs 
after the year 2000 were summarized in 
the study of Birman et al (2007). Different 
areas are related to various aspects of 
theory and application of FGM including 
uniformity of the material, heat transfer 
problems, stress, stability and dynamic 
analyses, testing, manufacturing and 
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design, applications, and fracture are also 
reflected in this paper.

During the past few decades, 
frequency and buckling analysis of beam 
structures has attracted more attention 
from the scientific community as reflected 
by increasing number of publications 
devoted to that. Most of the investigations 
performed on the buckling problem are 
concerned with determining the critical 
buckling loads and their associated 
mode shapes. Nayfeh and Emam (2008) 
presented a closed form solution for the 
post buckling analysis of isotropic beams 
based on the EBT. They studied critical 
buckling loads and the associated mode 
shapes. They also studied the free vibration 
behavior of the buckled isotropic beams 
in the postbuckling domain. This type of 
vibration analysis means investigating the 
vibration characteristics, which takes place 
in the vicinity of a buckled configuration. 
Afterwards, they extended their work 
and found an exact solution for the post 
buckling behavior of symmetrically 
laminated composite beams (Emam and 
Nayfeh, 2009). They investigated the 
critical buckling load and free vibration 
in the postbuckling region. An improved 
third order shear deformation theory is 
employed to investigate thermal buckling 
and vibration of the functionally graded 
beams is presented in (Wattanasakulpong 
et al, 2011). In this study, the Ritz 
method is adopted to solve the eigenvalue 
problems that are associated with thermal 
buckling and vibration in various types of 
immovable boundary conditions.  Fallah 
et al (2011) presented a simple analytical 
expression to study nonlinear free vibration 
and post - buckling analysis of FGM Euler 
- Bernoulli beams under axial force. Using 
the same approach and model, they also 
studied thermo-mechanical buckling and 
nonlinear free vibration of functionally 
graded (FG) beams in Fallah et al (2012). 

Rahimi G.H et al (2012) investigated the 
post-buckling behavior of functionally 
graded Timoshenko beams under general 
boundary conditions by means of an exact 
solution method. FG beams are considered 
to have fixed–fixed, fixed–hinged, and 
hinged–hinged end conditions. A closed-
form solution is achieved for the post-
buckling deformation as a function of 
the exerted axial load that is beyond the 
critical buckling load. In order to study 
the vibrations taking place near a buckled 
equilibrium position, the linear vibration 
problem is exactly solved around the first 
buckled configuration of a hinged–hinged 
FG beam. Mohanty SC et al (2010) used 
the finite element method and Timoshenko 
beam theory to analyze free vibration and 
stability of a functionally graded origin 
beam and a functionally graded sandwich 
beam on Winkler elastic foundation. 
However, they mainly focused on the 
influence of Winkler elastic foundation 
and material distributions on frequency 
and critical load of hinged–hinged 
beams. With the same method, they also 
investigated the parametric instability of 
these beams subjected to a dynamic axial 
load in Mohanty et al (2011).

To the best of the author’s knowledge, 
there are some approaches used for static 
and forced analyses of functionally graded 
beam, but free vibration and buckling 
analysis of FG beams on Winkler’s 
elastic foundation with general boundary 
conditions based on Lagrange’s equations 
have been not presented in literature. In 
present paper, Lagrange’s equations with 
specific boundary conditions satisfied 
with Lagrange’s multipliers are used 
to formulate the governing equation of 
motion of the pinned – pinned, pinned – 
clamped and clamped - clamped beams. 
The analytical model of the beam is 
described by using Timoshenko beam 
theory and Von-Karman relationships for 
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material behavior, but shear correction 
factor is determined analytically. The 
material properties of the beams are assumed 
to follow simple power law form. Some 
numerical examples are carried out to study 
the influences of some parameters of beams 
on vibration and instability behaviors.

Formulation
Beam model

In this paper, FG beams affected 
by an axial load xN  on Winkler’s elastic 
foundation have been investigated. The 
length of the beams is L ; thickness is h  
and width is b , with co-ordinate system 
Oxz  having the Origin O  shown in Fig. 
(1). The Winkler foundation has elastic 
factor per unit length of the beam zk . 

Figure 1. A hinged – hinged FG beam on Winkler’s elastic foundation
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The effective material properties of 
FG beam, including Young’s modulus ,E
Poisson’s ratio ν and shear modulus G  as 
well as mass density ,ρ grade continuously 
in the thickness direction according to 
power-law distribution in terms of the 
volume fractions of the compositions 
(Wakashima  et al, 1990) as follows:

( ) 1
2

k

b t t
zP P P P
h

 = − + + 
     

(1)

where, P  is the effective material 
properties of FG beam; tP  and bP  are the 
effective material properties of the top – 
layer (ceramic) and bottom – layer (metal) 
constituents, respectively; k is the volume 
fraction exponent that is the positive real value.

It is clear from Eq. (1) that when

2, cz h P P= − = , and when 2, mz h P P= = .
Base on Timoshenko beam theory, 

the displacement fields are shown as:
( ) ( ) ( )0 0u x,t u x,t z x,t= + φ

( ) ( )0w x,t w x,t=                    
(2)

where ( ) ( ), , ,u x t w x t  are axial and 
transverse displacements of any point of 

beam, respectively; ( ) ( )0 0, , ,u x t w x t  are 
axial and transverse displacement in the 
middle line, respectively; and 0φ is the 
rotation of cross-section, t  denotes time.

According to Von-Karman’s 
relationships, the normal strain xxε , the 
shear strain xzγ , and the curvature xκ of the 
beam are presented as:

2
0 0 01

2xx
u w

z
x x x

∂ ∂ ∂φ 
ε = + + ∂ ∂ ∂            

0
0xz

w
x

∂
γ = + φ

∂            
0

x x
∂φ

κ =
∂    (3)

From Eq. (3), we can see that 
the relationship between strain and 
displacement is nonlinear due to the effect 

of large displacement. In the case of the 
displacement is very small, ( )2

0 0w x∂ ∂ ≈  so 
the behavior is linear. 
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The normal and shear stresses are given by:

                                 ( )xx xxE zσ = ε    ( )xz s xzk G zτ = γ                                                    (4)

and internal axial force xN , shear force zQ , bending moment yM  are presented by:
2

00 01
2x xx xx

u w
N A B

xx x

 ∂ ∂ ∂φ 
+= +   ∂∂ ∂         

2
00 01

2y xx xx
u w

M B D
xx x

 ∂ ∂ ∂φ 
+= +   ∂∂ ∂         

0
0xzsz

w
Q k A

x
∂ 

= + φ ∂         (5)

where, , , ,xx xx xx xzA B D A  are extensional, coupling, bending and shear rigidities, 
respectively and taken as the following forms:

( ) ( )( )21xxxx xx
A

A B D E z z z dA= ∫
   

( )xz
A

A G z dA= ∫
                                              

(6)

and sk is the shear correction factor and is usually taken the 5/6 value as  homogeneous 
rectangular cross – section. Nevertheless, in this paper, it is exactly calculated from 

equilibrium equation, 0xx xz

x z
∂σ ∂σ

+ =
∂ ∂

, leading to:

        

( ) ( )( )
( )

12
1 z z

s
xz A

bA z dB z
k dA

A G z

−
 + =
 
 
∫

                                                                  
(7)

with

  
( ) ( ) ( )( )1z z

A

A z B z E dA  = ξ ξ  ∫
    

2

2
xx

xx xx xx

B
b

A DB
=

−    

2

2
xx

xx xx xx

A
d

A DB
−

=
−                    

(8)

It is from Eq. (7) that the shear 
correction factor sk is not constant and 
depends on the effective material properties 
and material contrast ( /c mE E ) of the FG 
beams. This phenomenon is detailed in 
Table I showing the variation of shear 
correction factor with difference values 
of power – law exponent k  and the ratio 

between ceramic’s Young modulus cE  and 
metal’s Young modulus mE . As expected, 
the traditional shear correction factor 
( 5 / 6 0.8333= =sk ) is recovered in two 
cases 1=n and 0=k , which corresponds 
to homogeneous beams.

Table 1. Variation of shear correction factor with power – law exponent k  and /c mE E ratio
 

/= c mn E E
k 1 5 38/7 8 10 15

0 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

1 0.8333 0.8304 0.8304 0.8308 0.8312 0.8319

2 0.8333 0.8596 0.8602 0.8625 0.8634 0.8645

5 0.8333 0.8674 0.8678 0.8693 0.8698 0.8703

8 0.8333 0.8582 0.8584 0.8593 0.8595 0.8598

10 0.8333 0.8532 0.8534 0.8541 0.8542 0.8544
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 Equation of motion systems
The Lagrangian functional of problem 

(Clough  et al, 1993) is given by:
( )m mK U W f x t∏ = − + + λ∑             (9)

where  are the Lagrange multipliers 
which are also support reactions; ( ),mf x t  

are the equations of constrain for general 
boundary condition cases showing in 
Table II; K  is kinetic energy; U is strain 
energy and W  is work done of beam on 
elastic foundation with the effect of axial 
load.  They are presented by:

2 2 2
0 0 0 0 01 2

2 A B D
L

u w u
K I I I dx

t t t t t

  ∂ ∂ ∂ ∂φ ∂φ      = + + +       ∂ ∂ ∂ ∂ ∂         
∫

( ) ( )
2

0
0 0

1 , ,
22

∂ 
= −  ∂ ∫ ∫x

z
LL

N w
k w x t w x t dxW dx

x                                                         
(10)

22 2 2 2
0 0 0 0 0 0 0

0
1 1 12
2 2 2xx xx s xz xx

L

u w u w w
U A B k A D dx

x x x x x x x

    ∂ ∂ ∂φ ∂ ∂ ∂ ∂φ    = + + + + + φ +           ∂ ∂ ∂ ∂ ∂ ∂ ∂               
∫

In which zk is Winkler’s elastic 
foundation factor. 

In this paper, the displacement 
functions can be approximated by using 
space - dependent polynomial terms 

0 1 2 1, , ,..., −Nx x x x  and time - dependent 
generalized coordinates , ,n n na b c  in order to 
apply Lagrange equations (Clough et al, 
1993) and let as

( ) ( ) 1
0

1

,
N

N
nw x t a t x −= ∑

;   
( ) ( ) 1

0
1

,
N

N
nu x t b t x −= ∑

;   
( ) ( ) 1

0
1

,
N

N
nx t c t x −φ = ∑

                  
(11)

The governing equations will be derived by using Lagrange equations (Clough et 
al, 1993) are given as follows

                
0.

n
n

d
dtq q

∂ ∏∂ ∏
=−

∂ ∂ ;   
 1,2,...,3 4= +n N                                                       (12)

where nq are defined as:

=n nq a ,               1,2,...,=n N  

−=n n Nq b ,           ,...,2=n N N

2−=n n Nq c ,          2 ,...,3=n N N  
3 + =N m mq λ

                      
(13)

After substituting Eq. (11) into 
Eq. (10) and then using the Lagrange’s 
equations given by Eq. (12), the coupled 

systems of equations of motion of a hinged 
– hinged beam as follows
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where   
L
ijK  are linear stiffness matrices, 

  
NL
ijK  are nonlinear stiffness matrices 

which are dependent on generalized 
coordinate ( )na t ,   ijM  are mass matrices 
and two rest of matrices   

R
ijK  and   

WK  exist due to Lagrange multipliers and 
Winkler’s elastic foundation, respectively; 
  

GK  are geometric stiffness matrices 
owing to the effect of axial load.

The terms of matrices   
G
ijK , W

ijK    are given by:

( ) ( )2 1 1

2

'/ '

/

L jiG
ij x L

K N x x dx− −

−
= ∫ , , 1,2,...,=i j N

/2 1 1

/2

LW i j
zij L

K k x x dx− −

−
= ∫ , , 1,2,...,=i j N       

(15)

and the terms of other matrices in Eq. 
(14) can be referred to Simsek (2010) and 
Nguyen and Nguyen (2012).
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        
  

   

(14)

Table 2. Equations of constrain with different boundary conditions

Boundary conditions Equations of constrain

Hinged – Hinged (H-H)
( )0 2, 0;/w L t− = ( )0 2, 0;/w L t = ( )0 2, 0;/u L t− =

( )0 2, 0/u L t =

Hinged – Clamped (H-C)
( )0 2, 0;/w L t− = ( )0 2, 0;/w L t = ( )0 2, 0;/u L t− =

( )0 2, 0;/u L t = ( )0 2, 0/L tφ =

Clamped – Clamped (C-C)
( )0 2, 0;/w L t− = ( )0 2, 0;/w L t = ( )0 2, 0;/u L t− =

( )0 2, 0;/u L t = ( )0 2, 0;/L tφ = ( )0 2, 0/L tφ − =
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Solution algorithm
The shortened form of the governing equation Eq. (13) is written as follows

           
[ ] ( ) ( )( ) ( ){ } 0

..
L W G NLM q t K K K K q t q t   + + − + =                                               

(16)

where ( ) ( ) ( ) ( ) ( ){ }T
q t a t b t c t t= α

For  free vibration analysis, the time 
– dependent generalized coordinates can 

be express as 
_

( ) i tq t qe ω=  and the matrices 
( ( ))NLK q t is set to zero in Eq.(16), this 

situation results in a set of frequency 
equation that can be shown on following 
form with w is the natural frequency of the 
beam:

( ) 2 0
__

L W GK K K q q M+ − − ω =        (17)

It is noted that the axial force and 
Winkler’s elastic foundation factor 
appear in the dynamic equation allows to 
investigate their effect on free vibration 
behaviors. Eq. (17) is general form for 
vibration of axially loaded FG beams, 
which can be used to calculate the natural 
frequencies, load-frequency interaction 

curves. In fact, it is found from the 
condition that the determinant of the 
system of equations given by Eq. (16) 
must vanish.

( )2 0L W GK K K M =+ − − ω
          

(18)

For stability analysis, the value 
of buckling load crN  is determined by 
solving the following equation:

( ) 0+ − =L W GK K K
                      

(19)

A step – by – step of solution algorithm 
is presented in a flowchart form in Fig 
(2). Based on this algorithm, a computer 
program using Matlab was developed 
to calculate both natural frequency and 
critical load. The accuracy of the program 
will be verified next.

Figure 2. Flowchart of solution algorithm
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Numerical examples
In this paper, two numerical examples 

are presented and discussed to verify the 
convergence and accuracy of the proposed 
program. Especially, the free vibration 
and buckling analysis of FG Timoshenko 
beam acted on elastic foundation are 
thoroughly investigated through some 
examples. Some non – dimensional 
parameters have been used in this paper as 
follows the non – dimensional Winkler’s 
modulus 4= z mk L E Iα , the dimensionless 
fundamental frequency 2 /= mi i A E IL ρλ ω
and non – dimensional buckling load

( )2 2= cr mN L E Iγ π .
It is again noted that all effective 

material properties of FG beams, including 
Young’s modulus ,E Poisson’s ratio ν and 

shear modulus G  as well as mass density 
 are the functions of volume fraction 

exponent k  and change continuously along 
with beam thickness, showing as Eq.(1). If 
assuming that beams make of metal 

and ceramic 

 
the variation of the non – dimensional 
effective material properties along the 
thickness of beam are displayed in Fig.
(3). It can be seen that effective material 
properties vary quickly near the lowest 
surface for 1k < and increase quickly 
near the top surface for 1k > . Moreover, 
effective material properties change 
linearly along the thickness of beam when 

1k =  and nonlinearly when 1k ≠ .

Figure 3. Variation of the dimensionless Young’s modulus E and mass density ρ along 
the thickness of beam

Verifying the convergence 
Table 3 shows the non - dimensional 

frequencies of FG beam for various 
numbers of terms in displacement 
functions N  in different boundary 
conditions and /L h  ratios when 

0.5m, 100, 2= = =b kα , whereas Table 4 
present the non - dimensional buckling 
load at the same conditions in order to 
study the convergence. Both examples are 
investigated in two cases, shear correction 
factor sk is 5/6 as homogenous section and 
is calculated analytically as Eq.(7). From 

these tables, we can see that in terms of
8N =  the numerical results are convergent, 

so 8N =  is used for the following examples. 
Clearly, there are the differences in 
researched parameters between traditional 
model ( 5 / 6=sk ) and proposed one. 
This difference, thus, can be taken into 
account for accurate analysis of FG beam, 
especially when slenderness ratio of 
beam is quite small.  It is also noted that 
the hinged – hinged (H-H) beam has the 
lowest frequency and critical load while a 
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beam with clamped – clamped (C-C) end 
condition has the highest ones. Moreover, 
for all different kind of beam, there are a 

slight growth in both non - dimensional 
frequencies and buckling loads owing to 
the increase in /L h  ratio. 

Table 3. Non - dimensional frequencies of FG beam for
various boundary conditions and L/h ratio 

N ks

Hinged-Hinged Hinged-Clamped Clamped - Clamped

L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20

4
5/6 15.949 16.987 17.416 22.366 26.408 28.472 33.201 56.261 105.15

Eq.(7) 15.976 17.000 17.421 22.466 26.474 28.498 33.561 57.015 106.75

8
5/6 15.305 15.839 15.988 20.279 21.884 22.368 26.429 29.897 31.048

Eq.(7) 15.319 15.844 15.989 20.329 21.901 22.373 26.539 29.939 31.051

10
5/6 15.304 15.839 15.988 20.279 21.884 22.368 26.429 29.897 31.048

Eq.(7) 15.319 15.844 15.989 20.329 21.901 22.373 26.539 29.939 31.051

Table 4. Non - dimensional buckling load of FG beam for
various boundary conditions and L/h ratio 

N ks

Hinged-Hinged Hinged-Clamped Clamped - Clamped

L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20 L/h=5 L/h=10 L/h=20

4
5/6 4.6042 5.1275 5.3602 7.6949 9.625 10.516 19.677 56.087 195.29

Eq.(7) 4.6199 5.1358 5.3631 7.7502 9.657 10.527 20.110 57.603 201.26

8
5/6 4.2943 4.5173 4.5784 6.520 7.291 7.519 10.470 12.740 13.483

Eq.(7) 4.3030 4.5198 4.5791 6.548 7.301 7.521 10.626 12.785 13.513

10
5/6 4.2943 4.5173 4.5784 6.520 7.291 7.519 10.470 12.740 13.483

Eq.(7) 4.3030 4.5198 4.5791 6.548 7.301 7.521 10.626 12.785 13.513

Validating the accuracy of present 
program

The two following examples aim 
at verifying the accuracy of present 
formulation and computer program. The 
first example calculates the first three non 
- dimensional frequencies for different 
dimensionless axial loads and Winkler’s 
elastic factors and then compare with 
the results presented in studies of Cheng 
et al (1988) and Yokoyamat (1996). The 
second example determines and validates 
the fundamental buckling loads of FG 
beam under various boundary conditions 
with those of Rahimi (2012). These 
comparisons are provided in both Table 5 
and Table 6. As seen from these tables, the 

present study is very close to the results 
given in those papers, and the differences 
can be negligible.

Buckling and free vibration analysis
Fig.5 shows the variation of non 

- dimensional buckling loads γ  of 
three different beams (C-C, H-C, H-H) 
with a range values of k  in relation to 
various /L h  ratios ( / 5,10,20L h = ) for 

100, 10c mE Eα = = . From this figure, 
it is concluded that for all boundary 
conditions, there is a significant increase 
in the value γ  when k  rise from 0 to 2, and 
then this trend continues happening with 
relative amplitude. As mentioned before, 
C-C beams have the greatest buckling 
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loads and H-H beams have the smallest 
ones. Plus, the effect of power-law index 
and /L h  ratios on H-H beams is by far 
smaller than C-C beams. Additionally, non 

- dimensional critical loads rise as /L h  
ratios increase for all given cases, whereas 
C-C beam has the biggest rate.

Table 5.  The first three non - dimensional frequencies with buckling load γ and 
Winkler’s modulus α for / / 10=L I A

Modes 
No α γ

Hinged - Hinged Hinged - Clamped

Exact 
solution
(Cheng
1988)

Yokoyamat
(1996)

Present 
study

Exact 
solution 
(Cheng
1988)

Yokoyamat 
(1996)

Present 
study

1st
0

0 8.21 8.22 8.215 10.63 10.63 10.627

0.6 3.47 3.47 3.467 7.32 7.33 7.324

0.6p4 0.6 8.21 8.22 8.216 10.46 10.49 10.482

2nd
0

0 24.23 24.31 24.229 25.62 25.71 25.617

0.6 19.22 19.31 19.222 20.93 21.03 20.932

0.6p4 0.6 20.59 20.67 20.591 22.20 22.30 22.208

3rd
0 0.6 35.08 35.48 35.176 35.7 36.16 35.853

0.6p4 0.6 35.86 36.25 35.952 36.50 36.90 36.609

Table 6.  Fundamental buckling load for FG beam under various boundary conditions 
(L=0.4m, h=0.04m, b=0.08m)

Fundamental buckling 
load 104kN k=0 k=2 k=4 k=8 k=10

Clamped - Clamped Relative error max =0.8%

G.H. Rahimi (2012) 3.96 2.80 2.66 2.53 2.49

Present study 3.918 2.751 2.624 2.513 2.471

Clamped - Hinged Relative error max =1.5%

G.H. Rahimi (2012) 2.12 1.50 1.43 1.37 1.34

Present study 2.088 1.476 1.409 1.349 1.326

Hinged - Hinged Relative error max =0.7%

G.H. Rahimi (2012) 1.07 0.75 0.72 0.69 0.68

Present study 1.07 0.765 0.727 0.685 0.675

The relative errors of non - 
dimensional buckling loads between 
traditional model 5 / 6=sk  and proposed 
model are displayed in Fig.6. Although the 
fact that relative error is quite small, the 
increase in the power - law exponent in 

turn leads to the dramatic increase in this 
value, standing at the highest point when 

4=k  after that it levels off for all beams. 
Interestingly, C-C beams have the biggest 
error, while H-H beams show the smallest 
ones.
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Figure 4. Variation of dimensionless 
buckling loads with k for α=100, different 

boundary conditions

Figure 5. Relative error (0.1%) of 
dimensionless buckling load with k for 

for a=100, L/h=5 and different boundary 
conditions

The differences of non - dimensional 
buckling loads of H-C beams with the 
different values of k  in case of  four /L h  
ratios ( / 10,20,30,40L h = ) and 10,100α =  
are presented in Fig.6 The most striking 
feature of this figure is that since the 
increase in the power - law exponent in 
turn leads to the dramatic increase in non 
- dimensionals buckling loads, especially 
when 1k ≤ . It can be also observed 
that there is a rise in non – dimensional 
buckling load γ  as the values of α go up 
and the growth rate is equal for all given 

/L h  ratios. By this I mean, the effect of 
Winkler foundation on critical load is 

linear. This upward trend also happens as 
the length to thickness ratio rises to 20 and 
then it level off for all the values of α .

Fig.7 gives the information about 
dimensionless buckling loads γ  with /L h  
ratios for 100α = , 1,2,5k = under general 
boundary conditions (C-C, H-C, H-H). 
As mentioned before, there is a rise in the 
value of γ  with the increase in the value 
of k  for all given boundary condition. 
Interestingly, C-C beams have the biggest 
growth rates, while H-H beams show the 
smallest ones. It also demonstrates that 
when / 20L h ≥ the figure of γ  remains 
stable for every such a beam.

Figure 6. Variation of dimensionless 
buckling loads of  H-C beam with k for 

various L/h ratios and α. 
- - - -α =100, ¯¯ α =10

Figure 7. Variation of dimensionless 
buckling loads with L/h ratios for 

α=100, various k and different 
boundary conditions
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Figure 8. Variation of dimensionless 
fundamental frequencies of H-H beam 

with dimensionless axial loads for a=10,
L/h=20 and various k

Figure 9. Variation of dimensionless 
fundamental frequencies with 

dimensionless axial loads for a=100, 
L/h=20, k=1 and various boundary 

conditions

Fig.8 represents the dimensionless 
fundamental frequencies H-H beam with 
dimensionless axial loads γ  in terms of 

10, / 20= =L hα  and 1,2,5,10=k , whereas 
these ralationships under different 
boundary conditions in the case 

100, / 20= =L hα , 1=k  are highlighted in 
Fig.10. The frequencies result in different 
values of k (Fig.9) and each type of 
boundary condition (Fig.9) declines to 
zero at its critical load before going up 
after that load. Clearly, there is a rise in 
the value of andγ λ with the increase 
in the value of k  for all given boundary 
condition. Again, C-C beam has the largest 
dimensionless fundamental frequencies 
and dimensionless buckling loads.

Conclusion
Free vibration and stability analysis 

of functionally graded beams on Winkler’s 
elastic foundation with general boundary 
conditions have been investigated. 
Comparisons between the results obtained 
by in this study with available results in 
the literature show a good agreement. 
The analysis has also been performed 
to investigate the effects of boundary 
conditions, axial load, material distribution 

and shear correction factor as well as 
Winkler foundation factor together with 
slenderness ratio on buckling load and 
natural frequency of FG beams. It is found 
that shear correction factor of FG beam is 
not exactly 5/6 as homogenous beam and it 
can effect on responses of beam especially 
C-C beam with small slender ratios. In 
addition, rising length to thickness ratios 
up to 20 leads the significant increase in 
both dimensionless fundamental frequency 
and buckling load; however, these values 
remain almost stable once this ratio is over 
20. Similarly, there is also a growth in non-
dimensional fundamental frequency and 
critical load as Winkler foundation factor 
and material distribution factor go up. 
Whereas the dramatic influence of the latter 
happened in the case 1k ≤ for all beams, 
the former’s effect is linear. Moreover, the 
by far highest values of natural frequency 
and buckling load belong to C-C beam, 
followed by C-H beam and H-H beam 
in the order. Not only that, C-C beam is 
also the most sensitive one that means that 
the changes of its frequency and buckling 
load are strongest whether other research 
parameters increase or decrease compared 
to two rest beams. As expected, the first 
natural frequency drops to zero at critical load. 
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