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Tamás Kis and Márton Drótos

Abstract Production planning and scheduling with the aid of software tools in to-
day’s manufacturing industries have become a common practice which is indispens-
able for providing high level customer service, and at the same time to utilize the
production resources, like workforce, machine tools, raw materials, energy, etc.,
efficiently. To meet the new requirements, problem modeling tools, optimization
techniques, and visualization of data and results have become part of the software
packages. In this chapter some recent developments in problem modeling and op-
timization techniques applied to important and challenging industrial planning and
scheduling problems are presented. We will focus on new problem areas which are
still at the edge of current theoretical research, but they are motivated by practical
needs. On the one hand, we will discuss project based production planning, and on
the other hand, we will tackle a resource leveling problems in a machine environ-
ment. We will present the problems, some modeling and solution approaches, and
various extensions and applications.

1 Introduction

In this chapter we overview some of the recent developments in automatic planning
and scheduling of complex manufacturing processes. We will consider problems
that in our experience frequently occur in practice, but they are not so well studied
like several single machine scheduling problems, or the makespan minimization
problem in job shops [5], [6].
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We will introduce two problem areas in detail, and for each problem area we
provide a problem formulation, some theoretical background, sketch a solution ap-
proach and summarize computational results. We will also provide references to the
literature offering further results and extensions.

2 Project based production planning

Traditionally, production planning is concerned with determining production quan-
tities of final products and that of their subcomponents over time based on man-
ufacturing lead times and the bill-of-materials. This approach may be inadequate
when dealing with a large variety of products manufactured in small quantities. For
instance, when a customer orders e.g., a complex product made of several com-
ponents, which have to be designed, manufactured, assembled, tested, and finally
delivered to the customer, then determining production quantities is just not the
right way of making a feasible plan, not mentioning that a manufacturing company
may have several big projects running concurrently, which have to be controlled
separately.

In order to build a planning model, we will use the terminology of project
scheduling [8]. A project consists of activities needing various resources, and con-
nected by precedence constraints. Consider for instance a manufacturing firm which
produces complex products for its customers. Each customer order becomes a
project, where an activity represents a major step in the project, like design, various
manufacturing steps, assembly, etc. There is a natural precedence relation between
the project activities. Design must precede manufacturing, which, in turn, is a pre-
requisite to assembly, and testing. As for the resources, the design activity requires
engineers making the blueprint of the parts to be manufactured. The manufacturing
steps may require CNC work centers, or milling / turning machines, heat treatment,
etc. In the following we assume that the projects are broken down to some main
steps, and for each step the key resources are known. So far, we can build a network
of activities representing the main steps of the project which in the end delivers the
final product to the customer.

Since production plans are made for a longer time horizon, e.g., 26 or 52 weeks,
it is desirable that activities are also at the right aggregation level, e.g., the design of
the project is represented by a few major design activities, which have a time span
of several weeks. Resource are also aggregated, like chef-designers, or a group of
identical CNC machines is considered as a single cumulative resource. The process-
ing capacity of a cumulative resource equals the sum of the processing capacities of
the resources grouped together.

In practice, the intensity of aggregated activities vary over time. The intensity in-
creases gradually to a maximum level permitted by technological constraints, then it
is run for a while at maximum, or close to maximum level, For instance, if a project
needs 100 hours of CNC machining, only 10% can be done daily, since several oper-
ations must be done on the same part. On the other hand, the activities may overlap
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in time. For example, design provides blueprints to manufacturing, and as manufac-
turing of parts progresses, more and more components can be assembled. Therefore,
we connect the activities of the project by feeding precedence constraints. Such a
constraints specifies that, say, 20% of activity A must be completed before activity B
may start, and then B cannot progress faster than A., for an illustration see Figure 1.
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Fig. 1: Variable intensity activities connected by a feeding precedence constraint.

It is natural to assume that resource consumption of variable intensity activities
is proportional to their intensity over time. For renewable resources, like machine
tools, or workforce, if the intensity of an activity i is xi

t in time period t, then its
resource consumption from some renewable resource Rk is qi

k · xi
t , where qi

k is the
total demand of activity i from resource k. Of course, one may consider more general
functions for computing the resource usage of activities depending on their intensity,
however, we consider only linear functions in this paper.

In the rest of this section, we describe a mathematical model and discuss some
solution approaches. Finally, we overview some possible extensions of the model.

2.1 Modeling by a mixed-integer linear program

Firstly, we introduce formally the problem data and the objective function, and then
describe a mixed-integer linear program for solving it to optimality. There are a set
N of activities, and a set RR of renewable resources. The time horizon is divided into
time periods 1, . . . ,T , and any changes in the project can occur only at the border of
two consecutive time periods. Each activity i has a time window [ri,di] in which it
has to be completed, a maximum intensity ai > 0, and resource requirements qi

k ≥ 0
for k ∈ RR. The activities are connected by feeding precedence constraints given by
triples (i, j, fi j) meaning that an fi j fraction of activity i must be completed before
starting activity j. Each renewable resource k ∈ RR has a time varying capacity
bkt , and an additional external capacity which can be purchased at the expense of
additional costs.
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The objective is to find an intensity assignment to the activities such that each ac-
tivity is entirely processed in its time window, the nonrenewable resource constraints
are respected, and the cost of external resource usage is minimized. The external re-
source usage from some renewable resource k ∈ RR can be measured as the total
resource usage above the internal capacities, i.e., max{∑T

t=1 ∑i∈N qi
kxi

t−bkt ,0}. This
is illustrated in Figure 2. The motivation for this objective function is the fact that
companines usually have their internal workforce and other production capacities
from renewable resources, and in case of bottlenecks, they are willing to subcon-
tract or hire some extra resources.

time

resource
usage

Above capacity

Fig. 2: Resource usage above internal capacity. The internal capacity is indicated by
horizontal thick line.

Now we are ready to present a mixed-integer linear program for modelling our
pronblem. The decision variables are

xi
t = intensity of activity i in time period t,

ykt = resoource usage above internal capacity from resource k ∈ RR in time period t,

zi f
t =

{
0 if f -fraction of activity i has been completed before time period t,
1 otherwise.

The meaning of other symbols in the following problem formulation are as follows:



Planning and scheduling in the digital factory 5

N = set of activities,

ri,di = earliest and latest time periods when activity i can be processed,

Nt = set of activities with ri ≤ t ≤ di,

ai = maximum intensity of activity i,

ckt = cost of external resource usage from resource k ∈ RR in time period t,

bkt = internal capacity of resource k ∈ RR in time period t,

b̄kt = additional external capacity of resource k ∈ RR in time period t,

E i = set of precedence relations of the form (i, j, f ),

F i = set of fractions that occur in precedence constraints F i,

pi f = minimum number of periods to finish an f fraction of activity i

min
T

∑
t=1

∑
k∈RR

cktykt (1)

subject to

di

∑
t=ri

xi
t = 1, i ∈N , (2)

`−1

∑
t=ri

xi
t ≥ f (1− zi f

` ),
i ∈N , f ∈ F i,
` ∈ {ri + pi f , . . . ,di}, (3)

x j
t ≤ a j(1− zi f

t ), i ∈N , (i, j, f ) ∈ E i, (4)

zi f
t ≥ zi f

t+1,
i ∈N , f ∈ F i,
t ∈ {ri + pi f , . . . ,di−1}, (5)

`

∑
t=ri

xi
t ≥

`

∑
t=r j

x j
t ,

(i, j, f ) ∈ E i,
` ∈ {max{ri,r j}, . . . ,min{di,d j}}, (6)

∑
i∈Nt

qi
k · xi

t ≤ bkt + ykt , k ∈ RR, t ∈ {1, . . . ,T}, (7)

0≤ xi
t ≤ ai, i ∈N , t ∈ {ri, . . . ,di}, (8)

0≤ ykt ≤ b̄kt , k ∈ RR, t ∈ {1, . . . ,T}, (9)

zi f
t ∈ {0,1},

i ∈N , f ∈ F i,
t ∈ {ri + pi f , . . . ,di}, (10)

The objective function (1) aims at the minimization of resource hiring/subcontracting
costs. Constraints (2) ensure that each activity is totally processed in its time win-
dow. The precedence constraints between pairs of activities are described by in-
equalities (3) through (5). In particular, (3) ensures that zi f

t can be zero only if an
f -fraction of activity i is completed up to time period t − 1. Moreover, (4) makes
sure that a the successor j of activity i can only start if an f -fraction of activity i
is completed. Inequalities (5) ensure that there is only one point in time when the
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zi f
t switches from 1 to 0. The feeding aspect is captured by (6). The external re-

newable resource usage is expressed by (7), since ykt is non-negative and it has a
positive weight in the objective function, thus strict inequality holds in (7) only if
the resource usage is below the internal capacity, in which case ykt = 0. Finally, the
remaining constraints specify the feasible domains of the variables.

2.2 Solution approaches

There are various exact and heuristic methods for solving the problem (1)-(10). In
this section we sketch the main ideas of some of them.

Exact methods: Branch-and-Cut. Branch-and-cut is a kind of branch-and-bound
type of method, in which the linear programming relaxation of a MIP is solved and
strengthened by inequalities valid for the convex hull of integer solutions, but vio-
lated by the (fractional) solution of the LP relaxation [20]. The new inequalities are
added to the problem in the root node, and also in search tree nodes. The inequalities
are generated by so-called separation procedures, which may be exact or heuristic,
and they are designed to find inequalities in a class that are violated by the optimal
LP solution of the search tree node.

A special case of the problem in which there can be no overlap between pairs
of activities connected by a precedence constraint is discussed in [14]. In that pa-
per, a polyhedral approach is pursued, and an exact branch-and-cut type method is
proposed. The crux of the method is a polyhedral characterization of the convex
hull of points satisfying (3)-(6), along with (8)-(10). The polyhedral characteriza-
tion consists of providing the inequalities giving the convex hull of points with in-
teger z coordinates satisfying the constraints (3)-(6). The inequalities are used in a
branch-and-cut method in which the formulation is strengthened by the new family
of inequalities, and they proved very effective in solving the problem with non-
overlapping activities to optimality. These results are generalized to overlapping
activities in [15]. The computational results for the latter problem show that if we
allow more overlap between activities, but we do not change other problem parame-
ters, then the resulting instance is easier to solve. This is plausible, since overlapping
of activities connected by a precedence constraint can be seen as a relaxation of the
problem without any overlaps between activities connected by precedences.

Exact methods: Branch-and-Price. Branch-and-Price is essentially linear pro-
gramming based Branch-and-Bound, in which the linear programming relaxation
is solved by Column-generation. Column-generation, in turn, is a method for solv-
ing linear programs with many, usually millions of variables (columns). In such a
method, there is an initial linear program containing only a fraction of the columns
of the entire linear program, just enough to have a feasible solution. Then, new
columns are inserted gradually using the standard pricing technique of the primal
simplex method. The crux of the method is the subroutine for solving the pricing
problem efficiently, i.e., given the values of the dual variables associated with the
rows of the restricted primal program, one has to find a new column with negative
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reduced cost (in case of minimization type of problems), or verify that no such col-
umn exists in the full linear program, in which case the current LP basis is optimal.
When embedded in a Branch-and-Bound method with appropriate branching rules,
we get Branch-and-Price, see Barnhart et al. [3].

Hans [13] proposed a problem formulation amenable for Branch-and-Price. In
that formulation, the possible executions of project activities are modeled by a
set of binary vectors {β h ∈ {0,1}|N |×T | h ∈ Π}, Π being a suitable set of in-
dicies, consisting of the supports of all feasible intensity assignments to the ac-
tivities. Notice that a binary vector β ∈ {0,1}|N |×T is the support of a feasi-
ble intensity assignment if and only if ∑

T
t=1 βi,t ≥ pi,1, min{t | βi,t = 1} ≥ ri,

max{t | βi,t = 1} ≤ di, and if (i, j) is a pair of activities connected by a prece-
dence relation, then max{t | βi,t = 1}< min{t | β j,t = 1}. For solving the problem,
precisely one vector β h must be chosen. To this end, Hans introduced new binary
variables zh, h ∈Π , together with the following constraints:

∑
h∈Π

zh = 1,

zh ∈ {0,1}, h ∈Π ,

0≤ xi
t ≤ ai

(
∑

h∈Π

β
h
i,tzh

)
, i ∈N , t ∈ {ri, . . . ,T}.

The first two constraints ensure that exactly one vector β h is chosen. The third one
specifies that xi

t is either 0, or is between 0 and ai, depending on whether β h
i,t is 0 or

1. Hans’ model incorporates resource constraints similar to ours, although instead
of (9) it has yk

t ≥ 0, and ∑k ykt ≤ bk, for all t. As the size of Π can be enormous,
column generation is the only viable approach to handle this formulation.

Hans proposed various algorithms for solving the pricing problem, and to branch
on the right variables. However, the computational results are inferior to those with
Branch-and-Cut, see [14] for a comparison.

Heuristics. Heuristical methods usually provide a feasible solution fast, but there
is no guarantee for optimality, or even to get solutions close to the optimum. Gade-
mann and Schutten [11] divide the heuristics for our problem into three categories:
(i) constructive heuristics, (ii) heuristics that start with infeasible solutions and con-
vert these to feasible ones, and (iii) heuristics that improve feasible solutions.

De Boer and Schutten [7] propose algorithms in the first two categories, and
Gademann and Schutten [11] present algorithms that fall in the second and third
class. Wullink [21] propose new heuristics and provide a very detailed comparison
of the various exact and heuristical methods.

2.3 Extensions and further developments

The model discussed above can be extended in various ways. For instance, in some
applications non-renewable resources, like raw materials, or money are to be taken
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into account when making feasible project plans. Let NR be the set of non-renewable
resources. Each non-renewable resource k ∈NR has an initial supply (or stock level)
of sk0, and there are further supplies arriving at known moments of time, i.e., for
each non-renewable resource k ∈ NR, we have a sequence of uk supplies with sup-
plied quantities skh > 0 in time points tkh ∈ {1, . . . ,T}, h = 1, . . .uk. The consump-
tion of activity i from some k ∈ NR until the end of time period t can be compted as
qi

k ∑
t
τ=0 xi

τ .
The following set of constraints can be added to the model (1)-(10):

∑
i∈N

tk,(`+1)−1

∑
t=1

qi
kxi

t ≤ sk0 +
`

∑
h=1

skh, `= 1, . . . ,uk,k ∈ NR, (11)

where we define tk,uk+1 := T + 1. This constraint ensures that the total amount of
resource k ∈ NR that is used until the (`+ 1)-th supply event is not more than the
total supply over the first ` supply events in addition to the initial stock.

fi j

i

j

(a)

fi j

i

j

(b)

gi j

i

j

(c)

gi j

i

j

(d)

Fig. 3: Illustration of precedence relations: (a) CtS, (b) CtF, (c) StC, (d) FtC.

Another possible direction is to consider further variants of the precedence con-
straints. In Alfieri et al. [1] and Bianco and Caramia [4] the following 4 types of
constraints are considered:

a) %Completed-to-Start (CtS) precedence: successor activity j can start its process-
ing only when, in time period t, the fraction of predecessor activity i that has been
processed is greater than or equal to fi j (Fig. 3(a)).

b) %Completed-to-Finish (CtF) precedence: successor activity j can be completed
only when, in time period t, the fraction of predecessor activity i that has been
processed is greater than or equal to fi j (Fig. 3(b)).
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c) Start-to-%Completed (StC) precedence: the fraction execution of successor ac-
tivity j, in time period t, can be greater than gi j only if the execution of prede-
cessor activity i has already started (Fig. 3(c)).

d) Finish-to-%Completed (FtC) precedence: the fraction execution of successor ac-
tivity j, in time period t, can be greater than gi j only if the execution of prede-
cessor activity i has been completed (Fig. 3(d)).

The first one in the list is the same as that defined in Section 2.1, while the other
three are new. Alfieri et al. provide two problem formulations; in the first one binary
variables are used to mark the start and finish of activities over the time horizon,
whereas the second one is much like ours, where binary variables are used as exe-
cution masks as in Section 2.1. A detailed computational evaluation shows the su-
periority of the second model in terms of solution time. Bianco and Caramia [4] in
turn develop a new Lagrangian relaxation based lower bound for the makespan min-
imization problem with feeding precedence constraints, where the resource usage is
bounded by a constant.

When preemption of activities is not allowed, but a flexible resource usage per
activity is desirable, the models discussed above need to be extended by additional
constraints to ensure that once an activity started, its intensity does not become zero
until it is completely finished. Such formulations are proposed and thoroughly eval-
uated in Naber and Kolisch [16]. One of their main findings is that the modeling of
precedence constraints by the system (3)-(5) is a key ingredient of a strong formu-
lation.

3 Resource leveling

Resource leveling problems aim at finding schedules in which the resource usage is
leveled, or smooth over time. Such problems are well studied in project scheduling
(see e.g., [8], [17], [2], [19]), but there are only a few results for machine scheduling
problems, see e.g., Rager et al [18]. Notice that in machine scheduling, machines are
unary resources that can process one job at a time, while in the more general project
scheduling problems each resource can process multiple activities at the same time.
Moreover, in project scheduling activities are usually connected by precedence con-
straints, while in machine scheduling problems this is not always the case [5, 6].
In this section we will study resource leveling problems in a machine environment,
where each job is dedicated to a single machine, and may require one or more addi-
tional resources whose usage must be leveled.

Consider a scenario where the tasks are already assigned to machines, and
the time windows where individual tasks can be processed are already known
(e.g. based on precedence constraints, due dates, etc.). Each task may require a
given amount of some resources (such as skilled workers, some tools, etc.). For
each resource, the available amount is known. Most companies are willing to rent
temporary resources (e.g. hiring temporary workers) in order to complete their or-
ders on time, however they want to minimize the extra cost (recall that this was
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also the motivation for the objective function in Section 2). Another related applica-
tion is the classical resource leveling problem: the company wants to minimize the
variation of resource usage over time.

Beside the above applications, resource leveling problems occur in scheduling
problems where a balanced use of energy is one the main objectives [18], in con-
struction engineering [10], and in production planning [2], [12].

In this section, based on [9], an efficient solution approach is presented for a
resource leveling problem in a machine environment as described above. There are
m parallel machines, and ni tasks are assigned to machine i. Preemption of tasks is
not allowed, and no machine can process more than one task at a time. Task j has a
time window [e j,d j] in which it has to be processed for p j time units. Furthermore
there are L types of renewable resources, each resource ` having a target level C`.
Task j requires an amount of b j` from resource `. An illustrative example is shown
on Figure 4.

M1

M2

C

time time

re
so

ur
ce

us
ag

e

Fig. 4: Example with 2 machines, 3 tasks, and one resource. The height of the
tasks is proportional to their resource requirement. The chart on the right hand side
shows the resource profile of the schedule for each time unit; the resource overuse
is marked above the target level C of the resource.

The goal is to minimize some function of the deviation of the resource usage
from pres-pecified values. We consider objective functions of the following form:

L

∑
`=1

D

∑
t=0

f`(y`t ,C`),

where y`t is the total usage of resource ` at time t, D is the time horizon, and f` :
Q+×Q+→Q+ satisfy f`(x,y− z) = f`(x+ z,y). Note that f` may be different for
different types of resources.
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3.1 Modeling by a mixed integer linear program

The following notations will be used to describe the problem and a solution ap-
proach:

m = number of machines
L = number of resource types

C` = target level of resource `

J = set of tasks
Ji = set of tasks pre-assigned to machine Mi

ni = |Ji|, the number of tasks pre-assigned to machine i

p j = processing time of task j

e j = release time of task j

d j = deadline of task j

b j` = amount of resource ` required by task j

D = time horizon

The optimization problem can be formulated as a mixed integer linear program:

OPT = min
L

∑
`=1

D

∑
t=0

f`(y`t ,C`) (12)

subject to

D

∑
t=0

x jt = 1, ∀ j ∈ J, (13)

∑
j∈Ji

t

∑
τ=t−p j+1

x jτ ≤ 1, ∀ t ∈ {0, . . . ,D}, i ∈ {1, . . . ,m} (14)

∑
j∈J

t

∑
τ=t−p j+1

b j`x jτ − y`t = 0, ∀ t ∈ {0, . . . ,D}, ` ∈ {1, . . . ,L} (15)

x jt ∈ {0,1}, ∀ j ∈ J, t ∈ {e j, . . . ,d j− p j}. (16)

The decision variables are x jt ∈ {0,1}, j ∈ J, t ∈ {e j, . . . ,d j − p j}, indicating the
start times of the tasks, and y`t ∈ R, j ∈ J, t ∈ {0, . . . ,D} representing the resource
usage in each time period from each resource. As each task must be processed in its
time window, if τ < e j or τ > d j− p j, then x jτ is not defined and the corresponding
term is omitted.

The set of equations (13) ensures that every task is started in precisely one time
point t ∈ [e j,d j− p j)∩Z. The set of constraints (14) prescribes that no two tasks on
the same machine may overlap. Finally, the resource usage is computed in (15).
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3.2 Calculation of lower bound by Lagrangian relaxation

In order to compute lower bounds for an optimization problem, a standard tech-
nique is to apply Lagrangian duality (see, e.g., [20]), where some nasty constraints
of a problem formulation are moved to the objective function so that the resulting
problem becomes a relaxation of the original, and at the same time is easier to solve.

By dualizing the constraints (15) we obtain the following Lagrangian relaxation
of the problem:

LB(λλλ ) =
m

∑
i=1

LBi(λλλ )+min
y

L

∑
`=1

D

∑
t=0

( f`(y`t ,C`)−λ`ty`t) , (17)

where

LBi(λλλ ) = min
L

∑
`=1

D

∑
t=0

∑
j∈Ji

t

∑
τ=t−p j+1

λ`tb j`x jτ (18)

subject to

∑
t∈{e j ,...,d j−p j}

x jt = 1, ∀ j ∈ Ji, (19)

∑
j∈Ji

t

∑
τ=t−p j+1

x jτ ≤ 1, ∀ t ∈ {0, . . . ,D} (20)

x jt ∈ {0,1}, ∀ j ∈ Ji, t ∈ {e j, . . . ,d j− p j}. (21)

From the theory of Lagrangian duality it is known that

max
λλλ

LB(λλλ )≤ OPT

where OPT is the optimum value of (12)-(16).
In [9] it is shown that the subproblems (18)-(21) can be solved efficiently for

f (x,y) := max{x− y,0}, and f (x,y) := (x− y)2.
Note that by using this relaxation, the original problem is decomposed into inde-

pendent single machine problems that can be solved concurrently. Another advan-
tage of this approach is that the structure and the size of the subproblems (identified
by (18)-(21)) are independent of the number of resources and the objective function.

3.3 A Branch&Bound method

The nodes in the Branch&Bound search tree represent a constrained version of the
original problem, where the time windows of the tasks are narrowed, and the root
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node represents the original problem. In each node, the following calculations are
performed:

1. Constraint propagation. Some well known single machine constraint propaga-
tion methods are applied on each machine in order to narrow the time windows
of the tasks.

2. Calculation of lower bound. By using the subgradient method, the Lagrangian
multipliers λλλ are determined for the actual subproblem, and a lower bound is
calculated for the actual node. The formulation presented in Section 3.2 is used,
however instead of solving the IP-s, their LP-relaxations are considered.

3. Shaving. Concurrently for each machine, a shaving procedure is applied. For
each task, the lower bound of the objective function is calculated for each possi-
ble start time, again using the Lagrangian relaxation. This method may improve
the lower bound, and may also narrow the time windows. For an overview of
shaving techniques, the reader is referred to [5].

4. Calculation of upper bound. By using the solution of the Lagrangian relax-
ation and applying some heuristics, a solution is sought for the problem repre-
sented by the actual node of the Branch&Bound tree.

5. Branching. A task is chosen heuristically, and its time window is partitioned
into sub-windows. By using the results of shaving, a lower bound can be deter-
mined for each child node without extra calculations.

A best-first search is used to traverse the search tree according to the predicted
lower bounds of the unvisited nodes, ensuring that the promising combination of
time windows are evaluated first. Furthermore, the minimal lower bound among the
unvisited nodes represents a lower bound for the original problem.

3.4 Test results

The effectiveness of the presented Branch&Bound method was demonstrated us-
ing randomly generated test instances of different sizes, for the following objective
functions:

flin(y`t ,C`) = w` max(0,y`t −C`) (22)
fquad(y`t ,C`) = (y`t −C`)

2 (23)

flin represents the minimization of total weighted resource overuse, while fquad
represents the resource leveling problem (i.e. the minimization of the variation of
the resource usage over time).

A series of test instances were used with m = 5,10,20 machines, t = 10,15 and
20 tasks per machine, giving a total of n = 10m,15m and 20m tasks, respectively.
Each test class with parameters (m, t) contained 10 instances.

The results of the Branch&Bound method were compared to those obtained by
the commercial solver ILOG CPLEX 11.2 using the MIP formulation of the resource
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leveling problem (12)-(16). For both programs, a time limit of 1800 seconds was set,
and the best lower- and upper bound was recorded at the end of each run.

m5 m10 m20 avg
BB CPX BB CPX BB CPX BB CPX

t10 6.16% 3.10% 0.74% 0.24% 0.36% 0.37% 2.42% 1.24%
t15 12.94% 11.28% 5.08% 5.96% 0.41% 1.62% 6.14% 6.29%
t20 18.39% 17.15% 5.41% 7.48% 2.19% 10.39% 8.66% 11.67%
avg 12.49% 10.51% 3.74% 4.56% 0.99% 4.13% 5.74% 6.40%

Table 1: Average optimality gap for the linear objective function with C` =
b∑ j∈J b` j p j/Dc, and 3 resources.

m5 m10 m20 avg
BB CPX BB CPX BB CPX BB CPX

t10 2.31% 1.51% 0.85% − 0.24% − 1.13% −
t15 3.77% − 1.20% − 0.60% − 1.86% −
t20 4.31% − 2.71% − 0.37% − 2.46% −
avg 3.46% − 1.59% − 0.40% − 1.82% −

Table 2: Average optimality gap for the quadratic objective function with C` = 0,
and 3 resources.

The average optimality gap (defined as UB/LB− 1, expressed in percents) in
each case is shown in Table 1 and Table 2 for the linear and quadratic objective func-
tion, respectively. For the test instances with quadratic objective function, CPLEX
was only able to compute lower or upper bounds for the smallest instances within
the time limit.

3.5 Computation with multiple CPUs

Our Branch&Bound procedure offers several opportunities for parallel computing.
We have investigated the processing of search-tree nodes by multiple CPU cores on
a shared-memory computer. Our goal with the tests has been to measure the speed-
up that could be gained by parallel processing.

As the type of the problem and the actual test environment (server load, tasks with
high priority, etc) may influence the results, the parallel execution was evaluated
with two different methods. The first is the ratio of the elapsed CPU time and the
wall clock time (see Table 3a). Recall that the notation t10, t15, t20 means that there
are 10, 15, and 20, respectively, tasks to be scheduled on a single machine, so, in the
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cell, say, t20-m20, we provide speed-up for instances with 20× 20 tasks (20 tasks
per machine). An ideally parallel execution would use n ·t CPU seconds with n CPU
cores during t seconds wall clock time in an ideal environment. However the wall
clock time is still passing even when some CPUs are waiting for synchronizing with
the others, and therefore the ratio of total CPU time vs wall clock time is usually
worse (smaller) than n.

m10 m20 avg
t10 CPU5 2.65 2.58 2.62

CPU10 3.18 3.24 3.21
t15 CPU5 3.09 3.17 3.13

CPU10 4.27 4.37 4.32
t20 CPU5 3.29 3.33 3.31

CPU10 4.81 4.92 4.87
avg CPU5 3.01 3.03 3.02

CPU10 4.09 4.18 4.13

(a) Average ratio of CPU time
and wall clock time with dif-
ferent number of CPU cores

m10 m20 avg
t10 CPU5 1.88 2.01 1.95

CPU10 2.14 2.42 2.28
t15 CPU5 2.77 2.82 2.79

CPU10 3.81 3.79 3.8
t20 CPU5 3.08 2.91 3

CPU10 4.41 4.2 4.31
avg CPU5 2.58 2.58 2.58

CPU10 3.45 3.47 3.46

(b) Average speed of the al-
gorithm relative to execution
with a single CPU

Table 3: Effects of using multiple CPU cores.

The other method is to calculate the average number of nodes evaluated in a
second, which can be considered the speed of the algorithm. For each instance the
speed of the multi-core test runs was calculated relative to the single-CPU one (see
Table 3b). This measure may be less accurate than the previous one because the
nodes of the branch-and-bound tree may require different amount of calculation.
This is the consequence of the fact that the nodes of the search-tree may represent
problems with different complexity.

4 Conclusions

In this chapter we have described a planning and a scheduling problem which have
recently gained more and more attention in the academic research, but which fre-
quently occur in practice and need proper solution techniques so that they could be
routinely solved by future generation manufacturing planning and scheduling soft-
wares.

We have described some techniques to optimally solve those problems, but the
methods mentioned could be turned into heuristics by standard techniques, like trun-
cated branch-and-bound, or beam search.

We believe that variants of these problems do occur in several real-world appli-
cations, and a deeper understanding and further work is needed in order to solve
them properly in industrial practice.
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