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Abstract — The paper introduces a new method for calculating the elastic moduli of pavement layers.
The method requires only two input parameters: the thickness of the upper ,,bound” layer and the
Falling Weight Deflectometer (FWD) or Improved Benkelman Beam Apparatus (IBBA) measurement
data. The authors developed a continuously differentiable regression function, which can be applied to
describe the shape of the deflection bowl. Additional parameters of the deflection bowl (e.g. radius of
curvature, position of inflexion point) can be calculated based on the regression function. FWD
measurements were simulated running the BISAR (Bitumen Stress Analysis in Roads) software on
different pavement variations. Outputs of the simulations were further processed with self-developed
software. As a result, a series of diagrams were elaborated, by which the elastic moduli of the
pavement layers can be determined.

Stiffness / pavement layers / elastic moduli / deflection bowl / BISAR

Kivonat — A palyaszerkezet merevségének hatasa a behajlasi tekné alakjara. Utpalyaszerkezetek
esetében a megfeleld rehabilitacios eljaras kivalasztasa igen nagy gazdasagi jelentéséggel bir. Ezért a
szerkezetek allapotanak megfeleld ismerete nélkiili dontéshozatal igen koltséges lehet. Emiatt
kiilénodsen fontos, hogy az FWD (Falling Weight Deflectometer) vagy IBBA (Improved Benkelman
Beam Apparatus) eszkdzzel mért elmozdulasok elemzésével olyan tobbletinformacidhoz jussunk, ami
a dontést megkdnnyiti a gyakorld mérnok szamara. Az FWD vagy IBBA eszk6zzel mért deformacios
vonalra illesztett fliggvénybdl levezetett gorbiileti sugar (Ro) és a burkolatvastagsag (h) ismeretében a
kotott rétegek aljan jelentkez6 megnyuldsokat jol lehet becsiilni. A BISAR (Bitumen Stress Analysis
in Roads) programmal végzett szamitasok statisztikai elemzése pedig azt mutatja, hogy a Dy (kdzponti
behajlas) és Ry (gorbiileti sugar) paraméterek ismeretében lehetdség nyilik a kotott és szemesés rétegek
modulusanak visszaszamolasara.
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INTRODUCTION

Forest roads with asphalt pavement represent the basis of the forest road networks in
Hungary. Properly maintained asphalt pavements offer a high level of service. While traffic
load of forest road networks have grown, expenses for their maintenance remained lower than
required in the last three decades. As a result, these roads are in poor condition, generally.
Renovation projects demand the knowledge of the roads’ bearing capacity. The term “bearing
capacity”, although widely used at pavement management projects, is hard to define. In fact,
direct measurement of bearing capacity is impossible. Instead, one can measure the deflection
caused by a known load, and calculate the bearing capacity afterwards.

The traffic transfers its loads to road pavements through the tyres of the vehicles. Due to
this, shearing stresses originate from vertical loads (pressing, beating, shaking, bending etc.)
and horizontal stresses (braking, accelerating, wearing) (Kosztka 1978, 1986). These stresses
affect each pavement layer differently, such as the elastic and plastic (permanent)
deformation, the break and the structural realignment (Boromisza 1976). All these structural
changes appear on the surface of the pavement as deformations, and the so-called deflection
bowl or deformation surface forms.

To measure the evolving deformations several methods have been elaborated. Currently the
measuring procedures based on absorbed oscillation are widely used. These are called Falling
Weight Deflectometers, FWD. These deflectometers, operating with impulses, often drop a given
weight from a given height onto a disc with anti-shock — using the potential energy — then they
record the evolving displacements (Kosztka et. al. 2008). Researchers of the Institute of
Geomatics and Civil Engineering at the University of West Hungary developed a new instrument
to measure the full deflection bowl with the Benkelman beam (Marko et. al. 2013). The
development was based on the Benkelman beam, extending its properties with automated data
logging and the ability to measure multiple points of the deflection bowl. The Improved
Benkelman Beam Apparatus (IBBA) continuously measures the vertical displacement of one
point on the surface of the pavement, together with the horizontal position of the truck (Figure 1).

Figure 1. Falling Weight Deflectometer (left) and
Improved Benkelman Beam Apparatus (right) in action.

The deflection bowl recorded during the test provides much more information about the
current state of the pavement structure than the central deflection in itself. Therefore we can
define its bearing capacity, remaining lifetime, and the thickness of the needed strengthening
layer more precisely. Choosing the applicable rehabilitation procedure in the case of a given
pavement structure has a really great economic significance. Without appropriately knowing
the condition of the pavement,decisions could become very expensive. This is why it is so
important to gain additional information by analysing the deflections, which makes it easier
for the practising engineers to make decisions. We started our work with this approach, and
summarized our results in this paper.
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1 MATERIAL AND METHOD

1.1 Estimating the deflection bowl with functions

When deflection is measured to define the bearing capacity, displacements are measured and
recorded only in certain distances from the load. This makes it necessary to fit functions onto
the discrete measurement points to get the complete plot of all the evolved deflections. It is
practical to apply functions describing the deflection bowl, because this way the geometrical
attributes that are important regarding the stressed pavement can be defined with
comparatively easy calculations.

Because of the surface sinking caused by mining (e.g. tunnel building), functions were
already elaborated long time ago. Most authors (Aversin, Martos, Beyer, Bals etc.) suggested
functions similar to the Gaussian bell curve (Fazekas 1978). Suggestions can be found to
describe the deformation curve of pavements in Hothan and Schéfer’s (2004) summary work.

Hossain (1991) used exponential function to estimate the deformation caused by external
load:

D(x)=ae™ 1)
where x : distance from the centre of the load [m] and a, b : parameters.

On the basis of their examinations the effect of the upper and stiffer layers can be
experienced in the decrease of the “a” parameter, while the effect of the lower high-solidity
layers causes increasing “b” parameter value. The “a” and “b” parameters depend on the
strength of materials characteristic of the pavement. The exponential function is able to
estimate the FWD or IBBA measurements with high correlation, though it cannot reproduce
the natural shape of the deflection bowl. Therefore it is not suggested to use it despite the high
correlation coefficient.

Jendia (1995) tries to describe the whole deformation curve by substituting the
exponential function in the central range of the deformation line 0<x<r with a hexic
polynomial:

6 4
CX° +C, X" +

D(x)=4+cx*+c,  0<x<r 2)

ae™ X>r

Jendia first defines “a” and “b” values of the unknown parameters. He specifies the
second derivative’s equality at the joint of the functions, that is, the continuity of the curve.
Therefore, there are three constraints for the cs, c;, 1 and ¢, parameter.

He creates the last independent variant iteratively by minimizing the difference between
the values measured on the second and third sensor of the FWD device and the calculated
deflections. The method of Jendia can reach only low equality with the data points in spite of
its high demand of calculation (Figure 2).

Gritz (2001) makes it possible to describe the deflection bowl! with a single function:

W, + W, X?
DO)= T Q

With the help of the suggested rational fractional function® the three factors that describe
the whole bowl can be defined (Figure 2. Gritz (1)). The correspondence with the measured
results can be further increased if a fourth degree of the polynomial is used:

! The rational fractional function is a mapping of the set of scalars, where we give the association with the
quotient of two polynomials.
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D(x)= W, + W, X* +w x*
T+ w, X2 +wx*

(4)

Using the altered function higher correlation can be achieved, though the layer
parameters cannot be concluded from the equation’s factors as the coefficients depend on all
the layers differently (Figure 2. Gritz (2)). To describe the deformation curve in practice, it is
suggested to apply functions with which one bowl parameter can be deduced, which describes
a special layer of the pavement (e.g. radius of curvature).

D(x) (mm) D(x) (mm) D(x) (mm)
0,25+ . 0,25+ " 0,254 "
Jendia Gratz (1) Gratz (2)
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Figure 2. Comparing different deflection bowl functions (Hothan and Schdfer 2004)
In his study, Daehnert (2005) introduces two function types from the French literature

(Ph. Leger and P. Autret) which shows good correspondence with the theoretical deformation
curve:

D(x)= Doef(xzb> (5)
and
D(x)=D, ©)

where D, the maximum deflection in the axis of the load [m].

The function (6) was originally developed to process the Lacroix deflectograph data. In
its structure, it is similar to the Agnesi® Witch Curve (Scharnitzky 1989). Cser (1961) uses
function (6) to model the evolving deformations directly under wheel load with the
substitution of a =3r?

3r?
D(x)=D, — 7
(¥)=Dy 7 == ™
where r the radius of the loaded surface considered to be evenly dissolved and circle
shaped [m]. The curve has an inflexion point at the edge of the wheel load (x=r). The
function can follow the evolving deformations only in a restricted extent, as the inflexion
point is fixed.

? Maria Gaetana Agnesi (Milan, May 16th, 1718 — Milan, January 9th, 1799), Italian linguist, mathematician and
philosopher, the honorary member of the University of Bologna.
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1.2 Estimating the deformation curve on the basis of mechanics functions

Starting with the Boussinesq stress formulas, the value of D, deflection under the centre of
the d =2r diameter flexible circle plate can be deduced (Papagiannakis and Masad 2008):

D, =%(1—/ﬁ) (®)

e

Do : vertical deflection measured in the load axis [mm],
E. : the modulus of the flexible halfspace [MPa],

p . surface distributed load [MPa],

r . radius of the loading plate [mm],

m : the Poisson factor [].

Beside the central deflection, Odemark calculated the deformation curve of the flexible
halfspace with. E. modulus, loaded in the usual way using the y = f(p,r, E¢) function. The
second differential at its x = 0 point estimates the curve’s value very well. The Ry radius of
curvature, in the case of one-layer half-space, can be calculated with the following formula
(Nemesdy, 1985):

R = E.r

0 -_— T, N
p(L- n?)
Both functions give the same result in the case of homogeneous, infinite halfspace, so it is
obvious that there is functional relation between the central deflection and the radius of
curvature. Take the quotient of the equivalent modulus provided by the two equations:

2r?

c=
RODO

9)

(10)

where “c” factor is the quotient of the two moduli, which is ¢ = 1 in the case of homogeneous
infinite half space.

It requires very long calculations to define deformations on the surface of the
homogeneous half-space using Boussinesq’s theory. Therefore, to simplify this, it is practical
to take an estimating function. When determining the estimation function it is necessary to
start from the geometric restrictions that are the boundary conditions. On the base of the

above functions the following conditions can be stated: x= 0, where D(x)= D,, and the
second derivative D"(x)» 1/ R, of the requested D(x) function at x= 0. Additionally, the
defined D, and R, values require mechanics conditions (10), too. Searching for the function
that satisfies the conditions we start with the function type suggested by Cser (1961):

d? 1

D(x) = Dy—e—— = Dy —5— (11)

cxXx2+ d? 0 c(x)2+1

d

In the suggested function “c” is the so-called shape factor, which influences the shape of
the deformation curve (Primusz — Toth 2009; Primusz — Marké 2010). It can easily be seen

that the estimation function really satisfies the x=0 and D(x)= D, conditions. After
defining the shape of the deflection bowl we can define the radius of curvature (Figure 3).
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Figure 3. Curve of deflection bowl and curvature under load

We estimated the radius of curvature of the oscular circle belonging to an optional point
of the D= D(x) function with the k(x)» D"(x) function:

9?2 ( Do4r? )= Dor?c (3cx?-412) (12)

k(x) = o cx2+4r? (cx2+4r?)
The negative sign of the curve means that in the case of positive bending moment, the
centre (0 point) of the oscular circle described with the curve radius is located on the - D

driven side of the axis. The curve alteration is presented in Figure 3. The minimal radius of
curvatureatx =0 is

_ 2
° D’
It can be seen that the mechanics condition (10) is also satisfied, so the function is a good
estimation of the mechanically defined deformation curve.

(13)

1.3 Estimation of the strain rising at the bottom of the bound layer

Knowing the radius of curvature derivated from the fitted function on the measured
deformation points, and the thickness of the overlay, the strains rising at the bottom of the
bound layers can be estimated with the following formula:

€= L =c-D L 14
2R, % 4r? (14)
where
& 1 strain in the load axis,
h . thickness of the bound layer,

Ro : radius of curvature in the load axis.

The conditions defined on the bound layer are satisfied if Hooke’s law is present and the
elastic modulus is equal for compression and for tension (Primusz — T6th 2009).

1.4  Computer simulation with the BISAR software

The simulation is basically an examination where the expected and real behaviour of the
system is being studied through the physical or computer model of a process.
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Applying the simulation model we are able to provide appropriate inputs for the model of
the system, operate it and observe the outputs.

Through the simulation of the pavements, we can observe what deformations evolve at
the places of the sensors that record the deflections under external load, typical of the FWD
devices, and how much stress evolves in each structural layer. Using the simulation, the
deflection curve recorded on the pavements can be provided with more information, therefore,
more exact pavement diagnostics are possible (Huang 2003).

1.4.1 Setting the simulation model

Nowadays, the most popular and most accepted method of defining the stresses evolving in
pavements is the application of computer software. One of the oldest and most referred
software is the BISAR (Bitumen Stress Analysis in Roads), developed by the SHELL
Research Center. The software can calculate stress, strain, and deflection in an elastic
multilayer system loaded with vertical load. The layers are characterized by their layer
thickness, elastic modulus, Poisson factor and the adhesion defined at the boundaries of the
layers. The whole system is supported by an infinite elastic half-space.

We used the DOS version of the BISAR software to carry out the simulation, because this
way — after generating the starting data files — we could run batched calculations. The data
files contained the structure of the pavements to be calculated in one procedure (number,
thickness, modulus of layers etc.), the rate and place of load, and the coordinates of points
where the calculation of stresses and strains are needed. The BISAR simulation ran in the case
of two- and three-layer systems.

1.4.2 Pavement models used in simulation

The layers of the pavements can basically be divided into three groups: subgrade (together
with frost protecting and/or improving layers), base layer, and overlay. Each group can be
divided into further layers, so an average real pavement can be built of 3-5 layers (Figure 4. a).
As to their material, the layers can be bound with bitumen (sometimes hydraulic) or can be
unbound. As most pavement models are able to consider the material characteristics with
the help of the elastic modulus and the Poisson factor, it is suggested to close up the
unbound and bound layers and handle them as a whole instead of increasing the number of
layers (Yoder — Witczak 1975).

(a)

binder / base

(b)

wearing course

new overlay

courses
bound layer
-—adhesion
stress / strain
o o
= o
oo o Go‘j? Ze
o 5 “o E,
=
o0

granular base courses [
unbound layer

subgrade
Figure 4. The structure of the pavement models in the simulations
Accordingly, bound and unbound pavement layers can be distinguished (Figure 4. b).
The pavement behaviour models are able to consider the collaboration defined between the

layers. Full slip should be assumed between the unbound granular layers and the bound
overlays, while in the case of reinforcement — between the old and new overlays — full
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adhesion should be expected, even if it causes smaller stress to the old asphalt layers. During
simulation we examined the behaviour of the existing pavements with two-layer systems,
while we used three-layer systems in the case of reinforced pavements. The two-layer systems
are the idealized models of the existing pavements, in which the bottom layer refers to the
unbound granular layers and subgrade, while the top bound layer refers to the overlays. There
is probable frictional adhesion between the bound and unbound layers. In the case of the two-
layer pavement models, the modulus of the top bound layer is between 1000 and 8000 MPa,
the modulus of the bottom unbound half-space varied between 20 and 500 MPa. The
thickness of the top bound layer varied between 50 and 500 mm, and we divided the
examined range logarithmically examining 7 different values. Thus, we examined the two-
layer systems in 12x12x7 = 1008 combinations (Table 1).

Table 1. The parameters of the pavement models examined during simulation

Model Nr. Modulus Var. Poisson Thickness Var. Adhesion Sum
1 20 - 500 12 0,5 Infinite -

Two-layered 1 1008
2 1000 — 8000 12 0,5 50-500 7
1 20 — 500 12 0,5 Infinite — 1

Three-layered 2 1000 — 8000 12 0,5 50-300 6 15 552
3 5000 — 15000 3 0,5 20-120 6 0

Notes: Layer ordinal (Nr.) from bottom to top, Layer-modulus (Modulus [MPa]), Variation (Var.),
Poisson-factor [-], Thickness [mm], Adhesion [O: full adhesion, 1: full slip], All variations (Sum)

The three-layer models evolve from the two-layer systems with the addition of a
reinforcement layer; this reinforcement layer can help in the examination of the bearing
capacity of pavements. During calculations the rigidity modulus of the new asphalt layer used
for reinforcement was 5000, 10000 and 15000 MPa. We then increased the thickness of the
reinforcement layer by 2 cm up to 12 cm, so altogether 15552 variations evolved (Primusz —
Marko 2010). Beside the layer modulus and thickness, the Poisson factor gets different values
in the case of different materials; however, its practical definition is rather difficult as its
value depends on tension and temperature (Peth6é 2008; Szentpéteri — Toth 2014). In the case
of general road construction materials its value is usually between 0.2 and 0.5. The effect of
the cross contraction factor’s changes was examined in detail by De Jong, Peutz and
Korswagen (1973), and Tam (1987). The researchers stated that changing the Poisson factor
had little effect on the primary design parameters (strain, stress, deflection). That is, the effect
on deflections caused by changing the Poisson factor is rather small compared to the layer
thickness or the layer modulus. If the Poisson factor is increased from 0.2 to 0.5, the
deflections will decrease by only few percent (Van Gurp 1995). Based on the above research
in the BISAR simulation, we took each layer with the value u=0.5. In this case, the analytical

functions will largely be simplified; therefore, it is — in several respects — practical to choose
this value.

1.4.3 Calculating stresses

The BISAR software is able to handle several loads and calculate their superposition. The
loads and the examined points are placed in one frame of reference and can be arbitrarily
defined by the X, y, z coordinate triplet. During the simulation we took size F =50 kN single
wheel load, which affects the top layer vertically, and scatters evenly a radius r=0.15 m
elastic circle plate (p = 0.707 MPa). The distance of the examined points — measured from the

Acta Silv. Lign. Hung. 11 (1), 2015



Effect of pavement stiffness on the shape of deflection bowl 47

load axis — was equal to the usual sensor set-up of the FWD device. In respect to the asphalt
overlays’ lifetime, the most important stress is the strain of the bottom edge line caused by the
vertical deflection load. Therefore, in the fixed positions we examined not only the vertical
deflections, but the strains defined on the bottom plane of the bound layers. After running the
BISAR software, we evaluated the result text files with a self-developed program. We
considered the vertical deflections calculated by the BISAR as a result of an FWD
measurement during our further analysis.

2 RESULTS AND DISCUSSION

During the first part of the evaluation we examined how much effect each layer had on the
evolving deformations in the case of a given pavement. This question is described in detail in
Van Gurp’s study (1995).

Figure 5 shows how much the layers of a three-layer structure effect the surface deflections
(Van Gurp 1995). Naturally, the distribution changes with the modifying of the layer thickness or
stiffness. According to the study, the thicker and stiffer the upper layers are, the more important
the darkened areas of Figure 5 become. The figure demonstrates well that the bearing capacity of
subgrade has the greatest influence on the peak value of the surface deflections, and 900 mm from
the load axis, the measured deflection represents the deflection of the subgrade in 100%. It can
also be observed that if we consider the subgrade and base layer as one, then the effect of the top
bound (asphalt) layer expands only 300 mm from the load axis, so it mostly affects the central
deflections. This theory can be examined with the BISAR simulation.

1009 Distance from the axis load [mm]
'——P I Asoat
80% . Base

60%

40%

20%

Subgrade

Deflection [mm]

0%

0 300 600 900 1200 1500

Figure 5. The effect of each layer on the surface deflection (Van Gurp 1995)

In the case of the examined pavement models, we calculated the maximum deflections on
the surface, and also the partial deflections evolving at the bottom of the bound layer with the
BISAR software. Thereby we had both deformation curves by structure. We fitted the
function (11) onto these deflections, which resulted in two “c” shape factor values. By
comparing the two values it can be stated that between the deformation curves evolving on
the surface and at the bottom of the bound layer, the difference depends on the (h) layer
thickness. This relation is graphically presented in Figure 6; the surface deformation curve is

marked as ¢,, while the one being at the bottom of the bound layer is marked as c, (Figure 6.

a). The thicker the bound layer is (h), the bigger the extent of the difference is (Figure 6. b).
The differences of shape factors can be originated from the differences of deflections.
Comparing the deflections of the 1008 two-layer systems, only the central deflections showed

measurable differences in the range of 0—-1 mm (70% of the D, values fell in between).
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Figure 6. The changes of the “c” parameter of the function fitted onto the deformations
evolving on the surface and at the bottom of the bound layer

Going farther from the load axis (200-300 mm) the deflections calculated on the surface
and at the bottom of the bound layer were entirely the same (this result also confirms our
statements at the beginning of this chapter). That is, the differences of shape factors can
mainly be explained with the changes of the central deflection, as the thickness of the bound
layer influences the compression of the layer itself (Figure 6. c).

Now, if we examine the results from the practical aspect and accept the assumption that
the deflections measured on the pavement surface are nearly the same as the ones evolving at

the bottom of the bound layer, that is D,(x) = D,(x), then the shape factor (c,) that
characterizes the bottom of the bound layer can well be estimated on the base of the surface
measurement: ¢, = c,. As the practical measurements always have the possibility of mistakes,

and there are several factors (e.g. temperature) that modelling cannot count with, hereafter we
will not make any difference between the two shape factors.

2.1 Analysis of the two-layer system

Using the results of the BISAR software we looked for relationship between the parameters
deduced from the shape of the deflection bowl (Primusz and To6th 2009), and the layer
parameters of the two-layer system.

The examination revealed that the “c” shape factor, the quotients of the layer moduli (K)
and the thickness of the bound layer (h) have very close correspondence. The graphical
evaluation of the results is shown in Figure 7.
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Figure 7. Function between the shape factor (c) and the rate of the layer moduli (K)
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With the help of the graph the idealized two-layer model of a given pavement — knowing
the bound layer thickness — can be induced from the FWD or IBBA measurements. We made

the statistic model of the K = f(c,h) function connection in two steps. The examinations
showed that the rate of the K moduli and the o,, compressive stress evolving on top of the

bottom layer are related similarly to the one in Figure 7. As the K and the &,, values do not

depend on the accuracy of the function fitted on the deflections — that is the “c” shape factor —
it is practical to first describe this relationship. We received the best result using the following
model:

. a
b-X°+1
with the next substitution: Y =o,, and X = h?JK . We defined the model’s a, b, ¢ and d
parameters with the STATISTICA program:
- = 0,8 B 0,8
2 T 1,393 - 1,951, 0,70

(15)

(16)

The accuracy of fitting is clearly shown by the very high R*>=0,9977 value. Then we
looked for a relation between the “c” shape factor and the o,, value. There was clear
polynomial function with R? =1:

c,, =0,0392c® —0,2749c® +0,6907c* —0,8332¢® +0,5424c* +0, 2588¢c 17)
After plotting the value pairs, the hexic polynomial could be estimated with a line without
the significant decrease of the fitting’s rate (R* = 0,9954):
c,, ~0,4205-c. (18)
Substituting function (18) in function (16), we get the wanted relationship:

19

¢~ 20816 h"®K ™0 11 (19)

or reordering to K:

1,428
K ~0, 0131{h1'95 (% —1}} (20)

the K factor here shows the stiffness of the layers correlated with each other.

2.2 Estimating the modulus of the granular layers

According to the study of Hoffmann (1988), if the pavement and the subgrade are considered
as a two-layer system, knowing the radius of curvature and the central deflection, the
E-modulus of the subgrade can be directly calculated. This statement can be checked knowing
the results of the BISAR simulations. Using the deformation curves of the 1008 two-layer
systems, the radius of curvature of the systems can be defined with the function (13). The

related D,, R, and E, data rows are graphically presented in Figure 8.
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Figure 8. The E-modulus of the bottom layer can be defined by
the centre deflection and the radius of curvature

Figure 8 shows that the data rows define a plane in dual logarithmic frame of reference.
So the E-modulus of the bottom layer can be defined by the following function relation:

E,=a-D} RS (21)
The linear figure of the function:
log(E,)=1log(a)+blog(D,)+clog(R,) (22)
The following general equation can be derived with the Y =log(E,), X, =log(D,),
X, =log(R,), b, =log(a), b, =b and b, =c substitution:
Y =b, +b X, +b, X, (23)

Here b, represents the intersection, while b, and b, show the partial slopes. The regression

factors can be defined with the least square method as before (Orbay 1990). The results of the
calculations made with the STATISTICA program are shown in Table 2.

Table 2. The statistic characteristics of the function constants fitted onto the two-layer system

h (cm) N = 1008 B Deviation () B Deviation (B) t(1005) p
Intersection - - 3.08794 0.000767 4024.03 0.00

5-50 Direction tangent (1) -1.56581  0.000598 -1.62284  0.000620 -2617.99 0.00

Direction tangent (2) -1.05669  0.000598 -0.62894 0.000356 -1766.77  0.00
R?=0.9998, F(2.1005) = 3515439, p < 0,0000, a. = 0,05 and the residual deviation: 0.00525

According to the examination, there is very strong correspondence between the
E-modulus of the bottom layer, the vertical deflection interpreted at the load axis, and the

radius of curvature. The high R? also shows this. So the E, modulus can be estimated with the
following function from the evolving deflections:

E, =1224,45. D, ***R*%?, (24)
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To avoid big numbers we gave the D, in millimetres, the R, radius of curvature in
metres, while the joint modulus of the granular layers E, in MPa in the equation. According

to the function (13) R,depends on the “c” shape factor, therefore, the (24) can be changed as
follows:
E, =111,73-D,%%* . ¢ (25)

According to the statistical model, it is not necessary to know the bound layer thickness
to estimate the joint modulus of the granular layers, so it can be defined from the FWD or
IBBA measurements without any destruction. The defined condition parameter may be useful
especially for the Pavement Management Systems (PMS).

2.3 Estimating the modulus of the bound layers
The definition of the modulus of the bound layers is done using the following simple formula:

E,=K-E, (26)
where
E; : modulus of the bound layer [MPa],
E, : modulus of the unbound granular layer [MPa],
K : rate of the layers compared to each other [-].

In the function (26), K is the rate of the bound and unbound layers compared to each
other, which is calculated with the formula (20). To estimate the E, modulus we use the

formula (24). Therefore we proved that in the case of two-layer pavement models, the moduli
of the layers can unequivocally be calculated back from the deformation curve, so it is not
necessary to use the iterative backcalculation methods.

2.4 Analysing the three-layer system

With the help of the BISAR software we modelled 15552 three-layer pavement variants. We
calculated the evolving stresses and strains at the bottom of the reinforcement layers ‘built
onto’ the original pavements and the whole bound layer thickness. The calculation was based
on Ambrus’s (2001) former results. He demonstrated that at the bottom of the reinforcement
layer of pavements having the same deflection curve but different structure, the same strains
evolve in every case. That is, if the pavement deflection curve (its radius of curvature) is
known, then the rate of the necessary reinforcement can be directly estimated.

We could not find regression relationship between the Ry radius of curvature of the
deflection curves calculated with the BISAR software and the strains evolving directly at the
bottom of the reinforcement layer. The reason for this is that we assumed full adhesion
between the two layers, so it actually behaved as one layer. Therefore, we later only dealt with
the strains evolved at the bottom of the whole bound layer thickness. We managed to draw the
following statistic model:

log(e, ) =—0,522-log (R, )—0,533-log(Ah)—0,189-log(E, )+5,088 (27)
or
g, =122463- R, %% . Ah 0% . E 218% (28)
where
g, . strain evolving at the bottom of the bound layer after the reinforcement [pe],
Ro : the radius of curvature of the pavement before the reinforcement [m],

Ah :  the thickness of the reinforcement layer between 20 and 120 mm,
Eac: the modulus of the reinforcement layer between 5000 and 15000 MPa.
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The results of the calculations carried out with the STATISTICA software are shown in
Table 3. Knowing &y, it is possible to define the necessary asphalt reinforcement layer. To do
this, the asphalt fatigue functions used in asphalt mechanics have to be applied. The principle
of the method is that the material is able to tolerate a certain strain during limited load
repetitionswithout failure. That is why the evolving ¢ strain is equivalent with a repetition
number, such as a unit axis crossing number (Ambrus 2001). The fatigue function of the
material should be defined with laboratory examinations, though today, several estimating
functions can be used (Bocz 2009).

Table 3. The statistic characteristics of the function constants fitted onto the three-layer system

h (cm) N = 15552 B Deviation () B Deviation (B) t(15548) p
Intersection - - 5.08800 0.01863 273.09 0.00
Direction tangent (R) -0.83663  0.002617 —0.52207 0.00163  -319.69 0.00
Direction tangent (H) -0.42522  0.002617 -0.53302 0.00328  -162.49 0.00

Direction tangent (E) —0.11296 0.002617 -0.18882 0.00437 -43.16  0.00
R? = 0.8935, F(3.15548) = 43491, p < 0.0000, o = 0.05 and the residual deviation : 0.10747

Currently in Hungarian road maintenance practice, the critical strain is defined directly at
the bottom of the reinforcement layer. One reason for this is that the old asphalt layer
becomes cracked, so we cannot count on its long-term load-bearing ability. This approach
sometimes results in exaggeration, as it expects only the new layer to resist the external loads,
while the old asphalt layers are still able to participate in the force-game. Counting with the
existing asphalt layers is also hampered by the fact that only the fatigue ability of loose
asphalt mixtures could be examined with 2- or 4-point bending test. It is very circuitous to
make a test piece out of the core samples drilled out of existing pavement for these
examinations. Today, the cracking-drawing test (Indirect Tensile Test, ITT) makes it possible
to use samples directly drilled out of the pavement and define its fatigue characteristics (Peth6
— Téth 2012). The old asphalt material’s fatigue criterion should be defined with the least
squares method from the results of the laboratory experiment:

N, = k-(ij (29)

€y
where
N: : the entire load repetition number,
k, n: material constants,
€ : horizontal strain in pe in the centre of the test piece.

Based on the function (29) a statement can be made in connection with the strain of the
old asphalt layer. The importance of the function (28) is that the strain can be estimated at the
bottom of the existing asphalt layers after the reinforcement. Comparing the two functions the
base function of a design procedure can be deduced, which will design upon the fatigue
characteristics of the old rather than the new asphalt.

3 SUMMARY
The function suggested by us can be fitted not only onto deflection curves calculated with the

FWD or IBBA, but also the ones calculated with the BISAR software. We showed that by
knowing the deflection curve and the thickness of the bound layer, without using further
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iteration procedures (backcalculation), we could define the modulus of the examined
pavement’s layers. The modulus calculated this way can certainly not be matched with the
result of any laboratory tests. The practical benefit of the procedure is thatwith the defined
moduli, we can create a pavement model whose behaviour — shape alterations under wheel
load — well approximates the real pavement.

Knowing the radius of curvature we can calculate the strain of the bottom of the bound
layer; knowing the strain, we can calculate the existing pavement’s lifetime. The analysis of
the three-layer models made it possible to estimate the strains evolving at the bottom of the
existing asphalt layer after building the reinforcement layer, and so we can establish the
theoretical possibility of a harmonic and economic reinforcement design method. The
elaborated modelling procedure on the network level has the capability to be the base of a
pavement management system. On the project level, the appropriately parameterized two-
layer pavement model can help plan more professional reinforcement layers.
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