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Abstract

Some previous results of the present author are combined in order
to develop a Hermitian version of the “Chemical Hamiltonian Ap-
proach”. In this framework the second quantized Born-Oppenheimer
Hamiltonian is decomposed into one- and two-center components, if
some finite basis corrections are omitted. (No changes are introduced
into the one- and two-center integrals, while projective expansions are
used for the three- and four-center ones, which become exact only
in the limit of complete basis sets.) The total molecular energy cal-
culated with this Hamiltonian can then presented as a sum of the
intraatomic and diatomic energy terms which were introduced in our
previous “Chemical Energy Component Analysis” scheme. The corre-
sponding modified Hartree-Fock-Roothaan equations are also derived;
they do not contain any three- and four-center integrals, while the
non-empirical character of the theory is conserved. This scheme may
be useful also as a “layer” in approaches like ONIOM.
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1. Introduction

Three decades ago the present author studied the apparent contradiction
that one has one- and two-electron integrals up to four-center ones in the
ab initio quantum chemical theory, while the empirical chemical facts indi-
cate that the intramolecular interactions are basically of atomic and diatomic
character [1]. In chemical practice one needs not to assume the existence of
any primary three- and four-atom effects in a molecule, while the presence
of the three- and four-center integrals in the theory would indicate the op-
posite. The problem was approached by introducing a “projected” integral
approximation scheme [1], permitting to present each three- and four-center
integral as a sum of a leading “physical” term containing only one- and two-
center integrals, and a finite basis correction to it. (This integral approxi-
mation scheme has some resemblance with Ruedenberg classical proposition
[2].) Combined with a special “mixed” second quantized formalism for non-
orthogonal basis orbitals, this permitted to present the finite basis version
of the Born-Oppenheimer Hamiltonian as a sum of atomic and diatomic
“physical” terms and finite basis correction ones. An interesting theoreti-
cal property of these atomic Hamiltonians was that—despite the interatomic
overlap of the basis functions—the antisymmetrized product of atomic full
CI solutions was an eigenfunction of the respective sum of the atomic Hamil-
tonians, and the eigenvalues were the sums of the atomic full CI energies [1].
(No analogous property could be proved, however, for the Hartree-Fock wave
functions.) The diatomic terms of the Hamiltonian have been also decom-
posed into terms of different physical nature, like electrostatic and overlap
effects...

These properties motivated us to call this formalism as “Chemical Hamil-
tonian Approach” (CHA). The disadvantage of the formalism was the non-
Hermiticity of the “physical” terms [1], obviously causing complications in
the practical applications. This non-Hermiticity originated from the asym-
metric treatment of “bra”-s and “ket”-s constituting the different one- and
two-electron integrals, as different functions in the integrands were analyzed
by assuming that every operator acts “to right”.

The intramolecular CHA formalism received no direct numerical applica-
tions. However, the application of the same philosophy to the BSSE problem
of intermolecular interactions has been found rather useful [1,3,4]. An energy
decomposition formalism has also been developed [1], in which the different
energy components were defined as the expectation values of the correspond-
ing‘ ‘physical” terms of the Hamiltonian; the analysis of one of them (that of
the diatomic electrostatic interactions in a point-charge approximation) had
lead to the definition of the bond order index [5–8], that has been widely
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applied in studying different chemical problems.
Later a somewhat different energy decomposition scheme – called “chem-

ical energy component analysis” (CECA) – has been introduced [9,10]. It
differed from the scheme in [1] in two aspects. First all two-center integrals
were conserved, including those that in [1] were considered as finite basis
correction terms with respect to the intraatomic Hamiltonians, and were
omitted from the “physical terms”. Second, the projective integral approx-
imations were symmetrized with respect the “bra”-s and “ket”-s. Although
for the energy decomposition this symmetrization probably would have a
true significance only if one admitted the use of complex basis functions, it
is the conceptual starting point for our present analysis, because it permits
to build up a Hermitian version of the “chemical” Hamiltonian.

In the CECA scheme the energy of a molecule calculated at the SCF level
is expressed approximately but to a good accuracy as a sum of atomic and
diatomic contributions, the computation of which requires the use of one-
and two-center integrals only [9]. It seems important that the error of this
approximation apparently has the character of a “white noise” and does not
reflect any actual intramolecular effects of physical or chemical significance.

For the CECA scheme several (more or less successful) improvements
and refinements have been developed (see e.g., [11–14); we are not going to
discuss them here in any detail. All of them (including, of course, CECA
itself) are a posteriori means of analysis, that is they can be applied after
a conventional ab initio SCF calculation has been performed, in order to
elucidate the results of the latter. The aim of the present paper is to use
the same integral approximation scheme in order to develop an approximate
ab initio scheme of a priori calculations, in which one needs not to calculate
any three- and four-center integrals. In this respect the scheme could be put
in parallel with the semiempirical quantum chemical methods. However, the
projective integral approximations are improving with increasing basis sets,
thus one may expect that the proposed scheme will exhibit convergence to
the conventional Hartree-Fock limit. (The proposed scheme may be useful
also as a “layer” in schemes like ONIOM [15].)

2. Integral approximation

Let us first consider the three-center one-electron integral 〈χAµ |ZC

rC
|χBν |〉, where

A, B and C represent three different atoms. Here the superscripts A and B
indicate that the basis orbitals χµ and χν are centered on the atoms A and
B, respectively. Thus the integral describes the interaction of the diatomic
overlap population χA∗µ (~r )χBν (~r ) with the nucleus of atom C. This integral
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can also be written in the symmetrized form

〈χAµ |ZC

rC
|χBν |〉 = 1

2

[
〈χAµ |ZC

rC
|χBν |〉+ 〈χBν |ZC

rC
|χAµ |〉∗

]
. (1)

(All the one- and two-electron integrals, if the opposite is not stated, include
also summations over the spin variables.) Considering the “bra” ZC

rC
|χBν |〉 in

the first integral, one may pictorially consider it as describing the “scattering”
of the electron occupying orbital χBν on the nucleus of atom C; it is a function
that may be considered a diatomic entity related to the atoms B and C. By
writing a resolution of identity in the form

1 ≡ P̂BC + (1− P̂BC) , (2)

where P̂BC is the projector on the subspace of orbitals centered on atoms
B and C, this function can be written as a sum of two components: one
which is in the subspace BC of the basis orbitals centered on atoms B and
C, and another which is orthogonal to that subspace. The first component
appears always when atoms B and C are at the given configuration with
respect to each other, while the question whether the second plays any role
in the molecular problem depends on the particular configuration of the other
atoms of the molecule. (That term is simply neglected in any calculations of
the diatomic molecule BC.) As the basis set on atoms B and C improves, the
term in the orthogonal complement becomes smaller and smaller; experience
shows that for reasonable basis sets—but not for the minimal ones—one may
neglect these terms without causing serious problems [9,11].

According to the above discussion, we shall replace the function ZC

rC
|χBν |〉

in the first integral by its projection P̂BC
ZC

rC
|χBν |〉, and analogously, the func-

tion ZC

rC
|χAµ |〉 in the second integral by its projection P̂AC

ZC

rC
|χAµ |〉 on the

subspace of the basis orbitals centered on atoms A and C:

〈χAµ |ZC

rC
|χBν |〉 =⇒ 1

2

[
〈χAµ |P̂BC ZC

rC
|χBν |〉+ 〈χBν |P̂AC ZC

rC
|χAµ |〉∗

]
. (3)

Here and further on we use the symbol =⇒ to indicate the replacements
caused by the projective integral approximations of the type discussed. We
recall in this connection, that in the case of an overlapping basis, the projec-
tion on the subspace of orbitals centered on some subunit X can be presented
as

P̂X =
∑
κ,λ∈X

|χκ〉S−1
(X)κλ〈χλ| . (4)

Here and further on we use the shorthand S−1
(X)κλ for the elements of the

inverse overlap matrix of the subunit X:

S−1
(X)κλ = (S−1

(X))κλ . (5)
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One should proceed analogously with the three- and four-center two-
electron integrals. The two-electron function 1

r12
χCκ (1)χDρ (2) can be consid-

ered as belonging primarily to the diatomic fragment CD where the basis
orbitals are centered; accordingly, we introduce projectors on the CD sub-
space for both electrons. We shall again perform the symmetrization, thus
we obtain the projective integral approximation for the two-electron integral

〈χAγ (1)χBν (2)| 1
r12
|χCκ (1)χDρ (2)〉

=⇒ 1
2

[
〈χAγ (1)χBν (2)|P̂CD(1)P̂CD(2) 1

r12
χCκ (1)χDρ (2)〉 (6)

+ 〈χCκ (1)χDρ (2)|P̂AB(1)P̂AB(2) 1
r12
χAγ (1)χBν (2)〉∗

]
.

It is assumed that at least three of the four atoms A, B, C and D are
different. (If it happens that for a three-center integral A=B or C=D, then
the projector P̂AB or P̂CD obviously reduces to P̂A or P̂C , respectively.)

We introduce the matrices AX closely related to the projectors, with the
elements

AXµν =
∑
ρ∈A

SµρS
−1
(X)ρν . (7)

Note that the intra-fragment block of matrix AX (i.e., that corresponding
to both µ, ν ∈ X) is a unit matrix, according to the definition.

Utilizing the definition (7) when substituting the expression (4) of the
projection operators in the integral approximation formulae (3) and (6), the
latter become

〈χAµ |ZC

rC
|χBν |〉 =⇒ 1

2

 ∑
ρ∈BC

ABCµρ 〈χρ|ZC

rC
|χν〉+

∑
ρ∈AC

(
AACνρ 〈χρ|ZC

rC
|χµ〉

)∗
= 1

2

 ∑
ρ∈BC

ABCµρ 〈ρ|ZC

rC
|ν〉+

∑
ρ∈AC
〈µ|ZC

rC
|ρ〉AAC†ρν

 , (8)

and

〈χAγ (1)χBν (2)| 1
r12
|χCκ (1)χDρ (2)〉

=⇒ 1
2

 ∑
λ,τ∈CD

ACDγλ A
CD
ντ 〈χλ(1)χτ (2)| 1

r12
|χκ(1)χρ(2)〉 (9)

+ ( ∑
λ,τ∈AB

AABκλ A
AB
ρτ 〈χλ(1)χτ (2)| 1

r12
|χγ(1)χν(2)〉)

∗
= 1

2

 ∑
λ,τ∈CD

ACDγλ A
CD
ντ [λτ |κρ] +

∑
λ,τ∈AB

[γν|λτ ]AAB†λκ AAB†τρ

 .
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respectively. Here, and further on, † denotes the adjoint, and we have intro-
duced the short-hand notations for the one- and two-electron integrals

〈µ|ZC

rC
|ν〉 = 〈χµ|ZC

rC
|χν〉 ; [µν|ρτ ] = 〈χµ(1)χν(2)| 1

r12
|χρ(1)χτ (2)〉 , (10)

which, in general, include also summations over the spin variables.
The integral approximations (8) and (9) are the same as were used in the

energy decomposition scheme [9]; we hope that here we succeeded to present
them in a more compact and transparent manner.

The accuracy of the integral approximations introduced may be guessed
on the basis of comparing the exact SCF energies and the sum of the CECA
one- and two-center energy components of a given molecule. In Ref. 9
such a comparison was done for ethane molecule, by using a wide variety
of basis sets from 6-31G to 6-311++G** and cc-pVDZ, and it was found
that the total energy of about −79.2 Hartree-s of this molecule in all cases
was approximated within 15 milliHartree-s, and the deviation was less than
20 mH even for 4-31G. Considering the refined version of the CECA scheme
[11] in which these remaining three- and four-electron effects were distributed
among the one- and two-center components by using a special scheme, one
could conclude that this error is scattered in a random fashion among the
numerous energy components, so it does not carry any physical or chemical
significance. (This conclusion was drawn not only for ethane molecule, but
for every system considered as yet.)

3. The LCAO Hamiltonian

In the followings we shall use, besides the non-orthogonal set of original basis
orbitals {χµ}, also the respective Löwdin-orthogonalized set {ψν} of orbitals:

ψν =
∑
µ

S−
1
2

µν χµ , (11)

where S−
1
2

µν is an element of the −1
2 -th power of the overlap matrix, as well

as the biorthogonal set {ϕρ}:

ϕρ =
∑
µ

S−1
µρ χµ . (12)

All the three sets span the same subspace of the one-electron functions.
We introduce creation and annihilation operators corresponding to each

set of these orbitals. In order to distinguish to what type of orbitals the given
creation or annihilation orbital is pertinent, we shall use Longuet-Higgins’
[16] notations ψ̂+

ν , χ̂+
µ and ϕ̂+

ρ for the creation operators and ψ̂−ν , χ̂−µ and
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ϕ̂−ρ for the annihilation ones. The annihilation operators are defined as the
adjoints of the respective creation operators:

ψ̂−ν = (ψ̂+
ν )† ; χ̂−µ = (χ̂+

µ )† ; ϕ̂−ρ = (ϕ̂+
ρ )† . (13)

The creation operators transform in the same manner as the respective or-
bitals do, i.e., according to Eq.s (11) and (12). However, standard Fermion
anticommutation rules hold only for the creation and annihilation operators
defined for the orthonormalized set {ψν}

{ψ̂+
ν ; ψ̂−µ } = ψ̂+

ν ψ̂
−
µ + ψ̂+

µ ψ̂
−
ν = δµν , (14)

while
{χ̂+

ν ; χ̂−µ } = χ̂+
ν χ̂
−
µ + χ̂+

µ χ̂
−
ν = Sµν , (15)

and
{ϕ̂+

ν ; ϕ̂−µ } = ϕ̂+
ν ϕ̂
−
µ + ϕ̂+

µ ϕ̂
−
ν = S−1

µν , (16)

respectively. Owing to the presence of the (inverse) overlap matrix elements
in the anticommutators (15) and (16), Fermion anticommutation rules hold
for the mixed anticommutators

{χ̂+
ν ; ϕ̂−µ } = δµν . (17)

and
{ϕ̂+

ν ; χ̂−µ } = δµν . (18)

This means that when acting to right on a string of creation operators χ̂+
µ in

a “ket”, operator ϕ̂−µ behaves as a conventional annihilation operator does,
and analogously, when acting to left on a string of annihilation operators
χ̂−µ = (χ̂+

µ )† in a “bra”, operator ϕ̂+
µ behaves as a conventional creation

operator.
The LCAO version of the Born-Oppenheimer Hamiltonian has a standard

form in terms of the creation and annihilation operators referring to the
Löwdin-orthogonalized basis [16,17]:

Ĥ =
∑
A<B

ZAZB
RAB

+
∑
µ,ν

hλµνψ̂
+
µ ψ̂
−
ν + 1

2
∑
µ,ν,ρ,τ

[ψµψν |ψρψτ ] ψ̂+
µ ψ̂

+
ν ψ̂
−
τ ψ̂
−
ρ . (19)

Here the first sum describes the internuclear repulsion, hλµν = 〈ψµ|ĥ|ψν〉 is
the matrix element of the one-electron Hamiltonian

ĥ = −1
2∆−

∑
A

ZA
rA

, (20)
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in the Löwdin-orthogonalized basis, and [ψµψν |ψρψτ ] is a two-electron inte-
gral in that basis and the [12|12] convention.

Using the transformations (11), (12) connecting the different sets of the
orbitals (and thus also the respective creation and annihilation operators,)
one can transform the Hamiltonian (19) into several equivalent forms. We
shall present here two of them.

Using “biorthogonal” operators

In one version we collect pairs of matrices S−
1
2 into matrices S−1, and

express the Hamiltonian in terms of the one- and two-electron integrals over
the original overlapping basis orbitals and of the “biorthogonal” creation and
annihilation operators ϕ̂+

µ , ϕ̂−ν :

Ĥ =
∑
A<B

ZAZB
RAB

+
∑
µ,ν

hµν ϕ̂
+
µ ϕ̂
−
ν + 1

2
∑

µ,ν,κ,ρ

[µν|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ . (21)

where hµν and [µν|κρ] are the one- and two-electron integrals calculated for
the overlapping set of basis orbitals {χµ}.

As it is known [17], the expectation value E of operator Ĥ can be ex-
pressed through the matrix-representations P and Γ of the first and second
order density matrices, respectively:

E = 〈Ĥ〉 =
∑
A<B

ZAZB
RAB

+
∑
µ,ν

hµνPνµ + 1
2
∑

µ,ν,κ,ρ

[µν|κρ] Γκρµν . (22)

Comparison with Eq. (21) indicates that in overlapping basis the elements
of the spin-dependent first and second order density matrix can be obtained
as expectation values of operator strings constructed from “biorthogonal”
creation and annihilation operators:

〈ϕ̂+
µ ϕ̂
−
ν 〉 = Pνµ ; (23)

and
〈ϕ̂+

µ ϕ̂
+
ν ϕ̂
−
ρ ϕ̂
−
κ 〉 = Γκρµν , (24)

calculated for the actual wave function. (Note that Γκρµν = Γρκνµ = −Γρκµν
etc.) As it is known, in the case of single determinant (SD) wave functions
the second order density matrix can be expressed through the first order one,
so one has

〈ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ 〉SD = PκµPρν − PκνPρµ . (25)

Using “mixed” set of operators
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In this version, first presented in [1], we collect the matrices S−1 necessary
to form operators ϕ̂−µ , but let the other matrices S−1 to appear explicitly.
(This increases the number of summation indices to be explicitly written
out.) Thus we obtain an expression of Ĥ that contains individual terms that
are not Hermitian—although the overall Ĥ, of course, is:

Ĥ =
∑
A<B

ZAZB
RAB

+
∑
µ,ν,ρ

S−1
ρµ hµνχ̂

+
ρ ϕ̂
−
ν + 1

2
∑

µ,ν,ρ,τ,λ,σ

S−1
λµS

−1
σν [µν|ρτ ] χ̂+

λ χ̂
+
σ ϕ̂
−
τ ϕ̂
−
ρ

(26)
The advantage of this form is that it permits to work only with quantities

related to the original, nonorthogonal basis orbitals; we recall in that respect
that operators ϕ̂−µ can be considered as the “true” annihilation operators,
in light of the anticommutation rule (17)—they act (to right) in the non-
orthogonal framework exactly in the manner as usual annihilation operators
do in the orthogonal case. This approach has been utilized when CHA has
been applied to the BSSE problem of intermolecular interactions [1,3–4].

As for a Hermitian Hamiltonian Ĥ one obviously has Ĥ ≡ 1
2(Ĥ + Ĥ†),

one can symmetrize each term of (26), and get:

Ĥ =
∑
A<B

ZAZB
RAB

+ 1
2
∑
µ,ν,ρ

(
S−1
ρµ hµνχ̂

+
ρ ϕ̂
−
ν + hνµS

−1
µρ ϕ̂

+
ν χ̂
−
ρ

)
(27)

+ 1
4

∑
µ,ν,ρ,τ,λ,σ

(
S−1
λµS

−1
σν [µν|ρτ ] χ̂+

λ χ̂
+
σ ϕ̂
−
τ ϕ̂
−
ρ + [ρτ |µν]S−1

µλS
−1
νσ ϕ

+
ρ ϕ̂

+
τ χ̂
−
σ χ̂
−
λ

)
This possibility was not considered previously. To save space, we shall not
develop it in any detail either here, only note that the respective formulae of
this type can be obtained from those discussed in the forthcoming sections
by substituting for every creation operator ϕ̂+

µ its explicit expansion

ϕ̂+
ρ =

∑
µ

S−1
µρ χ̂

+
µ . (28)

and, if necessary, symmetrize like it was done for Eq. (27).

4. The “chemical” Hamiltonian

The different forms of the “chemical Hamiltonian” are obtained if one intro-
duces into formulae (21), (26) and (27) the integral approximations discussed
previously.

When introducing the projective integral approximations into these equa-
tions, we shall group the terms according to the centers involved. The one-
electron matrix elements hµν do not contain any three-center integrals if
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µ, ν ∈A, i.e., both basis orbitals χµ and χν are centered on the same atom
A. In this case no approximation is needed. If, however µ∈A, ν∈B (A 6=B),
then hµν will contain both two-center integrals and three-center ones—and
the latter should be approximated according to Eq. (8). For treating the
genuine two-center contributions in this case, it is worth to introduce the
one-electron Hamiltonian ĥAB corresponding to the diatomic fragment AB:

ĥAB = −1
2∆− ZA

rA
− ZB
rB

. (29)

The two-electron integrals need be grouped not only according to the number
of centers involved, but also depending on whether the two orbitals in the
“ket” part of the integral in (21) are centered on the same or on different
atoms.

Performing the grouping of the terms, one obtains the approximation to
the Hamiltonian (21) as

Ĥ =⇒
∑
A

∑
µ,ν∈A

hµνϕ̂
+
µ ϕ̂
−
ν

+
∑
A,B
A 6=B

∑
µ∈A
ν∈B

[hABµν − 1
2
∑
C

C 6=A,B

( ∑
ρ∈BC

ABCµρ 〈ρ|ZC

rC
|ν〉

+
∑
ρ∈AC
〈µ|ZC

rC
|ρ〉AAC†ρν )]ϕ̂+

µ ϕ̂
−
ν

+ 1
2
∑
A

∑
µ,ν,κ,ρ∈A

[µν|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ (30)

+ 1
4
∑
A,B
A 6=B

[ ∑
κ,ρ∈A

∑
µ,ν∈AB

(µ/∈A)∨(ν /∈A)

([µν|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ + [ρκ|νµ] ϕ̂+

κ ϕ̂
+
ρ ϕ̂
−
ν ϕ̂
−
µ )

+
∑
κ∈A
ρ∈B

∑
µ,ν∈AB

([µν|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ + [ρκ|νµ] ϕ̂+

κ ϕ̂
+
ρ ϕ̂
−
ν ϕ̂
−
µ )

+
∑

κ,ρ,τ,η∈A

∑
µ∈B

∑
ν

(ν /∈ab)

(AAµτAAνη[τη|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ

+ [ρκ|ητ ]AA†ηνA
A†
τµϕ̂

+
κ ϕ̂

+
ρ ϕ̂
−
ν ϕ̂
−
µ )

+
∑
κ∈A
ρ∈B

∑
τ,η∈AB

∑
µ,ν

(µ/∈AB)∨(ν /∈AB)

(AABµτ AABνη [τη|κρ] ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ

9



+ [ρκ|ητ ]AAB†ην AAB†τµ ϕ̂+
κ ϕ̂

+
ρ ϕ̂
−
ν ϕ̂
−
µ ) ]

This is a Hermitian Hamiltonian that does not contain explicitly three-
and four-center integrals any more. It requires some further regrouping in
order to present it as a sum of terms that can be assigned to the individual
atoms and pairs of atoms. For that reason we introduce the atomic one-
electron Hamiltonian ĥA

ĥA = −1
2∆− ZA

rA
. (31)

and perform projections of all relevant quantities to atomic subspaces in
order to separate out effective atomic Hamiltonians. However, the error of
projecting two-center quantities on the one-center ones is not neglected but
is assigned to the diatomic terms of the Hamiltonian. In this manner we get

Ĥ =⇒
∑
A

ĤA +
∑
A<B

ĤAB , (32)

where

ĤA = 1
2
∑
ν,τ∈A

∑
µ

(AAµτhAτνϕ̂+
µ ϕ̂
−
ν + hAντA

A†
τµϕ̂

+
ν ϕ̂
−
µ ) (33)

+ 1
4

∑
η,κ,τ,ρ∈A

∑
µ,ν

(AAµτAAνη[τη|κρ]ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ + [κρ|τη]AA†τµA

A†
ην ϕ̂

+
κ ϕ̂

+
ρ ϕ̂
−
ν ϕ̂
−
µ )

and
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ĤAB =
ZAZB
RAB

− 1
2
∑
τ∈AB

∑
ν

[
∑
µ∈A

(AABντ 〈τ |ZB

rB
|µ〉ϕ̂+

ν ϕ̂
−
µ + 〈µ|ZB

rB
|τ〉AAB†τν ϕ̂+

µ ϕ̂
−
ν )

+
∑
µ∈B

(AABντ 〈τ |ZA

rA
|µ〉ϕ̂+

ν ϕ̂
−
µ + 〈µ|ZA

rA
|τ〉AAB†τν ϕ̂+

µ ϕ̂
−
ν )]

+ 1
2
∑
κ∈A
ρ∈B

∑
η,τ∈AB

∑
µ,ν

(AABµτ AABνη [τη|κρ]ϕ̂+
µ ϕ̂

+
ν ϕ̂
−
ρ ϕ̂
−
κ (34)

+ [κρ|τη]AAB†τµ AAB†ην ϕ̂+
κ ϕ̂

+
ρ ϕ̂
−
ν ϕ̂
−
µ )

+ 1
2
∑
ν∈A
µ∈B

[(hAµν −
∑
τ∈A

AAµτh
A
τν + hBµν −

∑
τ∈B

hBµτA
B†
τν )ϕ̂+

µ ϕ̂
−
ν

+(hAνµ −
∑
τ∈A

hAντA
A†
τµ + hBνµ −

∑
τ∈B

ABντh
B
τµ)ϕ̂+

ν ϕ̂
−
µ ]

+ 1
2{

∑
κ,ρ∈A

∑
µ,ν∈AB

(µ/∈A)∨(ν /∈A)

[([µν|κρ]−
∑
η,τ∈A

AAµτA
A
νη[τη|κρ])ϕ̂+

µ ϕ̂
+
ν ϕ̂
−
ρ ϕ̂
−
κ

+([κρ|µν]−
∑
η,τ∈A

[κρ|τη]AA†τµA
A†
ην )ϕ̂+

κ ϕ̂
+
ρ ϕ̂
−
ν ϕ̂
−
µ ]

+
∑
κ,ρ∈B

∑
µ,ν∈AB

(µ/∈B)∨(ν /∈B)

[([µν|κρ]−
∑
η,τ∈B

ABµτA
B
νη[τη|κρ])ϕ̂+

µ ϕ̂
+
ν ϕ̂
−
ρ ϕ̂
−
κ

+([κρ|µν]−
∑
η,τ∈B

[κρ|τη]AB†τµA
B†
ην )ϕ̂+

κ ϕ̂
+
ρ ϕ̂
−
ν ϕ̂
−
µ ]}

In this presentation the monoatomic terms of the Hamiltonian contain
only one-center integrals, the diatomic terms contain one- and two-center
ones. While the first few terms in Eq. (34) describe direct diatomic inter-
actions (electron-nuclear and electron-electron), most of the terms contain
differences between a two-center integral related to intraatomic interactions
and its approximation by one-center integrals and projection-related matrices
AX , like the term

hAµν −
∑
τ∈A

AAµτh
A
τν . (35)

These terms account for the effects of the basis extension from the atomic
description to the diatomic fragments. Their role should diminish as the
basis set increases, and in Ref. 1 terms of this type were assigned to the
finite basis correction ones. Here they are conserved as to provide that the
diatomics (diatomic fragments) are treated without any approximations.
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Contrary to the integrals, a part of the creation and annihilation opera-
tors, run over the whole basis, so there occur operator strings involving three
and four centers. When the energy is calculated as the expectation value
of the Hamiltonian, the expectation values of the operator strings give the
density matrix elements according to Eq.s (23)–(25). Combined with the
elements of the matrices AX , in the single determinant case they lead to the
projected density matrices [9] BX and CσX , σ = α or β:

BX
µν =

∑
γ

DµγA
X
γν ; CσX

µν =
∑
γ

P σ
µγA

X
γν ; (ν ∈ X) , (36)

which implicitly account for the three- and four-center effects—without the
need to deal with them explicitly. In Eq. (36)

D = Pα + Pβ , (37)

is the usual spinless density matrix, while Pσ is the density matrix for spin
σ (σ = α or β). The expectation values of the operators ĤA and ĤAB are
equal to the energy components ÊA and ÊAB, respectively, quoted in [9];
we shall not display them here explicitly. (We note, however, that a further
decomposition of these energy components into terms of different physical
origin has also been accomplished in [18].)

We shall mention that using the “mixed” second quantized formalism of
Ref. 1, already mentioned, it is possible to present the “chemical” Hamilto-
nian (32–(34) in a form in which each term of the Hamiltonian contains only
creation and annihilation operators assigned to the corresponding atom or
pair of atoms. To save place, we shall illustrate that only by considering the
first term of Eq. (33)—all the other terms can be treated analogously. The
first term in question is ∑

ν,τ∈A

∑
µ

AAµτh
A
τνϕ̂

+
µ ϕ̂
−
ν . (38)

We substitute the explicit expansions ϕ̂+
µ =

∑
ρ S
−1
ρµ χ̂

+
ρ , and AAµτ =∑

λ∈A SµλS
−1
(A)λτ , and get

∑
ν,τ∈A

∑
µ

AAµτh
A
τνϕ̂

+
µ ϕ̂
−
ν =

∑
λ,ν,τ∈A

∑
µ,ρ

SµλS
−1
(A)λτh

A
τνS

−1
ρµ χ̂

+
ρ ϕ̂
−
ν (39)

=
∑

λ,ν,τ∈A

∑
ρ

δρλS
−1
(A)λτh

A
τνχ̂

+
ρ ϕ̂
−
ν =

∑
λ,ν,τ∈A

S−1
(A)λτh

A
τνχ̂

+
λ ϕ̂
−
ν .

When calculating expectation values, the three- and four-center effects will
again be accounted for through the “projected density matrices” Eq. (36),

12



owing to the fact that for the expectation values of the “mixed” pairs of
creation and annihilation operators one has (in the single determinant case)
[1,6]

〈χ̂+
µ ϕ̂
−
ν 〉 = (PS)νµ =

∑
τ

PντSτµ , (40)

and
〈χ̂+

µ χ̂
+
ν ϕ̂
−
% ϕ̂
−
κ 〉 = (PS)κµ(PS)%ν − (PS)κν(PS)%µ . (41)

The overlap matrix elements appearing in these expressions, combined with
the elements of matrices S−1

(X) in the terms like (39) give elements of matrices

AX , occurring in the definitions (36).
Equation (33) contains also the adjoint of the term considered in Eq. (38).

After the transformations analogous to those in Eq. (39), it will contain
the subscripts of the matrices interchanged (complex conjugation) and the
operator string χ̂+

λ ϕ̂
−
ν replaced by ϕ̂+

ν χ̂
−
λ ; its expectation value will be the

complex conjugate of that for the term (38).
Based on these consideration, it is easy to see that the atomic Hamil-

tonians Eq. (33) can be obtained by Hermitizing the non-Hermitian atomic
Hamiltonians Ĥ ′A defined in Ref. 1:

ĤA = 1
2

(
Ĥ ′A + Ĥ ′ †A

)
. (42)

As a consequence of this Hermitization, the antisymmetrized products of
the full CI atomic solutions is not an eigenfunction of the sum of atomic
operators ĤA, as was the case for the sum of non-Hermitian operators Ĥ ′A.
However, considering Ĥ ′A acting to right and Ĥ ′ †A acting to left, one can
easily see that the expectation value of that operator sum calculated with the
antisymmetrized product of the atomic full CI solutions will be equal to the
sum of atomic full CI energies.

The possibility to write down an (even if approximate) Hermitian Hamil-
tonian representing the sum of mono- and diatomic terms, has a significant
conceptual importance, in particular because the expectation values of these
terms of the Hamiltonian reproduce the one- and two-center energy com-
ponents in the CECA analysis [9]. We hope that this way of writing the
Hamiltonian will permit to accomplish some a priori approaches to molec-
ular structure problems, and not only a posteriori ones like the energy de-
composition. In the next section we shall consider the application of our
approach at the SCF level of theory; it is not utilizing explicitly the detailed
form (32)–(34) of the Hamiltonian.

13



5. SCF equations

The fact that the projective integral approximations discussed in Section 2
lead to the approximate Hermitian Hamiltonian (30), opens a quite straight-
forward way to introduce the respective approximate SCF equations. As
the Hamiltonian in the second quantized framework is defined by the inte-
grals over the basis orbitals, one should simply introduce the same integral
approximations in the SCF equations as were used for the Hamiltonian.

Admitting unrestricted Hartee-Fock (UHF) case, the Hartree-Fock-
Roothaan (HFR) equations are

Fσcσi = εσi Scσi (43)

where cσi is the vector of the LCAO coefficients of the i-th molecular orbital
of spin σ (σ = α or β), εσi is its orbital energy, and the matrix elements of
the Fockian are given in terms of the integrals over the spatial orbitals by

F σ
µν = hµν +

∑
ρ,τ

(
Dτρ[µρ|ντ ]− P σ

τρ[µρ|τν]
)
. (44)

When introducing here the projective integral approximations, one should
treat separately the cases, when the subscripts µ and ν of F σ

µν correspond
the same atom (µ, ν ∈ A) and when they refer to different atoms (µ ∈ A,
ν ∈ B; A 6= B). By performing somewhat lengthy derivations outlined in
the Appendix, and turning to the convention (11|22) for the two-electron
integrals, usually preferred in the programming work, we get for the one-
center Fock-matrix elements:

F σ
µν

∣∣∣
µ,ν∈A

=⇒ hµν +
∑
ρ,τ∈A

[
Dρτ (µν|ρτ)− P σ

ρτ (µρ|ντ)
]

(45)

+
∑
ρ∈A

∑
B

B 6=A

∑
τ∈B

{
Dρτ (µν|ρτ)− 1

2P
σ
ρτ [(µρ|ντ) + (µτ |νρ)]

}

+
∑
B

B 6=A

∑
τ∈B

∑
η∈AB

{
BAB
τη (µν|ητ)− 1

2 C
σAB
τη [(µτ |ην) + (µη|ντ)]

}
.

In the case of two-center Fock-matrix elements, it is also possible to add and
subtract terms as to get an expression with the “projected density matri-
ces” BAB and CσAB; however that expression would contain a number of
correction terms with sums containing one-center to two-center corrections,
like the difference [µρ|ντ ]−

∑
η,λ∈B

ABµηA
B
ρλ[ηλ|ντ ], essentially similar to those

occurring in Eq (34). For that reason we separate out only the terms contain-
ing only one-and two-center integrals, and conserve explicitly the projective
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expansion of the three- and four-center ones:

F σ
µν

∣∣∣
µ∈A, ν∈B
A 6=B

=⇒ hABµν − 1
2
∑
C

C 6=A,B

[ ∑
τ∈BC

ABCµτ 〈τ |ZC

rC
|ν〉+

∑
τ∈AC

AACντ 〈µ|ZC

rC
|τ〉
]

+
∑

ρ,τ∈AB

[
Dρτ (µν|ρτ)− P σ

ρτ (µρ|ντ)
]

+ 1
2

∑
C,D

{C,D}6={A,B}

∑
ρ∈C

∑
τ∈D

Dρτ

∑
η,λ∈BD

ABDµη A
BD
ρλ (46)

− P σ
τρ

∑
η,λ∈BD

ABDµλ A
BD
ρη

 (ην|λτ)

+

Dρτ

∑
η,λ∈AC

AACνη A
AC
τλ − P σ

τρ

∑
η,λ∈AC

AACνλ A
AC
τη

 (µη|ρλ)


Here the notation {C,D} 6= {A,B} is used to indicate that at least one of the
centers C, D is different from both A and B. When three-center integrals
are expanded, it happens that D = B or C = A; then obviously one should
assume AAA ≡ AA and ABB ≡ AB.

An interesting property of these equations is that the respective SCF
energy—the expectation value of the Hamiltonian (30)—will be an exact
sum of the one- and two-center CECA energy components. The SCF energy
may be calculated by using the standard formula

E =
∑
A<B

ZAZB
RAB

+ 1
2

{
Tr

[
Pα(heff + Fα)

]
+ Tr

[
Pβ(heff + Fβ)

]}
(47)

Here the effective core matrix heff is defined by the one-electron components
of the Fock-matrix elements (45), (46).

The conceptual approach behind these equations is quite similar to that
we used [3,4] with success in the theory of intermolecular interactions in order
to get wave functions which are free of the so called “basis set superposition
error”. However, in contrast to that case, the present SCF equations are
Hermitian and, as a consequence, may be directly used also to calculate the
energy.

The actual programming of these equations may require introduction of
different intermediate matrices; the effectiveness of the whole procedure may
depend decisively on what quantities may be stored in the computer’s mem-
ory. However, we think that the exclusion of the explicit appearance of the
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three- and four-center integrals will worth of these complications. A promis-
ing special applications of these equations may be their use as a special
intermediate layer in the ONIOM-type approaches, between the parts used
with full ab initio and those treated at the semiempirical level.

6. Conclusions

An attempt is made to develop a new scheme of non-empirical SCF-LCAO-
MO calculations, which may represent an alternative for both the “ortho-
dox” ab initio scheme and the semiempirical theories. (It may also be a
useful intermediate layer in the ONIOM-type approaches.) For that reason
it is suggested to treat all the one- and two-center integrals in a strict ab
initio manner and to use approximate projective expansions for the three-
and four-center ones—the same as were used in the CECA energy decom-
position scheme [9]. These projective integral expansions permit to express
the leading “physical” components of the three- and four-center integrals
through one- center and two-center integrals and the overlap ones. These
expansions are utilized to rewrite the second quantized Born-Oppenheimer
LCAO Hamiltonian in an approximate form not containing any three- and
four-center integrals, and to write down a Hermitian version of the “Chemical
Hamiltonian” [1], containing only mono- and diatomic terms. Incorporating
these projective integral approximations in the HFR equations, one obtains
some modified SCF equations. The calculations will require only one- and
two-center integrals and some quantities calculated by using the overlap ma-
trix. Nevertheless, for large basis sets this method should converge to the
usual Hartree-Fock limit. The approach is in the spirit of the CHA-SCF
equations [3, 4] used with success to exclude basis set superposition error in
the theory of intermolecular interactions, but here the Fockian is Hermitian,
and can also directly be applied to calculate energy.
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Appendix. Derivation of Eq. (45)

When considering the integral approximations, we should stick to the [12|12]
convention for the integrals permitting to distinguish the terms originating
from the “bra”-s and “ket”-s, respectively; in the final formulae we have
turned to the (11|22) convention more convenient in programming.

Systematizing the terms according to the centers of the orbitals involved,
for the one-center matrix elements of matrix Fσ one has

F σ
µν

∣∣∣
µ,ν∈A

= hµν +
∑
ρ,τ∈A

(
Dτρ[µρ|ντ ]− P σ

τρ[µρ|τν]
)

+
∑
B

B 6=A

∑
ρ∈B

∑
τ∈A

(
Dτρ[µρ|ντ ]− P σ

τρ[µρ|τν]
)

(48)
+

∑
B

B 6=A

∑
τ∈B

∑
ρ∈A

(
Dτρ[µρ|ντ ]− P σ

τρ[µρ|τν]
)

+
∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

(
Dτρ[µρ|ντ ]− P σ

τρ[µρ|τν]
)

Only the last sum of Eq. (48) contain three- or four-center integrals that
need to be approximated, therefore we shall consider its terms in detail. At
first, we substitute the approximations (6) in the first term of that sum:

∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ[µρ|ντ ] =⇒
∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ
1
2

 ∑
λ,η∈AC

AACµλ A
AC
ρη [λη|ντ ]

(49)

+
∑

λ,η∈AB
AAB†λν AAB†ητ [µρ|λη]


Both subscripts of the coefficient AACµλ in the first term are belonging to
the diatomic fragment AC; as noted above, the intra-fragment blocks of
the matrices A are unit-matrices, therefore this coefficient reduces to the
Kronecker delta δµλ. Similarly, in the second term AAB†λν = δλν . Utilizing this
we get:

∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ[µρ|ντ ] =⇒
∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ
1
2

 ∑
η∈AC

AACρη [µη|ντ ]

(50)

+
∑
η∈AB

AAB†ητ [µρ|νη]

 .
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In the followings we shall assume that we use real basis orbitals and or-
bital coefficients—as it is usually the case in the practice. Then Dτρ = Dρτ ,
AAB†ητ = AABτη , [µρ|λη] = [λη|µρ], and interchanging some summation indices
we can conclude that the two sums are equal. Thus we have in the real case∑

B,C
B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ[µρ|ντ ] =⇒
∑
B,C

B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ

∑
η∈AC

AACρη [µη|ντ ] . (51)

The summation over ρ ∈ B; B 6= A in the right-hand side of Eq. (51) means
that ρ runs over all the orbital indices, except those assigned to atom A; we
may add and subtract the sum for the case ρ ∈ A:∑

B,C
B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ[µρ|ντ ] =⇒
∑
C

C 6=A

∑
ρ

∑
τ∈C

Dτρ

∑
η∈AC

AACρη [µη|ντ ]

(52)
−
∑
C

C 6=A

∑
ρ∈A

∑
τ∈C

Dτρ

∑
η∈AC

AACρη [µη|ντ ] .

In the first term on the right-hand side we can sum over ρ to get the “pro-
jected density matrix element” BAC

τη , while in the second term the coefficient
AACρη again reduces to the Kronecker delta δρη. Thus we get, changing the
summation index C to B in the right-hand side:∑

B,C
B,C 6=A

∑
ρ∈B

∑
τ∈C

Dτρ[µρ|ντ ] =⇒
∑
B

B 6=A

∑
τ∈B

∑
η∈AB

BAB
τη [µη|ντ ]

(53)
−
∑
B

B 6=A

∑
ρ∈A

∑
τ∈B

Dτρ[µρ|ντ ] .

The second sum just cancels the respective term in the third line of Eq. (48).
The second (exchange) term in the fourth line of Eq. (48) transforms

analogously. However, in that case the two terms are not equal, as were in
Eq. (50), and there is no full canceling of the second term in the third line
of Eq. (48); instead the half of the respective terms in both second and third
lines is canceled.
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