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Abstract 

 

Thermodynamics of ligand binding is influenced by the interplay between enthalpy and entropy contributions of the 

binding event. The impact of these binding free energy components, however, is not limited to the primary target 

only. Here we investigate the relationship between binding thermodynamics and selectivity profiles by combining 

publicly available data from broad off-target assay profiling and corresponding thermodynamics measurements. Our 

analysis indicates that compounds binding their primary targets with higher entropy contributions tend to hit more 

off-targets compared to those ligands that had enthalpy-driven binding. 

 
High on-target affinity and designed selectivity against off-targets are usually the key points in the target product 

profile of many discovery programs and consequently these are among the most desired objectives of 

multiparameter medicinal chemistry optimizations. Potency optimizations are generally carried out by introducing 

apolar or polar substituents and subsequently monitoring the binding affinity (expressed in Ki or IC50 values). High 

specificity, however, does not demand high affinity [1]. Improving the binding affinity can be achieved by both 

enthalpy and entropy driven optimization that covers substantially different thermodynamic profiles. Apparently 

enthalpy and entropy changes are linked due to the widely observed enthalpy-entropy compensation, although its 

impact has been recently challenged [2]. Binding affinity shows the quantity of the ligand-protein interactions via 

the Gibbs free energy of binding while the corresponding thermodynamic profile describes the quality of the 

interactions. 

 

The relationship between the knowledge encoded in Gibbs free energy of binding and its components, enthalpy and 

entropy can be explained by the analogy of the projection. Constellations of stars such as the Cassiopeia are plane 

projections having a graph pattern. Stars, however, are not located in the same distance, some stars are much closer 

than the others and therefore the projection has a hidden dimension. Taking this distance dimension into account 

makes the plane to a three-dimensional object. Constellations were used for efficient navigation for hundreds of 

years, as improvement of the binding free energy drove medicinal chemistry programs in the last decades. Space 

travellers, however, should use the information from the third dimension for successful navigation and similarly 

thermodynamics profiles provide beneficial information on the interactions for medicinal chemists. 

 

Ligand-protein interactions involve attractive forces and hydration-effects. Properly positioned polar groups 

contribute to specific interactions, such as H-bonds, salt-bridges, polar-polar interactions and non-classical 

interactions such as -hole mediated halogen bonding that result in enthalpy gain. In order to exploit this enthalpy 

reward the binding partners should be in optimal orientation, since the binding energy is highly sensitive to both the 

distance and the angle of the interacting atoms [3, 4]. Non-polar groups typically form weaker, less oriented and less 

specific interactions such as van der Waals contacts and - stacking [5]. Changes in desolvation entropy are 

favourable in both cases, but the desolvation of polar groups is associated with unfavourable desolvation enthalpy. 

For example the desolvation enthalpy of OH and NH functionalities are 36.4 kJ/mol and 33.0 kJ/mol, respectively - 

that is in the range of the enthalpy gain realized with polar interactions - while for a methyl group the corresponding 

value is only 2.4 kJ/mol [6, 7]. If the interactions with binding site water molecules do not override the primary 

ligand-protein interactions the affinity gain achieved by the introduction of polar groups is generally enthalpy 

biased. In contrast, introduction of non-polar substituents typically results in entropic reward that is mainly mediated 

by desolvation effects. Suboptimal positioned polar moieties would not be exploited in terms of enthalpy gain. The 

positional sensitivity of enthalpic optimization can be exemplified with a HIV-1 protease inhibitor pair. Saquinavir 

and TMC-126 have the same number of polar groups, however Saquinavir binding is associated with unfavourable 

~+5 kJ/mol binding enthalpy while TMC-126 binding is significantly more enthalpic (H~-50 kJ/mol) due to the 

better orientation of its polar groups [7]. It should also be noted that binding-site water molecules have complex 

influence on thermodynamics signatures [8-10]. Orientation of polar groups largely influences their specific 

interactions compared to non-polar functional groups that are introduced to fill apolar cavities. The latter types of 

interactions show less dependence on distance and are less sensitive to orientation. As a result, optimization of 

binding affinity is more straightforward by hydrophobic moieties. Non-interacting or suboptimal positioned polar 

atoms are charged by the unfavourable desolvation enthalpy and thus generally results in decreased affinity. 

Accordingly, enthalpy-driven optimization is considered to be significantly more challenging compared to the 

entropy driven process. Favourable binding energy can be achieved by entropy driven approaches such as the 

introduction of non-polar groups around apolar protein surfaces.  

Replacement of unstable water molecules within hydrophobic pockets is mostly driven by entropy changes, 

although enthalpy gain coupled with water replacement by apolar moieties had also been reported [8-9]. The effect 

of binding site waters has been recently reviewed by using WaterMap for solvation energetic calculations [11]. 

Selectivity between dopamine D2 and D3 receptors and kinase targets were also successfully rationalized by the 

analysis of binding site water molecules [12-13]. Therefore, computational approaches can significantly facilitate 

the design of selective compounds, if high-quality crystal structures are available. Furthermore, the combination of 

experimental and computational approaches is able to rationalize unique cases where apolar contacts contribute to 

the favourable binding enthalpy, in a protein binding site occluded from solvent water [14].  
The quality of interactions and the accompanying binding thermodynamics profile impact selectivity against off-

targets [15]. Enthalpically optimized compounds possess carefully positioned ligand-binding site atom pairs to 
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achieve the desired gain in binding enthalpy. Considering a different binding pocket presented in an off-target 
protein the designed interactions will not be able to yield the enthalpic contribution to binding free energy, due to 
the improper orientation of the ligand. Since the very same desolvation penalty of the polar atoms must be paid the 
off-target affinity of the ligand will be limited. In contrast, entropically optimized compounds have less positional 
constraints and desolvation of the apolar moieties can result in entropy gain due to the lower dependence from the 
binding environment. These compounds have therefore higher propensity to form attractive interactions with off-
targets. In this paper we investigate this hypothesis by analysing the thermodynamic and selectivity profiles of 
optimized compounds and marketed drugs. 

 

Binding thermodynamics and selectivity optimization 

HIV-1 protease 

The relationship between the binding thermodynamics properties of a closely related pair of compounds 
published by Kawasaki and Freire serves as an illustrative example for the impact of thermodynamics on selectivity 
[15]. The thermodynamic profile was measured on the primary target HIV-1 protease, while cathepsin D and pepsin 
were monitored as antitargets. In the first case, as subtle change as the introduction of two methyl groups into a 
phenyl moiety resulted in -11.2 kJ/mol gain in binding free energy due to the more favourable enthalpy contribution 
of the methylated derivative [Figure 1.]. 

This effect is a result of the optimal occupancy of a small cavity around the aryl moiety that is well oriented and 
the methyl groups can form desirable contacts. The selectivity towards pepsin and cathepsin D increased from 12 to 
157 and 72 to 2464, respectively. In the second pair the thioether moiety was replaced by the sulfonyl-methyl group 
that resulted in 1.2 kJ/mol decrease in binding free energy. However, the binding enthalpy improved from -34.3 
kJ/mol to -50.6 kJ/mol, and the entropy contribution decreased by 11.2 kJ/mol. The introduced sulfonyl group 
establishes a strong hydrogen bond with Asp30 of the protease, as evident in the crystal structure. The selectivity 
against pepsin and cathepsin D increased by 7 and 9 fold. The authors suggested that maximal selectivity can be 
achieved by introducing a few very strong hydrogen bonds towards the primary target protein. H-bonds have very 
rigorous distance and angular constraints. Consequently suboptimal H-bonds formed with the off-target protein are 
penalized and this result in a larger decrease in the corresponding binding free energy. The overall picture of the 
four compounds suggests that as the enthalpy contribution to binding free energy is increased, the compounds are 
more specific to the primary target. It is interesting to note that among these four compounds, not the highest affinity 
one has the highest selectivity, but the one with the most favourable binding enthalpy. Although there is no 
theoretical background to support the linear correlation between these quantities linear correlation coefficients (r

2
) 

between HproteaseandG values obtained for pepsin and cathepsin D were significant (0.9 and 0.93, respectively). 
GproteaseandG values were somewhat lower being 0.87 and 0.77, for pepsin and cathepsin D, respectively. 

 

Matrix metalloproteinase 

Matrix metalloproteinase 12 (MMP12) inhibitors were optimized by using X-ray crystallography and 
thermodynamics measurements [16] while monitoring selectivity against matrix metalloproteinase 13. The highest 
selectivity was 5 kJ/mol in terms of G that had been achieved by the most enthalpic compound (H=-40.4 kJ/mol) 
and again, this was not the highest affinity compound considering the MMP12 target. The linear correlation 
coefficient (r) between theGMMP12 and GMMP12-MMP13 values was found to be -0.15 (p=0.85) while the linear 
correlation coefficient between theHMMP12 and GMMP12-MMP13 is higher: -0.68 (p=0.32). Observations on this 
limited congeneric ligand set further strengthens that not the affinity, but the binding enthalpy has higher 
contribution to off-target selectivity. 

Aldose reductase 

Aldose reductase (ALR2) is a promising therapeutic target to prevent late complications of diabetes. An optimal 
drug candidate should possess a high level of selectivity for ALR2 over the related aldehyde reductase (ALR1) [17]. 
In order to obtain a comprehensive overview of the binding event, X-ray crystallography and thermodynamics 
measurements were carried out for ALR2. Based on human X-ray structures published, the six studied ligands can 
be grouped into those penetrating to the specificity pocket and others leaving the specificity pocket closed. 
According to the X-ray structures, the favourable enthalpy of IDD393 might be the result of specific polar contacts 
between the nitro moiety of the ligand and the Ser302 residue. This was further strengthened by the Ser302Arg 
mutation, where the binding enthalpy of IDD393 dropped by 19.4 kJ/mol. Similarly, comparing the structures of 
Sorbinil and Fidarestat revealed that Sorbinil possess a strong H-bond with the backbone NH of Leu300, not present 
in the case of Fidarestat. This observation has been further supported by the decreased enthalpic contribution of 
Sorbinil binding by 8.2 kJ/mol in the Leu300Pro mutant protein. In both cases the increased selectivity against 
ALR1 might be due to the specific enthalpic contact with the primary target that is less than optimal in the case of 
the antitarget ALR1. 

On the other hand, we did not find correlation between selectivity and binding enthalpy for the whole dataset. 
This might be explained by the different physicochemical profiles of the two ligand classes. Ligands occupying the 
selectivity pocket are carboxylic acids, and share similar pharmacophoric features, while those bound outside the 
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pocket (Sorbinil and Fidarestat) are small, weak NH acids, with less pharmacophore elements compared to 
compounds in the first group. 

 

Thrombin 

Medicinal chemistry optimization of triazole- and tetrazole-containing sulphonamide type thrombin inhibitors 
was published by Siles et al. [18]. The most promising compound had 828 times selectivity against trypsin. 
Evaluation of tryptase and chymase selectivity revealed favourable selectivity profile, since 0.95 and 0.98 residual 
enzyme activities were determined in the presence of 10 M inhibitor. Thermodynamic profiles of thrombin 
binding, the primary target, were measured by isothermal titration calorimetry. The highly selective lead compound 
was found to bind thrombin with favourable -38.1 kJ/mol enthalpy contribution and unfavourable 3.3 kJ/mol 
entropy. Due to the significant selectivity against other related human serine proteases and the encouraging 
thermodynamic profile, this lead compound serves as high quality starting point for further optimization. Although, 
in this study only the top ranked compound was thermodynamically characterized, the high selectivity and the 
corresponding enthalpy-driven binding fits into the proposed relationship of these properties. 

Cannabinoid receptors 

Binding thermodynamics of agonists and antagonists of cannabinoid CB1 and CB2 receptors were determined by 
van’t Hoff analysis [19] a methodology that is generally considered to be less reliable than ITC measurements, and 
highly influenced by the heat capacity change of the system. In this case, similarly to  many GPCR targets, binding 
thermodynamics separates the ligands by their functional activity. Binding of the five agonist compounds was 
entirely entropy driven, while binding of the three antagonists was mainly realized by favourable enthalpy 
contribution. The relationship between thermodynamics signatures and functional activities is a topic of a high 
number of studies [20] and thus out of the scope of the present paper. Among the two investigated CB receptors, the 
highest affinity target was evaluated as primary target and the lowest affinity target as secondary. Selectivity was 
defined as the difference in binding free energy between the primary and the secondary target. The enthalpy 
contribution calculated for the primary target was compared to the selectivity observed resulting in linear correlation 
coefficient (r) of -0.81 (p=0.016)  for all the eight ligands. Accordingly, ligands possessing more favourable binding 
enthalpy contribution had higher selectivity considering the two CB receptors. Among the eight ligands, ACEA, 2-
Fl-AEA and CP-55,940 had different physicochemical profiles and pharmacophore sets. ACEA and 2-Fl-AEA are 
arachidonic acid derivatives, while CP-55,940 is an octane derivative. Therefore their binding mode might be 
significantly different from that of the remaining five ligands that might explain their distinct thermodynamic 
profiles. Leaving these ligands out resulted in higher linear correlation coefficient (r=-0.95, p=0.012) between the 
G and H values. According to these observations, the relationship between selectivity and enthalpy contribution 
seems to be valid on G-protein coupled receptors with thermodynamic profiles obtained from van’t Hoff analysis for 
compounds having similar binding mode. 

Nucleic acid binding 

A specific DNA aptamer that recognized L-argininamide was discovered by Sytematic Evaluation of Ligands by 
EXponential enrichment system (SELEX) approach [1]. This construct had approximately 100-fold selectivity for L-
argininamide over several other arginine analogues and amino acids. The highly selective binding of L-argininamide 
to the DNA was found to be relatively weak, -21.3 kJ/mol only. However, the binding was accompanied by a large, 
favourable enthalpy, in range of -36 to -38 kJ/mol, and unfavourable binding entropy, in range of 15 to 17 kJ/mol. 
Based on this observation, it was concluded that high specificity can be achieved without high affinity, if the binding 
is mediated by large enthalpy contribution. 

Thermodynamics signatures of Amiloride binding to an abasic (AP site) site in RNA and DNA was reported 
recently [21]. In spite of the typically promiscuous binding of aminoglycoside antibiotics to various RNA targets, 
Amiloride was found to bind strongly and selectively to an AP site of RNA duplex. The thermodynamics 
measurements on AP-RNA revealed that the -45.2 kJ/mol binding free energy is composed of favourable -69.0 
kJ/mol enthalpy and unfavourable 23.8 kJ/mol entropy contributions. Interestingly, the Amiloride affinity to AP-
DNA was 78 times lower, -34.3 kJ/mol. Such remarkable preference of Amiloride binding to RNA relative to DNA 
is quite characteristic compared to typical small DNA-binding ligands [21]. Analysis of the binding thermodynamics 
data measured for RNA and DNA revealed that the unique selectivity is associated with a large 10.9 kJ/mol enthalpy 
difference, while the entropy contribution was almost equivalent. As a consequence, selectivity between the two 
targets was explicitly the result of the enthalpy change. 

Ligand-binding protein 

Anti-digoxigenin antibodies are administered to remove overdosed Digoxin, which has narrow therapeutic 
window. A very interesting approach was published recently in which protein binding sites were computationally 
designed to bind Digoxigenin (DIG) [22]. The binding pocket was in silico engineered to have specific, 
energetically favourable hydrogen-bonds and van der Waals interactions along with high overall shape 
complementarity. The best construct obtained was able to bind DIG with extremely high affinity (541 pM), similar 
to those of anti-digoxin antibodies. Isothermal titration calorimetry and X-ray crystallography revealed that the best 
host site is able to form three specific hydrogen-bonds with the ligand that is associated with favourable ~-45.3 
kJ/mol enthalpy and ~-7.5 kJ/mol entropy. The designed protein has 29, 372 and 3216 fold DIG preference against 
structurally highly similar compounds: digitoxigenin, progesterone and -oestradiol, respectively. In order to assess 
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the role of specific hydrogen bonds with DIG ligand on selectivity Tyr101, H-bond donor interacting with DIG C-
ring oxygen, was mutated to Phe. This mutation resulted in lower affinity for DIG (Ki: 39 nM) and reduced 
selectivity: ~0.1, 0.8 and 43 fold for digitoxigenin, progesterone and -oestradiol, respectively. Mutation of the other 
important H-bonding partner, Tyr43 to Phe also decreased the affinity for DIG (59 nM) and the selectivity against 
the three investigated compounds (DIG had 12, 1.3 and 254 fold selectivity against digitoxigenin, progesterone and 
-oestradiol, respectively). These experiments confirmed that the selectivity of the artificial ligand-binding protein 
for DIG was conferred through the designed hydrogen-bonding interactions. Therefore this study is a plausible 
example for the role of highly oriented specific interactions that results in favourable binding enthalpy and high 
specificity. Considering medicinal chemistry aspects, designing ligands that are able to form optimal, enthalpically 
favourable hydrogen bonds with the target binding site might similarly result in high specificity against different 
binding environments having lower complementarity and suboptimal hydrogen-bonding pattern. 

 

Thermodynamic profile of marketed drugs 

Retrospective analysis of thermodynamic signatures of marketed drugs was published for series of statins binding 
to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, small-molecule inhibitors of HIV protease [10, 
23] and bisphosphonate inhibitors for farnesyl pyrophosphate synthase (FPPS) [24]. Investigating the compounds in 
terms of their market entry time revealed a clear trend regarding the enthalpy contribution of the binding free energy 
(Figure 2). 

Binding to their primary target first in class drugs were typically entropy driven, with positive or negligible 
enthalpy contribution in all the three cases. During the time course of drug evolution, as novel drugs with the same 
mechanism of action are introduced to the market, they must show advantages over the predecessors. Those drugs 
that were better than the previous compounds in the class can be characterized with sequentially increasing binding 
enthalpy contribution. In the case of statins, for the first in class Fluvastatin the binding enthalpy is zero, and the 
binding entropy is -37.6 kJ/mol, while for Rosuvastatin, -the last entry in this analysis- the corresponding values are 
-38,9 kJ/mol and -12.5 kJ/mol, for enthalpy and entropy, respectively. Considering the protease inhibitors, Indinavir 
binding is realized by -59,4 kJ/mol favorable entropy term and the enthalpy contribution is 7.6 kJ/mol. In contrast, 
Darunavir binding is mainly enthalpy driven (-53,1 kJ/mol), and the entropy contribution is -9.6 kJ/mol only. The 
tendency is also obvious for bisphosphonate FPPS inhibitors. Etidronate binding is entirely entropy driven, with -
36,4 kJ/mol value, that is associated with unfavorable, 7.1 kJ/mol enthalpy. In contrast, Minodronate binding is 
enthalpy driven (-37.7 kJ/mol) and the entropy contribution is -3.3 kJ/mol only. The underlying reasons for the 
success of the more enthalpic compounds may include better physicochemical parameters, such as lipophilicity and 
solubility arising from the more polar moieties that are necessary for favorable enthalpic binding. However we 
should emphasize that these drugs were optimized without controlling their binding thermodynamics and obviously 
there are a vast amount of other parameters influencing the success of the given drug. Although we are aware to the 
limitations of thermodynamics signatures, increasing enthalpy contribution to binding free energy during drug 
evolution in a given class is significant. 

The most common adverse effect associated with statins is myalgia that is thought to be linked to myocyte HMG-

CoA reductase inhibition. One possibility to avoid this side effect is the hepatocyte selective distribution of statins 

that can be achieved by decreasing passive cell permeability by increasing the hydrophilicity. In this respect the 

most enthalpic Rosuvastatin has the highest hydrophilicity and hepatoselectivity. Myocyte IC50 is 926 times higher 

compared to the hepatocyte value [25]. Hepatoselectivity of less enthalpic binders such as Pravastatin, Atorvastatin 

and Cerivastatin is somewhat lower: these drugs show 444, 144 and 4.1 fold selectivity, respectively. Therefore 

monitoring binding thermodynamics become integrated part of statin optimizations [26]. Optimizing the 

Atorvastatin scaffold a promising lead compound was derived possessing -74 kJ/mol enthalpy contribution, and 

higher than 1000 fold hepatic selectivity. 

Selectivity against off-targets can be another reason for the success of the best in class compounds. In the case of 

HIV protease inhibitors it was shown that more enthalpic compounds possess higher adaptability to drug-resistant 

mutants along with more enhanced selectivity to the off target cathepsin D [27, 28]. Interestingly, no correlation was 

observed between adaptability and binding affinity, however a reproducible correlation was found between the 

logarithm of the corresponding Kd ratio and the proportion of binding enthalpy contribution to the binding affinity in 

the wild-type protease [27]. The benefit of enthalpic optimization was also shown during the evaluation of Indinavir, 

Nelfinavir, Saquinavir, Ritonavir, KNI-764 and KNI-272 in terms of the inhibition of resistant mutant V82F/I84V. 

In this case compounds forming optimized H-bonds and thus realized more enthalpic binding to the wild type HIV 

protease show higher residual inhibition against the resistant mutant that of the entropy driven binders. Here specific 

and enthalpically favorable contacts provided more desirable adaptability [29]. 

 

Selectivity profile analysis of marketed drugs 

Our evaluation on the link between selectivity and binding thermodynamics profiles indicated that enthalpy 
driven compounds show typically higher selectivity than entropy driven analogues with similar binding mode to 
primary targets. In order to expand the domain of the selectivity-thermodynamics relationship, our intention was to 
challenge this hypothesis on broad selectivity profiles. Therefore we have collected examples possessing binding 
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thermodynamics data on the primary target and were subjected to broad off-target assay profiling. The 
thermodynamics data were collected from literature including BindingDB, PDBCal and Scorpio databases [30]. In 
vitro profiling data were collected from the coherent DrugMatrix database available through ChEMBL 
[https://ebi.ac.uk/chembldb] and the CerepBioprint (Cerep) profile [31]. We have selected these databases to ensure 
that the compounds were tested on the same number of assays within the same laboratory conditions in order to 
minimize the noise originated from the inter-laboratory differences. On the other hand, the thermodynamics data 
pooled from various sources might include inter-laboratory errors of thermodynamics measurements. 

Nineteen compounds acting on six targets fulfilled our criteria (Table 4). Five compounds are HIV-1 protease 
inhibitors, five are dopamine D2 receptor ligands, four are HMG-CoA reductase inhibitors, two act on histamine H1 
receptors, two compounds are beta-blockers and finally we included a DNS-gyrase inhibitor. HIV-1 protease and 
HMG-CoA reductase inhibitors were evaluated in terms of their thermodynamics profile [10, 23]. It was proposed 
that favourable interplay between enthalpy and entropy is reflected in their progress to the market. It was suggested 
that enthalpically more favourable drugs tend to be the best in class compounds, while the entropy-driven binders 
represent pioneer, first-in-class drugs. In accordance, evaluating the enthalpic efficiency as the measure of ligand-
protein complementarity has also been discussed in the literature [10, 32]. 

First, promiscuity and thermodynamics relationships were evaluated within target groups. Table 4 shows (more 
details are given as Supplementary Table 1) that binding of three HIV-1 protease inhibitors Nelfinavir, Indinavir and 
Saquinavir are entropy driven. Ritonavir binding is also entropy driven, but the enthalpy contribution is more 
favorable than that for the first group. Amprenavir binding is characterized by balanced entropy-enthalpy 
contributions. The change from entropy driven binding to more balanced thermodynamic profile is also reflected in 
the selectivity profile. Amprenavir hits only 2 targets out of ~134 involved in the DrugMatrix panel and 3 out of 185 
on Cerep. In contrary, Saquinavir hits 11 targets on the DrugMatrix assay panel and 18 on the Cerep panel.  

Enthalpy contribution of the five drugs acting on dopamine D2 receptor possess significant, -0.92 (p=0.026) 
linear correlation coefficient (r) with the number of hit targets on the Cerep profile. The entropy-driven binding of 
Flupenthixol is translated into high promiscuity, hitting 52 targets (Table 4). In contrast, the enthalpy-driven binding 
of Sulpiride highlights the enhanced complementarity to the target binding site, and results in significantly reduced 
promiscuity. Ligands of the dopamine D2 target show univocal tendencies on the DrugMatrix and the Cerep profile. 

 In case of HMG-CoA reductase inhibitors Fluvastatin binding is entropy driven, while Cerivastatin, Pravastatin 
and Atorvastatin binding have increased enthalpy contribution. Accordingly, Fluvastatin, Cerivastatin and 
Pravastatin hits 5, 4 and 1 target on the Cerep assay panel, respectively. The increasing selectivity is in line with the 
entropy-promiscuity relationships, since the decreasing binding entropy results in lower promiscuity. 

Binding of the histamine H1 ligands is entropy driven. Accordingly, Clozapine and Diphenhydramine are highly 
promiscuous compounds hitting 26 and 11 targets on DrugMatrix, 44 and 29 targets on Cerep profile, respectively.   

Thermodynamics signatures of beta blockers revealed that Pindolol binding is balanced in terms of enthalpy and 
entropy contributions, while Isoproterenol binding is entirely enthalpy-driven. Thermodynamic profiles are in line 
with their medium and low promiscuity, respectively. 

Our last example is Novobiocin, a selective compound characterized by enthalpy-driven binding and 
correspondingly no off-target activity on the Cerep panel. This compound is specific, with no promiscuity issue 
reported. 

Next we investigated the whole dataset that represents broad chemical diversity and spans six targets. In order to 
assess the relationship between thermodynamics profiles and observed hit rates linear and rank correlation 
coefficients were calculated. Sum of ranking differences (SRD) were also calculated (results are presented as 
Supplementary Tables 2-3 [36]). Although differences in binding site characteristics and measurement conditions 
might impact the results of this analysis we found that compounds hitting higher number of targets have more 
remarkable entropy and typically less favorable enthalpy contributions. It is worth to mention that higher affinity 
achieved by entropy-driven optimization do not necessary results in high selectivity (significant negative correlation 
coefficients), in contrast to those with lower affinity but higher enthalpy contributions. Lopinavir, Atazanavir and 
Amprenavir clearly exemplify this statement. Results acquired for this limited dataset revealed that binding enthalpy 
and entropy tends to correlate with the number of off-targets (Table 4 and Supplementary Figure 1). In the case of 
SRD calculations the entropy-based ranking was found to be significantly different form a random distribution, with 
p value of 0.017 and 0.016 for DrugMatrix and Cerep datasets. More favorable binding enthalpy and less favorable 
binding entropy might result in higher specificity and lower promiscuity. Enthalpy and entropy correlation was 
found to be -0.99 (p<0.001), in accordance with the phenomenon of entropy-enthalpy compensation. Although 
correlations were found to be statistically significant, it is worth to be mentioned that they are generally weak and 
were obtained on a limited dataset preventing its over-interpretation. Leaving one compound out generally does not 
change the correlation coefficients (±0.02) except for Clozapine. Linear correlation between enthalpy and 
promiscuity without Clozapine drops to 0.32 and 0.39 for DrugMatrix and Cerep data, respectively. 

In order to compare continuous variables we calculated the sum of binding energies on off-targets using the 
activity values presented in DrugMatrix database (Table 4). In contrast to the simple sum of targets hit the summed 
affinity avoids biases due to high hit rates with limited affinities compared to low hit rates with high affinity. Since 
the DrugMatrix database contains equivalent number of assay results for each ligand, binding energies can be 
summed. This analysis resulted in similar tendencies to that of the hit target type assessment. 
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The quality of optimized compounds is usually quantified by changes in the physicochemical profile. In terms of 
these parameters enthalpy driven optimization is generally preferred over entropy driven optimization [10, 15, 30, 
32, 37, 38].

 
Ligand promiscuity, as well as thermodynamic signature of binding [39] are also interrelated to 

physicochemical properties. It was shown that three physicochemical features, as basic character, molecular weight 
and lipophilicity (logP/logD) have highest influence on promiscuity [40]. It is interesting to note that lipophilicity 
(AlogP) generally showed higher correlations with the off-target occurrences compared to molecular size 
descriptors, such as heavy atom count (Nh) and molecular weight (Mw) (Table 4). However, all of these correlations 
were statistically non-significant on this dataset (Table 4). The general correlation between size and potency is well 
established

 
[41, 42], in our case the correlation between binding energy and Mw was found to be also remarkable (r= 

-0.45, p=0.052). Linear correlation (r) between entropy and lipophilicity (AlogP) was found to be more pronounced 
r=-0.63 (p=0.004).  

The correlation between binding enthalpy and lipophilic ligand efficiency (LLE=pAct-logP) has been recently 
investigated by Shultz [43]. Therefore we have collected all the cases collected in Tables 1-4, to evaluate the 
enthalpy-LLE correlation. The linear correlation coefficient (r) was found to be -0.501 (p=0.001), resulting in 
significant correlation for the investigated 37 cases. However correlation using the off-target assay profiling data 
collected in Table 4 did not resulted in significant correlation with DrugMatrix (r=-0.003) and Cerep (-0.257) sets.  

Regarding the application domain of the concept of increasing selectivity by thermodynamics optimization it is 
important to be emphasized that the key point is the rational optimization of the interaction pattern of the protein-
ligand complex with specific contacts. The experimentally determined entropy and enthalpy values measure the sum 
of the changes related to the complex formation, including solvation terms, protein and ligand conformational 
changes, and protein-ligand enthalpic contacts. The flexibility of the protein target and the nature of the binding site 
have also crucial impact, as exemplified by the entropy-enthalpy transduction theory [44]. Decoupling the protein-
ligand entropy and enthalpy contribution is therefore a difficult task that has not been solved entirely to date. 
Accordingly, it is highly recommended to synergistically deploy both experimental and computational approaches to 
understand the biophysical background of the free energy changes. 

Conclusions 

The pioneer hypothesis of Kawasaki and Freire [15] has been evaluated here regarding the interplay between 
selectivity and thermodynamics profiles. According to their study, ligand selectivity can be achieved by favorable 
binding enthalpy, since it is a straightforward measure of protein-ligand complementarity [10, 15]. Highly oriented 
interactions accomplished by enthalpic interactions result in higher bias towards the primary target and making 
compounds less promiscuous. We showed that structurally diverse ligands of several validated drug targets (HIV-
protease, HMG-CoA reductase, D2, beta adrenergic and histamine H1 receptors) possessing broad selectivity profile 
data support this concept. The limited number of cases collected and discussed here strengthens the link between 
selectivity and thermodynamics and facilitates the generation of more thermodynamics data on compounds with 
wide range of selectivity assay data. The objective of the present review is to stimulate further debate supporting or 
challenging this hypothesis by publishing further experimental data. From thermodynamics point of view drugs are 
acting in an open-system, therefore emphasizing that the recent observations were made under equilibrium 
conditions is crucial. Under physiological conditions the binding kinetics might also influence the selectivity profile 
realized in vivo [45-47]. 

From practical point of view, monitoring binding thermodynamics at project milestones can facilitate the 
selection of the higher quality compounds. Desirable hit and lead compounds having the highest enthalpy among the 
chemical series might be in line with the greater complementarity with the primary binding site and therefore 
impacts selectivity profile. Due to the complex nature of the binding event and the difficulties of understanding the 
thermodynamics background of the SAR contributes to the obstacles of successful optimization towards higher 
enthalpy. Structure-based approaches, both experimental and computational have crucial role to rationalize these 
modifications. Based on the current state of our understanding this hypothesis can be exploited during medicinal 
chemistry programs optimizing affinity and selectivity in parallel. 

Figure 1. Correlation between binding free energy difference and binding enthalpy for HIV-1 protease inhibitors. 

Figure 2. Thermodynamic profile of marketed drugs. 
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Table 1. Binding thermodynamics data of MMP12 ligands. 

Compound 
GMMP12 

(kJ/mol) 

HMMP12 

(kJ/mol) 

-TSMMP12 

(kJ/mol) 

GMMP13-MMP12 

(kJ/mol) 

1 (1)
a
 -41.1 -38.0 -3.1 1.0 

2 (3)
 a
 -43.9 -35.6 -8.3 2.3 

3 (4)
 a
 -49.2 -37.0 -12.2 1.0 

4 (6)
 a
  -46.2 -40.4 -5.9 5.0 

a
Compound identifier in the original article [16]. 

 

Table 2. Binding thermodynamics and selectivity data of ALR2 ligands. 

Compound 
GALR2 

(kJ/mol) 

H ALR2 

(kJ/mol) 

-TS ALR2 

(kJ/mol) 

GALR1-ALR2 

(kJ/mol) 

Selectivity pocket occupant 

Zopolrestat -46.0 -58.1 12.1 17.7 

Compound 2
 a
 -42.5 -48.5 6.0 >23.8 (rat) 

IDD 388 -42.7 -59.0 16.3 14.9 

IDD 393 -42.2 -81.2 39.0 21.0 (fluoro derivative) 

Non-occupant 

Sorbinil -37.9 -54.7 16.8 2.4 

Fidarestat -46.7 -79.5 32.8 11.9 
a
Compound identifier in the original article [17]. 

 

Table 3. Binding thermodynamics data of CB ligands. 

Compound 
G(primary) 

(kJ/mol) 

H(primary) 

(kJ/mol) 

-TS(primary) 

(kJ/mol) 

G(primary-secondary) 

(kJ/mol) 

WIN 55212 -46.8 (CB2) 27 -73.8 2.6 

JWH-015 -41.4 (CB2) 48 -89.4 2.6 

ACEA -47.8 (CB1) 59 -106.8 8.2 

2-Fl-AEA -46.1 (CB1) 17 -29.1 6.2 

CP-55,940 -51.2 (CB1) 56 -107.2 3.3 

AM630 -41.2 (CB2) -19 -22.2 8.0 

AM281 -45.9 (CB1) -35 -10.9 13.7 

AM251 -48.8 (CB1) -52 3.2 13.3 

 

Table 4. Compounds with thermodynamic and broad specificity assay profiles. Calculated octanol-water partition 

coefficient (AlogP), heavy atom count (Nh) and molecular weight (Mw) is indicated. 

# 

Drug Target 
Drug 

Matrix 

Drug 

Matrix  

Goff 

Cerep Ga Ha -TSa AlogP Nh Mw 

Ref. 

1 Nelfinavir HIV-1 protease 7 -204   -53.5 13.0 -66.5 5.3 40 567.8 [10] 

2 Indinavir HIV-1 protease 3 -102 7 -51.8 7.6 -59.4 3.1 45 613.8 [10] 

3 Saquinavir HIV-1 protease 11 -338 18 -54.3 5.0 -59.3 3.7 49 669.9 [10] 

4 Ritonavir HIV-1 protease 8 -277 15 -57.3 -18.0 -39.3 5.0 50 720.9 [10] 

5 Amprenavir HIV-1 protease 2 -64 3 -55.2 -28.8 -26.4 2.4 35 506.6 [10] 

6 Flupenthixol Dopamine D2     52 -47.7 15.2 -62.9 4.82 30 434.52 [33] 

7 Haloperidol Dopamine D2 18 -682 27 -53.2 -12.8 -40.4 3.76 26 375.9 [33] 

8 Alizapride Dopamine D2     13 -42.3 -50.8 8.6 1.87 23 315.4 [33] 

9 Metoclopramide Dopamine D2 6 -214 19 -41.4 -54.8 13.4 1.78 20 299.8 [33] 

10 Sulpiride Dopamine D2 2 -76 10 -41.9 -88.6 46.7 0.7 23 341.4 [33] 

11 Fluvastatin 
HMG-CoA 

reductase 
1 

-36 
5 -37.6 0.0 -37.6 4.2 30 411.5 

[10] 

12 Cerivastatin 
HMG-CoA 

reductase 
0 0 4 -47.7 -13.8 -33.9 4.2 33 459.6 

[10] 
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13 Pravastatin 
HMG-CoA 

reductase 
0 0 1 -40.5 -10.5 -30.0 2.2 30 424.5 

[10] 

14 Atorvastatin 
HMG-CoA  

reductase 
0 0   -45.6 -18.0 -27.6 5.6 41 557.6 

[10] 

15 Clozapine Histamine H1  26 -1100 44 -47.9 72.0 -119.9 3.42 23 326.8 [34] 

16 Diphenhydramine Histamine H1  11 -398 29 -43.6 22.6 -66.2 3.38 19 255.4 [34] 

17 Pindolol Beta-blocker 1 -43 9 -49.6 -21.3 -28.3 1.93 18 248.3 [35] 

18 Isoproterenol Beta-blocker 1 -33 5 -50.2 -143.2 92.9 1.1 15 211.6 [35] 

19 Novobiocin DNA gyrase     0 -42.7 -51.8 9.2 3.45 44 612.6 [30] 

Linear correlation 

DrugMatrix (N=16) 1.00 
-0.99 

(<0.001)b 
0.95 -0.26 

0.55 

(0.026) 

-0.58 

(0.020) 
0.19 -0.07 -0.06 

 

DrugMatrix G 

(N=16) 

-0.99 

(<0.001) 
1.00  

-0.95 

(<0.001) 
0.21 

-0.55 

(0.027) 

0.57 

(0.022) 
-0.16 0.13 0.12 

Cerep (N=17) 
0.95 

(<0.001) 

-0.95 

(<0.001) 
1.00 -0.12 

0.54 

(0.025) 

-0.54 

(0.023) 
0.38 -0.20 -0.19 

Spearman rank 

correlation 

DrugMatrix (N=16) 1.00 
-0.99 

(<0.001) 

0.92 

(<0.001) 
-0.42 0.47 

-0.63 

(0.009) 
0.10 0.04 0.05 

 

DrugMatrix G 

(N=16) 

-0.99 

(<0.001) 
1.00 

-0.92 

(<0.001) 
0.37 -0.45 

0.61 

(0.013) 
-0.06 0.00 0.00 

Cerep (N=17) 
0.92 

(<0.001) 

-0.92 

(<0.001) 
1.00 -0.15 0.46 

-0.57 

(0.019) 
0.20 -0.26 -0.24 

aThermodynamic data are presented in kJ/mol units. Statistically significant correlations are marked with red color. 
b
 P-

values are indicated in parentheses. 
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