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Abstract

Prediction on a numeric scale, i.e., regression, is one of the most prominent
machine learning tasks with various applications in finance, medicine, social
and natural sciences. Due to its simplicity, theoretical performance guaran-
tees and successful real-world applications, one of the most popular regression
techniques is the k£ nearest neighbor regression. However, k nearest neighbor
approaches are affected by the presence of bad hubs, a recently observed phe-
nomenon according to which some of the instances are similar to surprisingly
many other instances and have a detrimental effect on the overall predic-
tion performance. This paper is the first to study bad hubs in context of
regression. We propose hubness-aware nearest neighbor regression schemes.
We evaluate our approaches on publicly available real-world datasets from
various domains. Our results show that the proposed approaches outper-
form various other regressions schemes such as kNN regression, regression
trees and neural networks. We also evaluate the proposed approaches in the
presence of label noise because tolerance to noise is one of the most relevant
aspects from the point of view of real-world applications. In particular, we
perform experiments under the assumption of conventional Gaussian label
noise and an adapted version of the recently proposed hubness-proportional
random label noise.
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1. Introduction

Regression, i.e., prediction of a continuous target variable from a set of ob-
servations, is one of the most prominent machine learning tasks with various
applications in engineering, finance, industry and medicine, see e.g. [1], [2], [3],
Various regression techniques have been developed in the last decades rang-
ing from simple linear and polynomial regression to more complex models,
such as neural networks [6], [7] and support vector regression [8].

In many cases, not only the nominal dimensionality of the data is high,
but the same is true for the number of meaningful (or intrinsic) dimensions,
although the later may vary from instance to instance: for example, the med-
ical records of a patient p may involve the results of different examinations
than the records of another patient p’ (who may suffer from different diseases
than p). Therefore, making use of such data is not only difficult because of its
size, but also due to its complexity: without loss of essential information, cal-
culating the distance or similarity between instances may already be rather
challenging, while finding a reasonable vector representation of the data may
be even more difficult. On the other hand, there is an ever-growing interest
in using such semi-structured data for prediction, which involves prediction
on a numeric scale, i.e., regression. Consequently, in this paper we focus on
regression techniques that only assume the presence of an appropriate dis-
tance or similarity measure which may or may not be based on the vector
representation of the instances.

Despite the aforementioned variety of regression schemes, one of the most
popular techniques is the nearest neighbor regression. While being intuitive,
nearest neighbor regression is well-understood from the point of view of the-
ory, see e.g. [9], [10] and [11] and the references therein for an overview of
the most important theoretical results regarding the performance of nearest
neighbor regression. These theoretical results are also justified by empirical
studies: for example, in their recent paper, Stensbo-Smidt et al. found that
nearest neighbor regression outperforms model-based prediction of star for-
mation rates [12], while Hu et al. showed that a k-nearest neighbor regression
based model is able to estimate the capacity of lithium-ion batteries [3].

We point out that most of the conventional regression schemes were de-
veloped for vector data, i.e., under the assumption that the data can be
organized into a data table with well-defined dimensionality, whereas in the
aforementioned cases this assumption may be violated. However, nearest
neighbor-models only require a distance or similarity between the instances,



which may be much simpler to define than finding a suitable vector rep-
resentation of the data, see e.g. edit distances for time series, genetic se-
quences or texts, such as dynamic time warping [13], [14], Smith-Watermann
distance [15] or Levenshtein distance [16]. These distance measures work
directly on the "raw” data (i.e., time series, genetic sequences or texts re-
spectively) without an intermediate vector representation.

Machine learning in high dimensional data spaces is particularly challeng-
ing due to the phenomena known under the umbrella of the curse of dimen-
sionality. One of the recently explored aspects of the curse is the emergence
of bad hubs, see e.g. [17], [18], [19], [20], [21]. Informally, hubs are instances
that are similar to a surprisingly high amount of other instances. Unfortu-
nately, some of the hubs are bad in the sort of sense that they may mislead
classification algorithms. While bad hubs are well-studied in case of classifi-
cation [22], instance selection [23] and clustering [24], in context of regression
problems bad hubs have not been described yet. Providing an analysis of the
presence of bad hubs in regression problems is not trivial because the origi-
nal definition of bad hubs assumes discrete class labels, however, in case of
regression problems, the labels are continuous. Therefore, in order to study
bad hubs in context of regression, we need a novel approach.

In this paper, we focus on nearest neighbor regression and study the pres-
ence of bad hubs in context of regression problems. Motivated by these obser-
vations, we propose hubness-aware nearest neighbor regression schemes. Sub-
sequently, we evaluate our approach on publicly available real-world datasets
from various domains: prediction of yields on the stock market, assessment
of the severity of Parkinson’s disease, estimation of the area of forest fires,
prediction of the number of comments that a blog post will receive and as-
sessment of wine quality. Our experimental results show that our approach
is favorable in all these domains. Additionally, we evaluate the proposed ap-
proaches in the presence of label noise because, on the one hand, tolerance to
noise is one of the most relevant aspects from the point of view of real-world
applications, on the other hand, the selection of appropriate noise models
allow us to simulate the increased presence of bad hubs. In particular, we
perform experiments under the assumption of two types of noise: we consider
conventional Gaussian label noise and an adapted version of the recently pro-
posed hubness-proportional random label noise [25]. This adaptation is one
of the minor contributions of the paper and it is necessary because hubness-
proportional random label noise was originally introduced for classification
problems. According to the best of our knowledge, this is the first paper
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that studies the presence of bad hubs in context of regression problems, and
this is the first paper that proposes hubness-aware regression schemes and
evaluates them both on real-world datasets and under various noise models.

2. Definitions and notations

A dataset D containing n instances is given. Instances are denoted by
x;, 1 <1 < n. For each instance x; € D, the value of the continuous target is
given and it is denoted by y(z;). We say that y(z;) is the label of instance z;
and D is the training dataset. With regression we mean the task of predicting
(estimating) the label of an instance x’ & D.

We propose a regression approach that is independent of the representa-
tion of the instances, the only requirement is that distances can be defined
between the instances. Therefore, we use d(x;,x;) to denote the distance
between two instances x; and ;.

Assume that we want to predict the label of an instance ' & D. Nearest
neighbor regression determines the k nearest neighbors of 2/, i.e., a subset
NP(z') of D so that

N ()] = k (1)

and
max d(z’,z) < min d(2/,2). 2
acE/\/'kD}({m’) ( ) B z€D\NP (') ( ) ( )

We may omit the upper index D, whenever it is unambiguous in which dataset
we search for the nearest neighbors of 2/. Nearest neighbor regression [26],27]
estimates the value of the target as the average of the labels of the nearest
neighbors:

i@ =1 3 ). Q
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3. Bad Hubs in Regression Problems

We note that the k£ nearest neighbor relationship is asymmetric: while
each instance x € D has k nearest neighbors, an instance 2’ € D does not nec-
essarily appear k-times as one of the k nearest neighbors of other instances.
This is illustrated in Fig. 1 for £ = 1. In order to keep the example simple,
we consider two-dimensional vector data, therefore, instances correspond to
points of the plane. In Fig. 1, instances are denoted by circles. There is a



directed edge from each instance to its first nearest neighbor. While each
instance has ezxactly one first nearest neighbor, i.e., the number of outgoing
edges is exactly one for each instance; how many times an instance appears
as the first nearest neighbor of other instances, i.e., the number of incoming
edges, is not necessarily one. As one can see, some of the instances never
appear as nearest neighbors of others and there is an instance that appears
as the first nearest neighbor of three other instances: the integer number
next to each instance shows how many times it appears as the first nearest
neighbor of others.

Figure 1: The nearest neighbor relationship is asymmetric. On the one hand, some in-
stances never appear as the first nearest neighbor of other instances; on the other hand,
there are some instances that appear frequently as the first nearest neighbor of other
instances.

Generally, we use Ni(z) to denote how many times the instance x € D
appears as one of the k£ nearest neighbors of other instances of D. It is easy
to see that the expected value of Ni(z) is E[Nk(z)] = k, however, the actual
value of Ni(z) varies from instance to instance. While considering k nearest
neighbor models, Ni(x) can be seen as the measure of how influential is the
instance z. As it was shown in previous works, see e.g. [17], [18], [23], in
many cases, the distribution of Ny (z) is substantially skewed to the right,
i.e., there are a few instances with extraordinarily high Ny (z) values. Usually,
instances having surprisingly high Ny (x) are called hubs, while instance with
exceptionally low N (z) are called anti-hubs. More precisely, we say that
an instance x is a hub, if Ni(z) > 2k; while an instance = is an anti-hub
if Ng(z) = 0. The phenomenon that Ng(z) is skewed is called hubness and
it is often quantified by the third standardized moment (skewness) of the
distribution of Nj(z).



In case of classification, we say that an instance x is a bad k nearest
neighbor of another instance ' if x is one of the k-nearest neighbors of 2’
and the both instances have different class labels. Consequently, in case of
classification, bad k-occurrence BNy(x) of an instance x was introduced to
measure how many times an instance x appears as bad nearest neighbor of
other instances. Similarly to the distribution of Ni(x), the distribution of
BNy (x) was shown to be substantially skewed in case of high-dimensional
data.

Similar observations can be made for high-dimensional data associated
with numerical prediction tasks. As an example, in the left of Figure 2 we
show the distribution of Ni(z) for the Financial Tweets Data using k = 10
and the Euclidean distance. The dataset is described in Section 5.1.1 in more
detail. In Figure 2 horizontal axis corresponds to Nig(z) while the height of
the column shows how many instances have that particular value of Nyg(z).
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Figure 2: The distribution of Njo(z) for all the instances (in the left) and high error
instances (in the right) of the Financial Tweets dataset. As one can see, some of the high
error instances appear as nearest neighbors of many other instances, i.e., there are bad
hubs in the data.

Next, we aim to describe those instances that are potentially most harmful
for nearest neighbor regression. On the one hand, instances that rarely (or
even never) appear as nearest neighbors of other instances have low (or no)
impact on the predicted labels. On the other hand, the closer is the label
of an instance x to the labels of those instances for which z appears as one
of their nearest neighbors, the less harmful is x. Therefore, an instance z



may be harmful to k nearest neighbor regression, if (i) = appear as nearest
neighbors of many other instances, i.e., Ni(z) is relatively large, and (ii) the
label of z is substantially different from the label of those instances that have
x as one of their nearest neighbors.

In order to show that there are misleading instances in real datasets, we
perform the following analysis on the previously mentioned Financial Tweets
dataset. From the prediction tasks associated with the data, we considered
the yield prediction for the next day, i.e., yields on the next day were used
as instance labels. For each instance z, as error(x), we calculate the average
absolute difference between the label of x and the labels of those instances
that have x as one of their nearest neighbors. Formally, let

T, = {z;|z € Ni(z;)}, (4)
then 1
error(r) = Z x;z ly(z) —y(wi)l. (5)

After calculating the above error for each instance, we ordered the in-
stances according to their errors and selected 25% of the instances having
the highest error. We call these instances high error instances. The distribu-
tion of Nyg(x) for high error instances in shown in the right of Figure 2. As
one can see, similarly to the previous distribution, the distribution of Nyo(x)
for high error instances is notably skewed as well. More importantly, some of
the high error instances appear as nearest neighbors of many other instances.
In this paper, we define bad hubs as high error instances that appear as near-
est neighbors of more than 2k instances. As one can see, there are bad hubs
in the data.

The above observations suggest that a few high error instances may have
substantial detrimental effect on the prediction performance. The mutual
k nearest neighbor (MANN or MNN) approach can be assen as an attempt
to alleviate this problem [27]. While predicting the label of an instance ’,
MENN takes only those neighbors z; of 2’ into account that have 2’ as one
of their £ nearest neighbors, i.e., using

M (2') = {a; € NP(2') - ' € NPPV T (a))), (6)

the MENN estimate is

g<M><x'>=m S ). (7)

m]EMk(x’)



"Without claiming that MNN estimates always outperform standard nearest
neighbors estimates,” [27] Guyader and Hengartner argued that the presence
of bad hubs might not substantially affect the performance of MENN. While
we acknowledge this argumentation, we note that MANN does not distinguish
between good and bad hubs. This may be the reason why approaches taking
the presence of bad hubs directly into account may outperform MANN as we
will show in the subsequents sections.

4. Hubness-aware regression schemes

4.1. Error-based weighting

For each instance x of the training dataset that appears as nearest neigh-
bor at at least one other instance, we can calculate error(z) according to
Eq. (5), i.e., the average absolute difference between the label of z and the
labels of those instances that have x as one of their £ nearest neighbors. We
assign weights to instances so that the higher is the error of an instance, the
less is its influence. While in general there are many ways of doing that,
here, we use the normalized error err(z) of an instance x to define its weight
w(zx):

error(x) — fepr
)

err(x) = p— (8)

w(z) = e @), (9)

where e and o, denote the average and standard deviation of the error
respectively. The above weights are assigned to all instances with Ny (x) > 1.
Instances with Ny (x) = 0 are removed from the training set after calculating
the weights. See also Section 4.4 for further discussion on this reduction of
the training data.

Subsequently, we perform weighted k nearest neighbor regression, i.e., we
estimate the label of a new instance 2’ as

> wlzy)y(z;)
i () = TS . (10)

B >, w(zy)

zjEN(2)

As we utilize error-based weighting of instances for k nearest neighbor re-
gression, we call this approach EWENN.



4.2. Error correction

Although the weighting scheme shown in the previous section allows to
reduce the influence of high error instances, in EWENN, each instance votes
by its own, possibly misleading label. In this section we propose that each
instance = uses the average of the labels of those instances that have x as one
of their nearest neighbors. Formally, we can define the corrected label y.(x)
of an instance x appearing as nearest neighbor at at least one other instance
as

(@) = 77 3 ulo) (1)
T 2ieT,

where 7, denotes the set of instances that have x as one of their nearest
neighbors, see Eq. (4) for the formal definition of Z,.

The corrected labels are calculated for all instances with Ng(x) > 1.
Instances with Ni(z) = 0 are removed from the training set after calculat-
ing the corrected labels. See also Section 4.4 for further discussion on this
reduction of the training data.

Subsequently, we can use the corrected labels in nearest neighbor regres-
sion and estimate the label of a new instance z’ as

9O =1 Y wl) (12)

ijNk(x’)

As we use the corrected labels for prediction, we call this approach Error
Correction-based k Nearest Neighbor regression, or simply ECENN.

4.8. Error-based weighting and correction

We may combine the two previous ideas and use the corrected labels in a
weighted regression schema so that the predicted label of a new instance z’ is

> wla)uel;)
o) (z/) = B . (13)

B > w(zy)

.'Eje./\/k(:v’)

We call this approach EWCENN, error-based weighting and correction for k
nearest neighbor regression.



4.4. Data Reduction

Under the assumption that the test data originates from the same distri-
bution as the training data, instances which never appear as nearest neighbor
of other instances are not expected to influence predictions of nearest neigh-
bor regressors. Therefore, at the end of the training process of the proposed
regressors, i.e., after calculation of the weights and/or error correction, as
described in the previous sections, we remove instances with Ni(x) = 0 from
the training data. The removal of the instances with Ny (x) = 0 reduces the
computational costs of nearest neighbor regression too. For further hubness-
aware instance selection techniques we refer the Reader to [23],[28].

4.5. Illustrative example

Using the example in Figure 3 we illustrate how the proposed regression
approaches perform prediction. In Figure 3 training instances are denoted
by circles. They are identified by the symbols z;...x7. The numeric value
next to each instance shows its label. We aim at predicting the label of the
test instance that is denoted by the triangle.

Figure 3: Example used to illustrate the proposed hubness-aware regression approaches.
Training instances of the dataset are denoted by circles. We aim at predicting the label
of the instance denoted by the triangle.

In order to keep the example simple, we use k = 1 to calculate error(x),
w(z) and the corrected labels training instances that appear as nearest neigh-
bor of at least one other training instance. However, in order to illustrate
weighted nearest neighbor regression, we use k' = 2 nearest neighbors to
predict the label of the test instance.

First, we illustrate EWENN. We begin with calculating error(z) of train-
ing instances that appear as nearest neighbor of at least one other training
instance. These calculations are performed according to Eq. (5), therefore:
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error(zy) = |2.01 — 1.53] = 0.48 because x5 appears as the nearest neighbor
of z; only;

(|2.47 — 3.95 + |2.47 — 1.98|) = 0.985

1
error(zy) = 5
because x4 appears as nearest neighbor of the instances x3 and x5. Similarly,

1
error(xs) = g(\1.98 —2.01| 4 [1.98 — 2.47| + [1.98 — 1.64|) ~ 0.287,

error(xg) = |1.64 — 2.15| = 0.51. The average and standard deviation of the
error is fe = 0.566 and o, = 0.297 respectively.

The k' = 2 nearest neighbors of the test instance are the instances x, and
x5. Therefore, we calculate the normalized error and the weights of these
instances according to Equations (8) and (9) as follows:

0.985 — 0.566

err(xy) = 0597 - 1411, w(zy) = e M =0.244
0.287 — 0.566

67’T($5) = W = —0939, w(:z:5) = 60'939 = 2.558.

The label predicted by EWENN is the weighted average of the labels of the
k" = 2 nearest neighbors of the test instance:

0244 -2.47 4 2.558 - 1.98
a 0.244 4+ 2.558

Next, we illustrate the proposed error correction approach. According to
Eq.(11) the corrected labels of the training instance x, is the average of the
labels of those instances that have x4 as their nearest neighbor. In particular:

g™ () — 2.023.

o) = %(3.95 +1.98) = 2.965.
Similarly, the corrected label of x5 is
yel(s) = %(2.01 247 4+ 1.054) = 2.04.
The label predicted by ECEKNN is
7 () = %(2.965 +2.04) = 2.5025.

EWCENN uses the weights calculated by EWANN together with the cor-
rected class labels, therefore the label predicted by EWCENN is
~0.244-2.965 + 2.558 - 2.04

~A(WC) (0t
g ) 0.244 1 2.558

= 2.121.
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5. Experiments

In this section we present the results of our experimental evaluation of
the proposed approaches, i.e., EWENN, ECENN and EWCENN.

5.1. Datasets

We evaluated our approach on real-world data associated with different
applications from various domains. We collected financial tweets and tried
to predict the yield of particular stocks based on those tweets. Furthermore,
in order to assist reproducibility of our experiments, we used publicly avail-
able real-world datasets associated with various prediction tasks, such as the
assessment of the severity of Parkinson’s disease, prediction of the area of
forest fires, prediction of the number of comments that a blog post will re-
ceive and assessment of wine quality. The later datasets are available in the
UCT Machine Learning repository [29]. The datasets used in this study are
summarized in Table 1. The underlying applications are described in the
subsequent sections in more detail.

Table 1: Overview of the datasets used in our study. For each dataset, we provide (i) the
number of instances, (ii) its nominal dimensionality d, i.e., the number of features used
for prediction, (iii) its intrinsic dimensionality dgy, (iv) the proportion of bad hubs, (v) a
short description of the data and (vi) the regression task.

Dataset #Inst. d dy %bad Short description Prediction target
hubs
Financial Numeric descriptors of stocks  Yield in the
Tweets (FT) 1565 65 17 10.5 extracted from short messages future.
that appeared on twitter.

Parkinsons 5875 16 6 10.1 Biomedical voice UPDRS-score
Telemonitoring measurements. of patients
Forest Fires 517 10 7 4.7 Meteorological descriptors Area of fire
Blog Feedback 60,021 280 20 9.4 Descriptors of blogs Number of

comments
Wine Quality 4,898 1 5 9.3 Physiochemical Quality of wines
(white) features of wines
Parkinson 1,040 26 14 6.6 Parkinson speech dataset UPDRS-score
multisound with multiple types of of patients

sound recordings
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For each dataset, the second and third column of Table 1 show the number
of instances and number of features used for the prediction, i.e., the nominal
dimensionality. Regarding the presence of hubs, as noted by Radovanovi¢ et
al. [17], the intrinsic dimensionality of the data plays a more important role
than its nominal dimensionality. Therefore, for each dataset we report its
intrinsic dimensionality in the fourth column of Table 1. We estimated the
intrinsic dimensionality as follows: for each dataset, we performed dimen-
sionality reduction with PCA using the R statistical software! and checked
how many principal components are required to keep 99 % of the total vari-
ance. As one can see, the intrinsic dimensionality is often much lower than
the nominal dimensionality which is in accordance with the observations
made by Radovanovi¢ et al. We note that Radovanovi¢ et al. reported that
hubs are already present in datasets with intrinsic dimensionality around ten,
which is also in accordance with our observations.

We quantified the presence of bad hubs as follows: we considered the
high-error instances as described previously and checked how many of them
appear as nearest neighbors of at least 2k instances. For the estimation of
the amount of bad hubs we used £ = 3. The amount of bad hubs (in percent
of all the high error instances) is shown in the fifth column of Table 1.

5.1.1. Financial Tweets Dataset

In order to demonstrate that our approach may be useful for prediction
tasks in the financial domain, we collected financial tweets and tried to pre-
dict the yield of particular stocks based on those tweets.

Each instance of the Financial Tweets dataset corresponds to one of 1565
stocks. In order to collect the data, we crawled tweets containing the symbols
(few letter abbreviations) of prominent stocks for the time period of 25 days
between the 13th May and the 6th June 2014. From the raw data we ex-
tracted 25 numeric features for each stock. Each of these features corresponds
to a particular day and gives how many times the stock was mentioned on
that day in the tweets. Additionally, for each business day we include the
return and the volume of trade of the particular stock. We calculated three
further features: the standard deviation of the returns, volumes of trade and
how many times the stock was mentioned in the considered period of time.
The associated regression task is to predict the yield (in percent) of each

thttp://www.r-project.org
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stock for the (i) next business day (i.e., the 9th of June), (ii) next week, (iii)
next two weeks and (iv) next three weeks. We evaluated our approach using
all the four targets, however, we considered the yield on the next business
day as default target, i.e., whenever the target is not explicitly stated, we
used the yield for the next business day as target.

5.1.2. Datasets related to Parkinson’s Disease

”Parkinson’s disease (...) is a degenerative disorder of the central nervous
system.”? It can cause neuropsychiatric disturbances which can range from
mild to severe. This includes disorders of speech, cognition, mood, behaviour,
and thought. [30] The Unified Parkinson’s Disease Rating Scale (UPDRS) is
used to assess the severity of the disease.

The Parkinsons Telemonitoring (TM) dataset [31, 32] ”is composed of
a range of biomedical voice measurements from 42 people with early-stage
Parkinson’s disease recruited to a six-month trial of a telemonitoring device
for remote symptom progression monitoring.”® We report results for using
the 16 voice measures of the data to predict the total and motor UPDRS
scores. We note that we considered the total UPDRS score as default target,
i.e., whenever the target is not explicitly stated, we used the total UPDRS
score.

We also used the Parkinson Speech Dataset with Multiple Types of Sound
Recordings to which we refer as MultiSound for simplicity [33]. This data is
associated with a similar prediction task, i.e., the prediction of the UPDRS
score.

5.1.3. Further Datasets

The Forest Fires dataset contains 517 instances. The associated regression
task is to predict the area of forest fires based on meteorological features like
temperature, wind, rain or the month of the year [34]. Except the target,
the dataset has 12 features. In order to keep our experiments uniform, for
all the datasets we used the Euclidean distance. Therefore, out of the 12
features of the data, we only used the 10 numeric features and we ignored
the remaining two nominal (string-valued) features.

The Blog Feedback dataset contains 60,021 instances and 281 features
including the target variable. Each instance corresponds to a blog post.

http://en.wikipedia.org/wiki/Parkinson%27s_disease
3http://archive.ics.uci.edu/ml/datasets /Parkinsons+Telemonitoring
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Users may comment on blog posts, however, the number of comments that
particular blog posts receive highly vary from post to post. For each blog
post, the goal is to predict the number of comments in the upcoming 24
hours [35]. In order to simulate real-world scenarios in which predictions
based on past data has to be made for the future, the data comes with
temporal train and test splits.

In our experiments on the Wine Quality Dataset? [36], we aimed to predict
the quality of white wines based on physiochemical features.

5.2. Experimental Protocol

We used the provided temporal train and test splits of the Blog Feedback
dataset. As the other datasets did not have pre-defined train and test splits,
we performed experiments according to the 10-fold cross-validation protocol
on those datasets.

5.3. Compared Methods

As the proposed approaches, EWENN, ECKNN and EWCENN, are based
on nearest neighbor regression, we used nearest neighbor regression (as de-
scribed in Section 2) as primary baseline. Throughout the experimental re-
sults, nearest neighbor regression is denoted by KNN. We used the Euclidean
distance in all the aforementioned regression approaches.

Additionally, in order to study if the proposed methods are competitive
to other regression techniques, we run experiments using MANN, linear re-
gression, M5P regression trees, feed forward neural networks with one hidden
layer and 5 and 10 hidden nodes respectively. We tried MANN both with
k=5 and k = 10. As MKNN with £ = 10 performed remarkably better than
with k£ = 10, we decided to report results only for the case of £k = 10 for
MENN. These techniques are denoted by MANN, LinReg, M5P, Net-5 and
Net-10 respectively. In our experiments, we used the Weka-implementations
of linear regression, regression trees and neural networks [37].

5.4. Performance Metrics
We measured the performance of our approach and the baselines in terms
of mean absolute error (MAE) and normalized mean absolute error (NMAE):
1

|Dt65t ’

MAE = 19(;) = y(z;)],

ZjE€Dtest

4https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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where Dyt and |Dyest| denote the test set and its size respectively, y(z;) de-
notes the label predicted by the regression model (i.e., one of kNN, EWENN],
ECENN or EWCENN, MiNN, LinReg, M5P, NeuralNet-5 or NeuralNet-10)
for instance z;, while y(x;) denotes the true label of instance z;.

We used paired t-test at significance level of 0.05 to examine if EWENN],
ECENN and EWCENN statistically significantly outperform the baseline.
For simplicity, we only report results for MAE, but we note that we observed
similar trends for NMAE as well: in particular, differences between our ap-
proaches and the baselines were found to be significant (or non-significant
respectively) in the same cases, and the order of EWENN, ECANN and
EWCENN was the same.

5.5. Comparison of regression techniques

In this section, similarly to [38], we present our results using a default
k-value of k = 5. In the subsequent sections, we show that the proposed
approach consistently outperforms the baseline for a wide range of k-values
and we discuss the effect of label noise on classification which is especially
important from the point of view of potential applications.

Table 2 summarizes the results of our experiments using k = 5 nearest
neighbors. We report mean absolute error averaged over 10 folds (in case of
the Financial Tweets, Parkinsons Telemonitoring, MultiSound, Forest Fires
and Wine Quality datasets) or the provided test splits (in case of the Blog
Feedback dataset). For EWENN, ECANN and EWCEKNN we provide an
additional symbol e or o which denotes if the performance of EWENN,
ECENN or EWCENN is statistically significantly better (o) or worse (o)
compared with the baseline (k-NN). The absence of e or o means that the
observed difference in not significant statistically.

As one can see from the comparison of kNN and EWANN, hubness-aware
weighting significantly improved the performance in all the examined cases.
In contrast, error correction alone seems to have a minor effect overall: in
most of the cases, there were no significant differences in terms of the perfor-
mance of ECEKNN and ENN. In two cases, ECENN significantly outperformed
ENN, whereas only once was ECENN significantly worse than £NN. The com-
bination of weighting and error correction, i.e., EWCENN had the overall best
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Table 2: Mean absolute error =+ its standard deviation in case of the proposed approaches
and k-NN regression. For EWENN, ECKNN and EWCENN we provide an additional
symbol e or o which denotes if the performance of EWANN, ECENN or EWCENN is
statistically significantly better (o) or worse (o) compared with the baseline (k-NN). The
absence of e or o means that the observed difference in not significant statistically. For
each dataset, the best approach is underlined.

kNN EWENN ECKNN EWCENN
Financial Tweets Dataset
next day 0.0163+£0.0021 0.015140.0021e 0.016740.0020 0.014840.0021e
next week 0.0480£0.0070  0.044440.0066e  0.047840.0061 0.043340.0067e

next two wks. 0.0628+0.0090  0.058140.0095e  0.0626+0.0081  0.0567+0.0093
next three wks. 0.0743£0.0095 0.0687+0.0102¢  0.0737£0.0097  0.0671£0.0102e

Datasets related to Parkinson’s Disease

TM total 8.2574+0.1355 8.055040.1673e  8.09584+0.1064e 8.011740.1589%e
TM motor 6.474440.0491 6.3685+0.0879¢ 6.3771+0.0713e¢  6.35184+0.0863e
MultiSound 12.1604+0.5932 10.826+0.6735e¢  12.340+0.4059 10.980+0.6995e
Further Datasets

Forest Fires 19.67947.3391 14.787+6.7381e  20.125+6.7212 14.585+6.7736e

Blog Feedback  5.6889£1.7610 5.1502+1.9076e 6.1194+1.6911c 5.1733£1.9369e
Wine Quality 0.6163+0.0234 0.5992+0.0253e 0.6144£0.0192  0.6053£0.0219e

performance. EWCENN was always significantly better than kNN. These re-
sults show that weighting has a higher overall impact, while error correction
may further increase predictive performance.

Table 3 compares the performance of EWCENN with further baselines
MENN, LinReg, M5P, Net-5 and Net-10. We observed that EWCENN out-
performed all of these models on the Financial Tweets, MultiSound, Forest-
Fires and BlogFeedback datasets. EWCENN outperformed MANN on all the
datasets which was expected because EWCENN takes the badness of hubs
into account while MANN does not distinguish between good and bad hubs.

Considering the performance of EWCENN together with the intrinsic
dimensionality of the datasets, we can observe that EWCENN performed well
in cases of high intrinsic dimensionality. In particular, EWCENN was the best
out of the models compared in Table 3 whenever the intrinsic dimensionality
was seven or more. This is in accordance with previous results from the
literature that attribute the presence of bad hubs, and the success of hubness-
aware classifier to high intrinsic dimensionality [17].
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Table 3: Mean absolute error of EWCENN and additional baselines MNANN (with k£ = 10),
LinReg, M5P, Net-5, Net-10. For MNANN, LinReg, M5P, Net-5, Net-10 we provide an
additional symbol e or o which denotes if EWCENN is statistically significantly better (o)
or worse (o) than MNANN, LinReg, M5P, Net-5 and Net-10 respectively. The absence of
e or o means that the observed difference in not significant statistically. For each dataset,
the best approach is underlined.

EWCENN MENN  LinReg M5P Net-5 Net-10
Financial Tweets Dataset

next day 0.0148 0.1365¢ 0.0180e 0.0181e 0.0231e 0.0238e
next week 0.0433 0.1646e 0.0489e¢ 0.0540e 0.0524e 0.0524e
next two wks. 0.0567 0.1823e¢ 0.0645e¢ 0.0659e¢ 0.0704e 0.0708e
next three wks. 0.0671 0.1928e¢ 0.0746e 0.0793e 0.0780e 0.0784e
Datasets related to Parkinson’s Disease

TM total 8.0117 8.3776e 8.3301le 7.25380 7.9401 7.71910
TM motor 6.3518 6.5429¢ 6.5384e 5.72860 6.1905 6.16780
MultiSound 10.980 12.086e 12.085e¢ 12.169e¢ 13.285¢ 14.106e
Further Datasets

Forest Fires 14.585 19.899¢ 19.762e¢ 19.938e¢ 27.667e 28.541e
Blog Feedback  5.1733 6.3590e 8.2995e¢ 5.9752e¢ 5.6779¢  5.8543e
Wine Quality 0.6053 0.6349e¢ 0.58520 0.55230 0.58260 0.56560

5.60. Varying the number of nearest neighbors

We examined how k, the number of nearest neighbors influence the per-
formance of the proposed approaches. In particular, we varied k£ between 1
and 10 and measured MAE of the models. This is shown in Figure 4.

As one can see, the proposed approaches are stable and have good per-
formance for a wide range of k. More importantly, EWANN and EWCENN
seem to converge to a better solution than kNN.

5.7. The effect of noise

On the one hand, real-world data is often affected by noise. On the
other hand, appropriately selected noise models allow us to simulate the in-
creased presence of bad hubs. Therefore we examined how the proposed
methods perform in the presence of label noise. In particular, we considered
two noise models, conventional Gaussian noise and the adapted version of
the recently introduced hubness-aware random label noise [25]. The adapta-
tion was necessary because hubness-aware random label noise was originally
introduced for classification under the assumption of discrete class labels,
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Figure 4: Performance (in MAE) of EWCENN, EWANN, ECANN and kNN as function of
k, the number of nearest neighbors for various datasets.

however, we consider regression problems with continuous class labels in this
paper. Hubness-aware continuous random label noise introduces additional
bad hubs to the data.

In case of both noise models, we added noise to the training data and
examined how well the regression model trained on the noisy data is able to
predict the correct (i.e., noise-less) class labels of the test data. By adding
noise to the training data we mean that we changed the original labels. In
case of Gaussian label noise, the noisy label y(z) of a training instance
x € D was defined as

Va(r) = y(r) + R - Yavg - 7 (14)

where y(z) denotes the original class label of instance z, R is a standard
normal (Gaussian) random variable with zero mean and standard deviation
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of one, r denotes the noise level, while y,,, is the average of labels of the

training data, i.e.,
1
Yavg = E Z y(%)
x; €D

We define hubness-aware continuous random label noise as follows: in case

of hubness-aware continuous random label noise, the noisy label yj; () of a
training instance x € D is

Yu () = y(@) + R Np(2) - Yag - 7 (15)

where Ni(z) is the k-occurrence of the instance x as described in Section 3,
while y(x), R, Yavg and r denote the same as in case of Gaussian random label
noise. Due to the factor Ni(z) in Equation (15), hubness-aware continuous
random label noise introduces bad hubs. This noise model is particularly
interesting because bad hubs have been identified as one of the major causes
of classification errors, see e.g. [17], [18], [19], [20], [21]. Similar noise models,
although in context of classification, have been used in [25] and [39].

In our experiments presented in this section, we fixed £ = 5 and varied
the noise level r between 0 and 0.5 for both noise models. However, we note
that we repeated our experiments with £ = 10 and we observed the same
trends.

The effect of Gaussian and hubness-aware continuous random label noise
on the predictive performance (in MAE) of EWCANN, EWANN, ECENN and
ENN on the Financial Tweets and Parkinsons datasets is shown in Figure 5,
Figure 6 and Figure 7. We observed similar trends on the other datasets too.

As one can see, the proposed approaches outperform the baseline for
all the examined noise levels. However, there are differences in terms of
the relative performance of EWANN, ECANN and EWCENN. While in the
noiseless case (and in case of very low levels of noise), according to our
observations, the proposed weighting technique (EWENN) contributes more
to accurate predictions then the proposed label correction (ECENN), the
situation is the opposite in case of high levels of noise: with increasing noise,
error correction (ECENN) becomes more relevant then weighting (EWANN).

In case of hubness-aware continuous random label noise, the combined
approach, EWCENN is clearly favorable. Furthermore, the results also show
that, similarly to the case of Gaussian noise, in case of moderate and high
noise levels, error correction (ECENN) contributes more to accurate predic-
tion than weighting.
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Figure 5: The effect of Gaussian noise on the predictive performance (in MAE) of
EWCENN, EWENN, ECENN and ANN on the Financial Tweets dataset. MAE is shown
as function of the noise level.

Figure 8 shows the performance of EWCENN compared with the perfor-
mance of additional baselines LinReg, M5P, Net-5 and Net-10 under both
examined noise models on the Blog Feedback dataset. As one can see,
EWCENN clearly outperforms LinReg, Net-5 and Net-10. For moderate
levels of Gaussian noise, EWCENN outperforms M5P as well, while M5P
and EWCENN have similar performance in other cases. Most remarkably,
the performance of EWCKNN is much more stable than that of Net-5, Net-10
and M5P.

These results indicate that, in real-world applications, the selection of
the regression approach may depend on the character and (expected) level
of noise in the data.

6. Conclusions and Outlook

The presence of hubs has been previously observed and its implications
to various machine learning tasks, such as classification, clustering and in-
stance selection, has been explored. This paper is the first that describes this
phenomenon in the context of regression. Here, we developed three hubness-
aware regression approaches: the weighting-based EWANN, ECENN which
performs error correction, and the combination of the two aforementioned
techniques which we called EWCENN. We evaluated these techniques on
real-world datasets from various domains ranging from financial over social
to medical and compared the proposed EWENN, ECENN and EWCENN
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Figure 6: The effect of hubness-aware continuous random label noise on the predictive
performance (in MAE) of EWCENN, EWENN, ECENN and £NN on the Financial Tweets
dataset. MAE is shown as function of the noise level.

to state-of-the-art regression techniques such as NN, MANN, regression
trees and neural networks. According to our observations, EWCENN out-
performed all the aforementioned baselines in cases where the intrinsic di-
mensionality of the data was high.

We also examined the performance of the proposed approaches under the
assumption of various types of noise. In particular, we considered conven-
tional Gaussian noise model and the adapted variant of the recently proposed
hubness-aware label noise which models the increased amount of bad hubs.
The relevance of this noise model is due to the fact that bad hubs has been
shown to be responsible for surprisingly high fraction of the overall predic-
tion error. Our experimental results show that in case of noiseless data (i.e.
data without additional noise), as well as in case of hubness-aware noise, the
combined approach had the best overall performance.

According to our observations, out of the two components of EWCENN,
i.e., weighting and error correction, in case of noiseless data, weighting had
substantially higher impact, while the presence of moderate and high lev-
els of noise lead to increasing impact of error correction. In the presence
of Gaussian noise, error correction alone (ECENN) outperformed both the
weighting-based and the combined approaches. Therefore, in real-world ap-
plications, the selection of the appropriate regression approach may depend
on the character and (expected) level of noise in the data.

As regression is one of the most relevant machine learning approaches,
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we envision that the proposed techniques can be used in various further re-
gression tasks. Additionally, the presence of hubs may be taken into account
in other ways and the proposed techniques may be combined with other con-
ventional regression approaches in ensemble schemes. Furthermore, we point
out that the proposed approach only assumes the presence of an appropri-
ate distance between the instances and therefore it may be suited in various
"big data” applications, where instances have (slightly) different attributes:
in such cases, although one may define a distance between instances, most
of the conventional regression techniques are likely to fail as they usually
assume the presence of the same attributes for all the instances.
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