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Abstract—The ”Type 1 Diabetes Mellitus (T1DM)” is a danger-
ous illness that concerns yearly increasing population. The control
of the glucose level in the human body is a widely investigated
subject area that also has serious technical difficulties as the
lack of reliable system model for each individual patient, the
limitations regarding the observability of the complete internal
state of the patient (at least in the view of the system model).
On this reason the ”Model Predictive Control (MPC)” needs
either robust or adaptive completion in this field of application.
In the lack of observable data the traditional state estimators
may have only limited relevance. The ”Robust Fixed Point
Transformation (RFPT)” based method was elaborated for the
design of adaptive controllers typically for such situations. It
does not need any sophisticated system model, it can work on the
basis of observations that concern only the controlled quantity
without the need of complete state estimation. In the present
paper the use of the RFPT-based adaptive controller is reported
in simulation investigations in which the validity of Bergman’s
“Minimal Model” is assumed. Promising simulation results are
presented.

I. INTRODUCTION

Type 1 Diabetes Mellitus (T1DM) is a subclass of the so-
called Diabetes Mellitus (DM), which is chronic metabolic
disease. The T1DM is related to the insulin hormone, since
during the emergence of the disorder, the insulin producer β-
cells are ”burned out” due to intense autoimmune reaction in
which the patient’s own immune cells destroy them. Insulin is
the key hormone that is responsible for facilitating the inflow
of the glucose molecules (which are the general source of
energy in the body of human beings) into the body cells
through the cell membrane. When a patient gets into such a
diabetic condition, external insulin injection is needed, without
it, most of the patient’s cells suffer energetic fatigue in short
term and energetic collapse over longer period [1], [2].

DM researches are hot topics on the biomedical engineering
field due to the dramatically increasing number of diabetic
patients. According to the newest estimations for the number
of people who live with such form of diagnosed and undi-
agnosed diabetes is about 386 million worldwide in 2013 [3].
Furthermore, the short term prospects suggest that this number
can be reached the 592 million, the 10.1% of the expected
global population by 2035 [3].

The control of a diabetic patient’s condition from the view-
point of diabetes is crucial because the uncontrolled disease
can cause several side effects [1]. Furthermore, the quality

of control is important as well [4]. Modeling and control
have absolute relevance on the diabetes research field. The
main problems are associated with the fact that the processes
in human body are non-linear, thus, the control design is
not trivial and demands individual approach case-by-case [5].
The nonlinearities can be handled in several ways. The most
common strategies from the recent years were the “Non-linear
Model Predictive Control (NMPC)” [6], “Linear Parameter
Varying (LPV)” based robust control methods [7]–[9] and
“Soft Computing” techniques [10], [11].

In this paper we investigate how the lately developed RFPT
based control design can give a useful solution to diabetes
control [12], [13]. This method has several benefits that will
be detailed below.

The paper is structured as follows. At first we introduce the
selected models, which were used during the examinations
and give an introduction about the RFPT method. Secondly,
we present the applied control design technique in this con-
crete case. At last, we show a few notable results and draw
conclusions. Finally, we give an outline to our future work.

II. DIABETES MODEL

Our purpose was to give a proof of concept, hence, we
selected the ”Minimal Model of Bergman” in the form, which
was presented by [5]. This is the most widely used T1DM
model that can be tested in relation with different control
approaches due to its simplicity. There are other forms of
this model, which were made for different purposes [14]. The
used form is appropriate from control perspective and, if it
necessary, there is an option to extend it to T2DM case, as
well. Naturally, we will test this controller design approach on
other, more complex models as well. The model is represented
by the (1).

The model has two inputs: p(t) [mg/dL/min] denotes the
glucose rate of appearance and u(t) [µU/mL/min] represents
the subcutaneously injected insulin flow; at the same time this
input is the control input as well. The output of the model is
G(t), [mg/dL], what is the plasma glucose level.

The model has three state variables, which are connected to
the blood plasm, these are: G(t) [mg/dL] the blood glucose
(BG) concentration, X(t) [1/min] insulin-excitable tissue glu-
cose uptake activity, I(t) [µU/mL] the blood insulin concen-
tration. The detailed descriptions about the model parameters
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are available in [5]. Figure 1 shows the schematic structure of
the detailed model.

Ġ(t) = −(p1 +X(t))G(t) + p1GB + p(t)

Ẋ(t) = −p2X(t) + p3[I(t)− IB ]

İ(t) = −n[I(t)− IB ] + u(t) .

(1)

Figure 1. The schematic structure of the used T1DM model, complemented
by a simple absorption model.

The selected T1DM model does not have absorption model.
Thus, we complemented our simulation environment with a
simple absorption model from [6], to reach more realistic
operation. This model approximates the glucose absorption
from the gut, with an exponential equation:

d(t) =
Dg(t) Ag t e

− t
tmax,G

t2max,G

, (2)

where Dg(t) [g/min] represents the time function of the
external glucose input, t [min] is the actual time and the
others are scalers. The exact definitions and physiological
meanings of these parameters can be found in the cited
literature above. The With this model, a more realistic glucose
input can be reached. However, during the simulations we
assumed, that the output of this model is known and not a
direct part of the T1DM model.

III. THE RFPT METHOD

In control engineering the use of high complexity models
have significant practical disadvantages. Typical problem is the
reliability of the model parameters for the particular person un-
der control. Furthermore, such models are difficult to handle.
Often complicated state estimators should be applied but these
estimators can work on the basis of “indirect observations” that
practically cannot be carried out. The presence of directly not
observable environmental disturbances mean further complica-
tions. The available signals normally are burdened with various
noises. On this reason either model reduction techniques have
to be applied (e.g. [15]) or alternative approaches should be
found. (Regarding model reduction the physical interpretation
of the “state variables” is often dubious.)

The RFPT-based adaptive control is just a possible alter-
native to the use of the model reduction techniques. The
basic idea is that the only variable that must be observed
is the response of the system to the control signal. This
signal is calculated by the use of a deformed input to an
approximate system model for a predefined “desired system
response”. This desired response can be determined by the

use of “purely kinematic terms” without using any information
on the system’s dynamics. The necessary “deformation” can
be determined in iterative manner i.e. by the application of
a sequence of control signals that (under certain conditions)
converge to the solution of the control task.

The sequence of the control signals is generated on the basis
of Stefan Banach’s “Fixed Point Theorem” that states that if a
mapping is contractive over a complete linear metric space
(Banach Space) the sequence generated by it converges to
its fixed point [16]. The appropriate mapping is constructed
from the control signal and the system’s response generated
by it in the preceding control cycle and the actually desired
response that for Single Input - Single Output (SISO) systems
is constructed as follows:

rn+1 = G(rn; rDes)
def
= (rn +Kc)×{

1 +Bc

[
tanh(Ac(f(rn)− rDes))

]}
−Kc ,

(3)

where Kc, Ac, and Bc = ±1 are the adaptive control
parameters. Clearly we have two fixed points as r = −Kc

(that is trivial and useless for the controller), and r? for which
f(r?) = rDes, that is the solution of the control task. The
condition

∣∣∣dfdr ∣∣∣ < 1 guarantees convergence. Further details
regarding the appropriate setting of the control parameters was
given in [13].

IV. CONTROLLER DESIGN

A. Design Considerations

During the development, quite a few general control, physi-
ological and phenomenological constraints have to be consid-
ered, as listed below:

• Those state variables, that are concentrations, are only
interpreted in the positive range, because physiologically
the negative range is meaningless (e.g. the blood glucose
and insulin concentration cannot be negative).

• On the same reason the time-derivative of any concentra-
tion can only be positive or zero when the concentration
itself is zero.

• The control signal is the injected insulin, u(t) ≥ 0, since
negative insulin cannot be injected.

• Furthermore, the blood glucose concentration cannot be
decreased under a positive limit level due to physiological
reasons (55 mg/dL [3]).

• The equations in (1) do not take into account these
constraints. Therefore in the simulations these constraints
must be built in additionally while using (1).

• In our controller, the only known state variable is the ex-
ternally measured blood glucose level, normally available
with sensor noise. The other states are not known during
the operation. For simplicity reasons, we did not consider
the additive noises in this research.

• It is assumed that because of physiological reasons, a
state estimator is not usable. (Practically it is impossible
to insert sensors into various parts of the patient’s body.)
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B. The Effect Chain of the Control Action

The external insulin input u(t) is not connected to the output
G(t) directly, the control signal affects the controlled variable
through an effect chain. To adapt the RFPT method, the control
signal’s ”route” has to be elaborated. This route determines the
control action and the control parameters as well.
This input appears in the third equation of (1) and reach the
G(t) through the X(t) state variable. The second derivative
of X(t) contains the İ(t):

Ẍ(t) = −p2Ẋ(t) + p3İ(t) . (4)

The quantity Ẍ(t) occurs in the third derivative of G(t), if
we rearrange the equation for

...
G(t):

...
G(t) = −(p2 +X(t))G̈(t)− Ẍ(t)G(t)− 2Ẋ(t)Ġ(t) + p̈(t) .

(5)
The above equations show that the relative order of the control
chain is 3. By step-by-step substitutions it can be shown that
u(t) effects directly only the third derivate of G(t):

ẌDesired(t) = −
...
G(t)

G(t)
−

−
(p2 +X(t))G̈(t)− 2Ẋ(t)Ġ(t) + p̈(t)

G(t)

(6a)

A = −
(p2 +X(t))G̈(t)− 2Ẋ(t)Ġ(t) + p̈(t)

G(t)
(6b)

ẌDesired(t) = −
...
G(t)

G(t)
+ A (6c)

İDesired(t) =
ẌDesired(t) + p2Ẋ(t)

p3
(7)

İDesired(t) =

−
...
G(t)

G(t)
+ A + p2Ẋ(t)

p3
(8)

B =
A + p2Ẋ(t)

p3
(9)

İDesired(t) = −
...
G(t)

p3G(t)
+ B (10)

uDesired = İDesired(t) + n(I(t)− IB) (11)

uDesired = −
...
G(t)

p3G(t)
+ B + n(I(t)− IB) (12)

Additive term = B + n(I(t)− IB) (13)

uDesired = −
...
G(t)

p3G(t)
+ Additive term (14)

Equation (14) shows the control opportunity in this specific
case: with prescribed kinematic requirements for the third
time-derivate of G(t) at a given moment, it determines the
necessary control input u(t) exactly in the same moment.
Thus, the controller affects the controlled variable through
an effect chain. Obviously, the strongest requirement from
the control viewpoint is the existence of the third derivate
of G(t). The equation contains an Additive term as well,
but the effect of this term from the RFPT-based control law
viewpoint is insignificant therefore it can be a constant.

C. The Control Law
The control law can be formalized with the kinematic

requirements. Since the control signal affects a third derivate,
the requirements should be given by the same order law.
From simplicity reasons we can take the tracking error as a
prescription and such a PID kind feedback with a proportional
term Λ > 0 could be suitable:

(
d

dt
+ Λ)4

t1∫
t0

(
GN (ξ)−G(ξ)

)
dξ = 0 (15)

where GN (t) is the nominal blood glucose concentration
of the nominal model, G(t) is the realized blood glucose
concentration and the exact requirement is that the error signal,
GN (t)−G(t), should converge to zero as t→∞. From here,
the desired third derivate is equal to

...
G

Desired
(t) =

(
d

dt

)3

GN (t)+

+
3∑

s=0

(
4

s

)
Λ4−s

(
d

dt

)s
t1∫

t0

(
GN (ξ)−G(ξ)

)
dξ .

(16)

Such a prescription can work well in the case of e.g. me-
chanical systems allowing the application of negative control
force or torque terms. However, in our case, when we have
to cope with the restriction u ≥ 0, if too much insulin were
injected to the system, we have to wait until it decays by
the natural processes. (The speed of decrease of the insulin
concentration cannot be increased by negative u.) During such
a “dead period” the controller actually cannot be active, and
the integrated error can drastically increase. To avoid this
unacceptable consequence, we can take a PD kind controller
given by

(
d

dt
+ Λ)3

(
GN (ξ)−G(ξ)

)
= 0 (17)

which implies the following desired
...
G

Desired
(t):

...
G

Desired
(t) =

(
d

dt

)3

GN (t)+

+
2∑

s=0

(
3

s

)
Λ3−s

(
d

dt

)s (
GN (ξ)−G(ξ)

) (18)
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where it can be considered that the possibly diverging inte-
grated tracking error is missing.

D. Rough Model Selection

The final step during the controller design is to select a
”Rough Model” (RM), which provides the control signal. The
big advantage of the RFPT-based method is that this can be as
simple as it is possible and the external noise, which comes
from the BG measuring method is reflected in the output of
this model. In this given case the (14) equation can be taken
as starting point during the selection. Since, the adaptivity law
can guarantee the appropriate control action certain variables
can be substituted by constants in this very approximate model.
In this case instead of the actual G(t) the constant Gb (from
1 ), can be used in (14), because of the mentioned adaptivity,
the system can tolerate this high approximation as well. We
have chosen the following RM:

uDesired = −
...
G(t)

p3Gb
+ Additive term (19)

The effect of Additive term is negligible and it can be
chosen as constant. It is clearly visible that the control action
will be based only on the third derivative of G(t) and in
this given case no other variables were considered due to
the simplicity of the used T1DM model. With more complex
model, other effects and signals could be considered depending
on the structure of the nominal model.

E. Controller Considerations

The developed controller is able to control the actual blood
glucose level based only on the past (realized) blood glucose
level, because of the applied method. In order to introduce
our method of full value, we have taken into account a few
considerations, detailed below:

• We used the suggested adaptivity law from [13], de-
scribed in (3). Thus, the adaptive control parameters are
the Ac, Bc and Kc, which are changeable.

• We have not used optimization method to select the Ac,
Bc and Kc parameters, however, ”better” results could be
reached with different optimization methods [17], [18].

• Other adaptivity laws can be used, since it has the same
geometric properties (based on sigmoid functions) [13],
with other tunable variables.

• The control law’s parameter, which can be changed is the
Λ. During the control action, the Λ’s value was constant.

From this list above, it can be realized that the RFPT-based
controller design method allows several kind of tuning options.
However, earlier studies have shown various optimization
methods [17], [18], the usability of these in this given case
is not proven and we are going to investigate the controller
tuning options in further studies.

V. RESULTS

In this section we present three different scenarios, which
provide good representation of the achievable results with
RFPT-based control design methods.

A. Results of RFPT-based PID Control with Different Λ Gains

Figure 2 shows a time diagram of a 24 hours long simulation
based on PID-type control law, with three high glucose loads
in case of different Λ parameters. As it was expected, with
higher gain, the controller provides higher control signal and
the control action is faster than in the case of lower Λ. The
following glucose input schemes were used: 7 am: 60g, 12.30
pm: 85 g, 19.30 pm: 75 g.

Figure 2. BG level (G(t)) with PID-type control, at heavy glucose load
[Control parameters: Λ = 0.08, Actrl = 1

10|Kctrl|
= 5 · 10−4, Kctrl =

−200, Bctrl = 1, Set-point (GN )=100 mg/dL ]

On the above figure it can be seen well that after the control
action (i.e. injection of some insulin), the controller “switches
off” itself because the zero insulin intake is the best possible
approximation of the kinematically desired negative value.

B. Comparison of Different Approaches

The result of the second scenario can be seen on Fig. 3. In
this case, we have compared different situations, namely:

1) Without control. The controller was eliminated.
2) Using of PD control law. We have used the control law

which was detailed in (17).
3) Using of PID control law. In this case (15) was used as

control law.
The glucose intakes were exactly the same as in the previous

case. It is clearly visible that the controllers (Case 2-3.) can
handle the high glucose load and the characteristic of the
controlled variable is more favorable than without control
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when the BG level reaches higher values. Otherwise, the
injected insulin causes lower BG levels. After the controllers’
turning-off, the system’s variables approach their equilibrium
values. On the bottom diagram (Fig. 3) the integrator causes
“insulin spikes” in the control signal, which immediately
disappear and the control signal decreases to a given value.
The control action is faster in this case than in the PD-type
one. On the other hand, we can take the conclusion that with
these control parameters, the PD and PID based controllers
provide similar results without individual parameter settings.

Figure 3. Different BG levels (G(t)), at heavy glucose load [Control
parameters: Λ = 0.1, Actrl = 1

10|Kctrl|
= 5 · 10−4, Kctrl = −200,

Bctrl = 1, Set-point (GN )=85 mg/dL ]

C. 8 Days Long Simulation

The last scenario was an 8 days long simulation with PID
control law. The used glucose intake protocol can be seen
in Table I. Six intakes were considered, with the same time
moments at every day, however, we have used a ± 10%
deviation in the amounts of glucose, as ”soft” randomization.

Time moments 6.00
am

9.30
am

12.30
pm

16.00
pm

20.00
pm

22.00
pm

Amounts of glu-
cose intake with
± 10% devia-
tion

45g 20g 60g 15g 55g 10g

Table I
GLUCOSE INTAKE PROTOCOL OVER THE 8 DAYS LONG SIMULATION

The results are displayed on Fig. 4, which is a “Control-
Variability Grid Analysis” (CVGA) diagram that is a com-
monly used tool [19] to investigate the eligibility of BG
control.

Figure 4. CVGA plot of the 8 days long simulation with the randomized
feeding protocol. [Control parameters: Λ = 0.1, Actrl = 1

10|Kctrl|
= 5 ·

10−4, Kctrl = −200, Bctrl = 1, Set-point (GN )=100 mg/dL ]

The occurred time diagram of the 8 days long simulation
(Fig. 5.) shows that the applied controller can not just only
handle the system, but also can adapt to the system’s “needs”,
namely, the required amount of insulin injection to reach the
control goal can be realized under changing glucose load.
During the simulation no hypoglycemic event happened, how-
ever sometimes hyperglycemia of short duration appeared very
shortly after the maximum glucose absorption.

VI. CONCLUSION

In this paper, the application of an RFPT-based controller
design method was reported in the field of diabetes control.
Several situations were investigated and encouraging simula-
tion results were obtained. (In the paper only a few of them
was presented.) It was found that the RFPT-based method
is appropriate from different points of view, which were
detailed in the text. The control parameters were set without
sophisticated optimization. It is expected that with on-line
optimization, beside the adaptation, the control could achieve
even better performance. In our future work, we are going to
analyze the design method from different directions, namely
we will examine the possibilities of parameter identification
and optimization, control law and adaptivity function selection
and other points of view.
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Figure 5. Result of a 8 days long simulation with the randomized feeding protocol [Control parameters: Λ = 0.1, Actrl = 1
10|Kctrl|

= 5 · 10−4,
Kctrl = −200, Bctrl = 1, Set-point (GN )=100 mg/dL ]
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