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ABSTRACT
In this paper, we analyze a thermal buckling behavior of laminated composite 

plates based on first-order shear deformation theory (FSDT) using edge-based smoothed 
discrete shear gap method (ES–DSG). In the ES-DSG, only the linear approximation 
is necessary and the discrete shear gap method (DSG) for triangular plate elements 
is used to avoid the shear locking and spurious zero energy modes. In addition, the 
stiffness matrices are computed based on smoothing domains created by connecting two 
end-nodes of the edge to centroids of adjacent triangular elements. The temperature in 
the plates is assumed to be uniform distribution and rise. Several numerical examples 
are given to verify the reliability of the obtained results compared to other published 
solutions.
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1. Introduction
Composite materials have been 

widely used in many engineering such as 
aerospace, marine, buildings, etc. because 
of many favorable mechanical properties 
such as strength-to-weight ratios, long 
fatigue life, wear resistance, damping, etc. 
[1]. It means that to ensure the strength 
capacity the composite material is used 
with thinner and slighter than traditional 
material. It helps to decrease the weight 
of structure, to keep smaller shape and 
to save materials. However, besides the 
results from study of static and dynamic 
problems, the buckling analysis needs 
to take care. Because of some cases as 
thin wall structures as plates and shell 
subjected to in-plane compressible force, 
the structures can be buckled before 

reaching to yield stress. The structures 
have large deformation and lose load 
carrying capacity. The buckling state can 
be divided two types: Mechanical buckling 
by mechanical loads and thermal buckling 
by the temperature rise.

Up to now, many researches on 
thermal buckling problem of composite 
plates have been found in the literature 
based on many approaches and various 
plate theories. In order to improve the 
accuracy of transverse shear stresses when 
composite plates become thicker and more 
lamina layers, layer-wise (LW) model has 
been developed. Typically, M. Shariyat [2] 
used the finite element method combined 
with the layer-wise theory to solve thermal 
buckling analysis of rectangular composite 
plates under temperature - dependent 
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properties. However, this work took 
much computational cost. Hence, another 
model widely developed with simplicity 
in formulating constitutive equations and 
lower computational cost was so-called 
Equivalent Single-Layer (ESL) model. 
Herein, the strain fields were expressed 
based on many plate theories. The simplest 
one named the Classical Laminated Plate 
Theory (CLPT) is applied to determine 
the critical temperature parameter of 
angle-ply laminated plates under uniform 
temperature by Gossard [3]. However, 
the CLPT using the Love-Kirchhoff 
assumptions is inadequate for the analysis 
of thick laminated composite plates, and 
hence the First-order Shear Deformation 
Theory which takes into account the effects 
of shear deformation has been developed. 
Tauchert [4] used FSDT to present an 
exact thermal buckling solution of angle-
ply laminated plates subjected to a uniform 
rise. W. J. Chen [5] used FEM to study the 
effects of lamination angle, modulus ratio, 
plate aspect ratio, and boundary constrains 
of thick composite laminated plates under 
non-uniform temperature distribution. To 
enhance the accuracy of solutions, High-
order Shear Deformation Theory (HSDT) 
was used and applied for thermal buckling 
analyses of cross-ply/angle-ply laminated 

and sandwich plates by H. Matsunaga [6, 
7]. However, HSDT requires C1-continuity 
of generalized displacements or needs 
much unknown variables to approximate 
displacement field. In addition, it is quite 
the difficulty and high computational cost 
for formulating and modeling.  The FSDT 
of ELS is thus focused in this paper. 

This paper deals with thermal buckling 
analysis of laminated composite plates 
based on first-order shear deformation 
theory (FSDT) using edge-based smoothed 
finite element method (ES–FEM). In the 
ES–FEM, the edge-based strain smoothing 
techniques are performed over smoothing 
domains associated with the edges of the 
triangular elements to achieve “efficiently 
softer” stiffness matrices. Due to using 
linear approximations, the formulations 
become simple and it has no requirement 
of high computational cost. Several 
numerical examples are used to verify the 
reliability of the method compared to other 
published models.

2. problem formulation
2.1. Theoretical formulation
Let consider a laminated composite 

plate with length a, width b and thickness 
h, the stress-strain relative equations of kth 
layer were shown below:

(1)

Considering α11, α22 are the thermal 
expansion coefficients along the material 
coordinate system (x1, x2) and following 
the tensor transformation rule [1], these 

terms become (αx, αy , αxy ) in global 
coordinate system.

In the global coordinate system, the 
constitutive relation can be expressed:

(2)
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where (u0, v0, w0) are the mid-plane 
displacements of a point along the (x, y, 
z)  coordinate direction, respectively, z 
is the distance from the mid-plane to the 
point considered and (ɵx , ɵy ) denote the 

transverse rotations about the y,x axes, 
respectively.

The strain-displacement relation of 
linear elasticity can be written as:

(3)

(4)

Based on the FSDT, the displacement field u = [u  v  w]T can be expressed as [1]:

where  are the membrane, bending strain and transverse shear, respectively.

(5),,

, , (6)

The stress resultants N,Q and moment resultants M can be obtained:

The integration form of stresses through thickness of laminated plates is

(7)

where (A, B, D) are the extensional stiffness, bending-extensional coupling and 
bending stiffness, respectively. The terms of lamina stiffness are defined as:

(8)

(9)

in which, μ = 5/6 is shear correction factor.
Thermal stress resultants Nt and thermal moment resultants Mt can be expressed as:
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where ∆T is the temperature rise.
2.2. Brief on FEM formulation
The problem domain is divided 

into Ne finite triangular elements with 

Nn  nodes. The displacement field uh was 
approximated as [8, 9]:

(10),

(11)

where N is the matrix of shape 
functions,  is 
the nodal degree-of-freedom associated 
with node I.

The membrane, bending and shear 
strains can be expressed as:

(12), ,

According to the finite element method (FEM), total potential energy can be 
expressed as [5]:

(13)

in which the stiffness matrix: 

(14)

and the geometric stiffness matrix:

(15)

and the thermal load vector:

(16)

(17)

(18)

Let minimize Eq.(13) with respect to the generalized displacement vector yielding 
the linear static equation [5]:
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2.3. The formulation of ES-FEM 
with stabilized discrete shear gap 
(DSG) technique

The linear triangular elements often 
occur shear locking problem when the 
thickness decreases to limit of thin plate. 

To alleviate this shortcoming, Bletzinger 
et al. (2000) [10] have proposed the 
discrete shear gap method (DSG). As 
a result, the transverse shear strain was 
obtained becoming constants and avoids 
shear locking phenomena:

For critical buckling state, the second minimization of total potential energy can 
be obtained as [12]:

(19)

(20)

The multiplication of parameter λ and the initial temperature ∆T is the critical 
buckling temperature Tcr:

(21)

In development of improved 
accuracy of linear triangular elements, 
Nguyen-Xuan et al. [8] developed an 
edge-based strain smoothing technique 
into the DSG FEM to give a so-called 
edge-based smoothed discrete shear gap 
method (ES-DSG). In formulation of ES-
DSG, the strains are “smoothed” over 
smoothing domains Ω(k) associated with 
edges of the elements such that 

where  and  is the area of 3-node element.

and  with i ≠ j, in which Ned 
is the total number of edges in the entire 
problem domain. The smoothing domain 
Ω(k) associated with the edge k is created 
by connecting two end-nodes of the edge 
to centroids of adjacent elements as shown 
in Figure 1.

The smoothed strains over the 
smoothing domain Ω(k) can be obtained as:

(22)

where Φ(x) is a smoothing function that is positive and satisfies unity condition:

and in the simplicity form: (23)
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Substitute Eq. (23) into Eq. (22), the smoothed strains of the ES-DSG3 become:

: centroid of triangles (I , O, H ): field node

boundary 
edge m (AB)

inner edge k (CD)

(k)

(k)Γ

Γ
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(lines: CH , HD, DO, OC)
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Figure 1. Division of domain into triangular element 
and smoothing cells Ω(k) connected to edge k

(24)

(25)

where A(k) is the area of the smoothing cell Ω(k) and defined as:

where  is the number of elements 
containing the edge k (  for the 
boundary edges and  for inner 
edges) and Ai is the area of the ith element 
around the edge k.

The average strains according to 
edge k can be obtained as following form 
by substituting Eq.(12) and Eq.(21) into 
Eq.(24):

(26),,

where  is the number of nodes 
belonging to elements directly connected 
to edge k (  for the boundary edges 
and  for inner edges).

Due to linear approximated functions 
were used in the triangular elements, the 
matrices of smoothed gradient strains are 
constants and can be expressed as:

(27), ,

As a result, the mechanical stiffness matrix of global coordinate system can be 
obtained as:

(28)
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It can be seen that the stiffness matrix 
are constants and can be easily computed 
by straight-forward integration.

3. NUMMERICAL RESULTS
In this section, the ES-DSG3 element 

is used to analyze thermal buckling 
behavior of laminated composite plates. 
Thin plates and moderate thick ones 
are considered with influence of some 
parameters such as modulus property 
ratio, span-to-thickness ratio, boundary 
condition, stacking sequence, and fiber 
orientation. Computer programs have 

been developed to calculate present 
solutions through the number of numerical 
examples.

3.1. Isotropic square plate
First, we consider an isotropic plate 

a/h=100 which has following material 
properties  
and subjected to uniform temperature 
rise. The present results are compared 
with the analytical solution reported in 
Boley [11] and the numerical solution 
by Chen et al. [5] which used FEM-Q8 
based on FSDT.

where

Table 1: Simply supported isotropic plate with various a/b ratios: 
Critical buckling temperature.

Figure 2. Percentages of critical temperature errors of simply supported 
isotropic plate with various a/b ratios (a/h=100).

a/b
Tcr

Ref [11] Q8/FSDT [5] Present

  0.25 0.686 0.691 0.689

0.5 0.808 0.814 0.812

1.0 1.283 1.319 1.287

1.5 2.073 2.101 2.096

2.0 3.179 3.191 3.233

2.5 4.599 4.601 4.689

3.0 6.332 6.330 6.449
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%
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(29)
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It can be seen from Table 1 that 
the results of the ES-DSG3 have good 
agreement with available ones. Note 
that the present method just using linear 
approximation not only passes shear-
locking phenomena but also can produce the 
accuracy of the solutions similar to the high-
order element such as FEM-Q8. In Figure 2, 

the percentages of critical temperature error 
are relatively small (<2.5%).

3.2. Laminated composite plates
The simply supported 4-layer 

[00/900/900/00] square laminated 
composite plates are considered. The 
material properties are given as:

(30)

The effects of boundary conditions 
on thermal buckling behavior are displayed 
in the Table 2. The results obtained are 
compared with those of high-order element 
(FEM-Q16 with 3x3 Gauss points for 

shear terms and 4x4 for others) based on 
FSDT and HSDT [12]. It can be seen that 
the present results match well with those 
of FEM-Q16/FSDT.

Table 2: Critical buckling temperature of symmetric cross-ply [00/900/900/00] 
laminated composite plate with various boundary conditions (a/h = 100).

Table 3: Critical buckling temperature of symmetric cross-ply [00/900/900/00] 
laminated composite plate with various boundary conditions (a/h = 100).

Boundary conditions
Tcr  102

SSSS CSCS SCSC CCCC

ES-DSG3 (20x20 mesh)/FSDT   0.09976
(0.16%)

  0.14488
(0.61%)

  0.25261
(-0.15%)

  0.33996
(1.54%)

FEM-Q16 (6x6 mesh)/FSDT [12] 0.0997 0.1441 0.2532 0.3352

FEM-Q16 (6x6 mesh)/HSDT [12] 0.0996 0.1440 0.2530 0.3348

“S” denoted simply supported and 
“C” denoted clamped.

“CSCS” denoted straight edges 
clamped and perpendicular edges simply 
supported and “SCSC” the same.

Boundary conditions
Tcr

SSSS CSCS SCSC CCCC

ES-DSG3 (20x20 mesh)/FSDT   0.07605
(-1.23%)

  0.10842
(1.42%)

  0.13745
(2.27%)

  0.16888
(2.04%)

Q16 (6x6 mesh)/FSDT [12] 0.0770 0.1069 0.1344 0.1655

Q16 (6x6 mesh)/HSDT [12] 0.0757 0.1044 0.1305 0.1601
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Table 3 shows the critical temperature 
parameter for moderate thick symmetric 
cross-ply [00/900/900/00] laminated 
composite plate with span-to-thickness 
ratio a/h = 10. The influence of boundary 
condition over symmetric plates can 
be remarked that when the boundary 
condition of plate becomes harder, the 
value of the critical temperature increases. 
Using triangular meshes with linear 
interpolation, the present method shows 
good agreement with the high-order 

element (Q16) and does not take much 
computational cost.

It can be seen that the ES-DSG3 is well 
suited for thin or moderate thick symmetric 
laminated composite plates. Next, anti-
symmetric angle-ply [450/-450/…] laminate 
plates with influence of stacking sequence 
are considered. The number of layers (NL) 
is equal to 4 and 10, respectively. The 
percentages of the error presented in Table 
4 are almost under 1% compared with 
FEM-Q16/FSDT solutions [12].

Table 4: Critical buckling temperature of anti-symmetric angle-ply [450/-450/…] 
laminated composite plate with various boundary conditions (a/h = 100).

 4. CONCLUSION

Based on the C0–type first-order 
shear deformation theory and the edge-
based smoothed discrete shear gap method 
(ES-DSG3), thermal buckling behavior 
of laminated composite plates has been 
studied in this paper. The stiffness matrices 
are simply obtained by smoothing strain 
terms over smoothing domains associated 
with the edges. The performances of the 
ES-DSG3 element were shown through 
various numerical examples. Some 

Boundary conditions
Tcr  102

SSSS CSCS SCSC CCCC

NL = 4

ES-DSG3 (20x20 mesh)/FSDT   0.14615
(-0.51%)

  0.23161
(-0.34%)

  0.23161
(-0.34%)

  0.30312
(-0.29%)

Q16 (6x6 mesh)/FSDT [12] 0.1469 0.2324 0.2324 0.3040

Q16 (6x6 mesh)/HSDT [12] 0.1468 0.2322 0.2322 0.3036

NL = 10

ES-DSG3 (20x20 mesh)/FSDT   0.16365
(-2.30%)

  0.26541
(0.65%)

  0.26541
(0.65%)

  0.34750
(0.96%)

Q16 (6x6 mesh)/FSDT [12] 0.1675 0.2637 0.2637 0.3442

Q16 (6x6 mesh)/HSDT [12] 0.1675 0.2637 0.2637 0.3441

advantages of this element can be noted 
such as (1) the results mark well with 
analytical solutions and other published 
issues in the literature; (2) it does not 
require high-order derivation of shape 
function because the linear approximations 
were used; and (3) the formulation is easily 
integrated compared to standard FEM. 
The present method is thus promising to 
provide a useful tool for thermal buckling 
analysis of laminated plates.
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