
 2 

Abstract 

 Human embryonic stem cells can be differentiated in vitro into a wide variety 

of progeny cells by addition of different morphogens and growth factors. Our aim 

was to monitor the expression pattern of tight junction (TJ) components and various 

cellular markers during differentiation of stem cell lines toward the hepatic lineage. 

 Human embryonic stem cell lines (HUES1, HUES9) were differentiated into 

endoderm-like cells, and further differentiated to hepatocyte-like cells. Gene 

expressions of Oct3/4, Nanog, alpha-fetoprotein, albumin, cytokeratins (CK-7, CK-8, 

CK-18, CK-19), ATP-binding cassette (ABC) transporters (ABCC2, ABCC7, 

ABCG2), and various TJ components, including claudin-1, claudin-4, claudin-5, 

claudin-7, and tricellulin, as well as an extracellular matrix component, agrin were 

monitored during hepatic differentiation by real-time quantitative PCR. 

 The differentiated cells exhibit epithelial morphology and functional 

assessments similar to that of hepatocytes. The expression level of stem cell marker 

genes (Oct3/4 and Nanog) significantly and gradually decreased, while liver-

associated genes (alpha-fetoprotein, albumin) reached their highest expression at the 

end of the differentiation. The endoderm-like cells expressed claudin-1, which 

declined eventually. The expression levels of cholangiocyte markers including 

claudin-4, CK-7, CK-19, and agrin gradually increased and reached their highest level 

at the final stage of differentiation. In contrast, these cells did not express notable 

level of claudin-7, CK-8 and tricellulin. 

 The marker set used for monitoring differentiation revealed both hepatocyte 

and cholangiocyte characteristics of the differentiated cells at the final stage. This is 

the first report describing the expression level changes of various TJ components, and 

underlining their importance in hepatic differentiation. 
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1. Introduction 

 

Human embryonic stem cells provide new possibilities for the clinical 

treatment of a number of diseases such as diabetes mellitus type 1 [1], Parkinson's 

disease [2], Huntington's disease [3], cardiac failure [4], etc. In addition, the ability of 

pluripotent human embryonic stem cells to differentiate into various cell types 

enables us to utilize them for studying early human development and provides a cell 

source for cellular model systems. 

Human embryonic stem cell-derived cell lines (HUES) [5] can be 

differentiated toward the hepatic lineage, allowing us to study hepatic differentiation 

in culture. In vitro modeling of the molecular mechanisms of hepatic differentiation 

could help us better understanding not only normal development, but the pathogenesis 

of different types of liver cancers. This in vitro system could also help to develop 

therapeutic strategies for primary liver tumors. Of note is that extending the number 

of functional hepatocytes in a diseased liver would have obvious therapeutic potential 

[6]. 

Parenchymal cells of the liver, i.e., hepatocytes and bile duct cells 

(cholangiocytes) play distinct roles in diverse hepatic functions, thus, they differ from 

each other in several aspects including expression pattern of cytokeratins, ABC 

transporter proteins, and tight junction (TJ) components [7-9]. 

Human adult hepatocytes express cytokeratin-8 (CK-8) and CK-18, whereas 

intrahepatic bile duct cells also express CK-7 and CK-19 [10, 11]. Consequently, the 

biliary type cytokeratins, CK-7, CK-8, CK-18, and CK-19 are highly expressed in 

cholangiocarcinomas [12, 13]. 
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Hepatic ABC transporters greatly contribute to various functions of liver cells. 

ABCC2 (MRP2) and ABCG2 proteins, residing in the canalicular (apical) membrane 

of hepatocytes, are responsible for excretion of endo- and xenobiotics into the bile 

[14, 15]. In contrast, hepatic ABCC7 (CFTR) regulates the movement of chloride and 

sodium ions across the membrane of bile duct cells [16]. ABCG2 has also been 

shown to play protective roles in blocking absorption at the apical membranes of 

hematopoietic progenitor and other stem cells [17]. High levels of ABCG2 expression 

were reported not only in hepatocytes but also in human embryonic stem cell lines 

(HUES1 and HUES9) [18, 19]. A recent study suggested new roles for ABCG2 in the 

regulation of cellular differentiation [20]. 

TJs, the most apically located junctional complexes, are critical for epithelial 

cell barrier and polarity functions, and are composed of several proteins [21-24]. 

Claudins, with 27 subtypes in human cells, together with occludin are the main 

protein components of bicellular TJs [24, 25]. Tricellulin is a more recently identified 

protein, which is concentrated mainly at the convergence of three adjacent cells, 

however, also expressed to a lesser degree in bicellular TJs [26]. 

In the liver, claudin-1 can be detected in both hepatocytes and cholangiocytes 

[27, 28], however, claudin-4 can be mainly found in cholangiocytes and tumors of 

cholangiocyte origin [7, 29]. Claudin-5 component is typically expressed in the 

endothelial cells [22], however it can be expressed in certain tumors such as in 

fibrolamellar carcinoma of the liver [27]. In normal liver the hepatocytes were found 

to be negative for claudin-7 and the normal biliary epithelial cells showed intense 

basolateral membrane claudin-7 positivity [8, 24, 30]. 

Cells and tissues are characterized by a highly specific TJ protein composition 

[31], which might be altered in severeal diseases, especially during carcinogenesis 
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[23, 32]. Agrin mediate cell adhesion and control the activities of numerous growth 

and motility factors and play a critical role in carcinogenesis and tumor progression 

[33, 34]. 

During cancer development, the expression of several TJ components usually 

decreases [27, 28, 35], however,  elevated expression of TJ components have been 

detected in certain tumors [9, 36-38]. In contrast to hepatocellular carcinoma (HCC) 

[7, 39], overexpression of claudin-4 has been observed in cholangiocarcinoma [29], in 

colon cancer [40], in pancreatic ductal carcinoma [41] and in several other 

malignancies [37, 42, 43]. Claudin-7 is a prognostic factor for HCC [30]. Survival 

analysis showed a trend toward a better prognosis among patients with 

overexpression of claudin-7 in tumor tissues [39]. These data suggest that the 

overexpression of claudins in certain tumors are useful in diagnostics [29, 36, 40, 41, 

44], and may even serve as future therapeutic targets [23, 45]. 

These data raise the question, whether changes in the expression pattern of TJ 

components can be detected during hepatic differentiation. Thus, we aimed to 

characterize the expression pattern of TJ components, mainly claudins, in endoderm-

like and hepatocyte-like cells differentiated from HUES cell lines. The differentiated 

cells were characterized by morphological analysis [46], functional assays, and 

expression profiles of cytokeratins and ABC transporters characteristic of liver cells. 
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2. Materials and methods 

 

2.1. HUES cell lines and their culturing 

The human embryonic stem cell lines, HUES1 and HUES9, having normal 

karyotype, were gifts from Dr. Douglas Melton (Harvard University), and were 

maintained according to the recommended culturing protocol. Briefly, cells were 

cultured on mitomycin-C treated mouse embryonic fibroblast (MEF) feeder cells in 

complete HUES medium consisting of 15% knockout serum replacement (Gibco-

Invitrogen, Grand Island, NY, USA), 80% knockout Dulbecco modified Eagle 

medium (KO-DMEM, Invitrogen, Carlsbad, CA, USA), 1 mM L-glutamine, 0.1 mM 

beta-mercaptoethanol, 1% nonessential amino acids and 4 ng/mL human fibroblast 

growth factor [18]. For passage, cells were dissociated with the use of a collagenase 

IV solution (200 U/ml) (Gibco-Invitrogen). The cell culture was conducted in a 5% 

CO2 air mixture at 37°C. The medium was changed daily (2ml/well). Karyotype 

analysis indicated normal karyotype in all experiments [47]. 

 

2.2. Hepatic differentiation of HUES cells 

HUES cells at 80% confluence in 6-well plates were treated with collagenase 

IV, transferred to Matrigel-coated (Becton Dickinson, Franklin Lakes, NJ, USA) six-

well plates (3×105/cm2), and cultured in MEF-conditioned medium containing 80% 

KO-DMEM, 2 mM Gluta MAX, 0.1 mM beta-mercaptoethanol, 4 ng/ml basic 

fibroblast growth factor (bFGF) (R&D Systems, Minneapolis, MN, USA) for 3 days, 

while maintaining undifferentiated status. For coating, prior to seeding, the six-well 

plates were incubated with Matrigel diluted 1:20 in cold KO-DMEM at 4°C at least 

overnight [48]. To produce MEF-conditioned medium, Mitomycin-C treated mouse 
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embryonic fibroblast feeder cells were seeded at 55 000 cells/cm2 density in MEF 

medium consisting of DMEM containing 4.5 g/L glucose and 10% fetal bovine serum 

(FBS) (Gibco-Invitrogen). After at least 4 h, the medium was replaced with HUES 

medium (mentioned above) (0.5 ml/cm2). Conditioned media was collected daily for 

7-10 days.  

For endodermal differentiation, cells were cultured in DMEM/F-12 medium 

(Gibco-Invitrogen) supplemented with 1% fetal bovine serum (FBS) (Gibco-

Invitrogen), 1% BSA (Sigma, St. Louis, MO, USA), 100 U/ml penicillin and 

streptomycin (Sigma), 2 nM glutamine, and 50 ng/ml human activin A (R&D 

Systems) [49] for 5 days.  

For hepatic differentiation, HUES1 and HUES9 cells were cultured in DMEM/F-

12 medium supplemented with 10% FBS, 1% BSA, 100 U/ml penicillin and 

streptomycin (Sigma), 2 nM glutamine, and 20 ng/ml hepatocyte growth factor (HGF, 

R&D Systems) [49, 50] without activin A for 7 days. 

Throughout the entire 15-day differentiation protocol, the medium was changed 

every other day, and the cells were collected at well characterized stages of the 

differentiation process; at day 0 HUES cells, at day 3 undifferentiated cells, at day 8 

endoderm-like cells and at day 15 hepatocyte-like cells. 

 

2.3. Morphological and functional characterization of differentiated cells. 

During the time of culture, morphological changes (shape, granularity) were 

analyzed by phase contrast microscopy (Olympus CKX41, Olympus, Tokyo, Japan). 

Glycogen storage was determined by Periodic Acid-Schiff (PAS) assay 

(Sigma). Cells attached to the dish were washed with PBS three times and fixed with 

PBS supplemented with 4% paraformaldehyde (Wako Pure Chemical Industries, 
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Osaka, Japan) at room temperature for 30 min. Cells were then oxidized with 1% 

periodic acid (Sigma) for 10 min, washed with distilled water three times, incubated 

with PAS reagent (Sigma) for 15 min and rinsed with distilled water for 10 min [51, 

52]. The PAS staining was examined with an Olympus CKX41 inverted, fluorescence 

microscope. 

The indocyanine green (ICG) (Sigma) uptake test of the differentiated cells 

[51, 52] was performed as follows: The ICG solution (1mg/ml in medium) was added 

to the cell culture dish and incubated at 37°C for 15 minutes. After rinsing the dish 

three times with PBS, the cellular uptake of ICG was examined with an Olympus 

CKX41 inverted, fluorescence microscope. Following examination, the dish was 

refilled with DMEM containing 10% FBS. Loss (release) of cellular ICG stain was 

examined 6 hours later. 

 

2.4. Quantitative PCR analyses 

Total RNA was isolated from 5-10×106 cells using TRIzol Reagent 

(Invitrogen). RNA transcripts were purified by phenol/chloroform extraction and 

ethanol precipitation [53]. Absorption levels of RNA extracts were obtained using 

NanoDrop Spectrophotometer ND-1000 (Promega, San Luis Obispo, CA, USA). 

cDNA samples were prepared from 1 μg total RNA using Promega Reverse 

Transcription System Kit (Promega). The RT-PCR primers were designed to flank a 

region that contained at least one intron. The data of applied primer sequences are 

listed in Table 1. Several housekeeping genes were tested in the current study 

(GAPDH, cyclophilin, 36b4, 18S ribosomal RNA, beta-2-microglobulin, TATA box 

binding protein, ABL). ABL (Abelson tyrosine-protein kinase 1) was found to be the 
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best control gene for quantitative RT- PCR in the hepatic differentiation model 

system. 

RT-PCR analysis was performed using SYBR Green technology on a Light 

Cycler 480 real-time PCR system (Roche Diagnostics, Burgess Hill, West Sussex, 

UK) according to the manufacturer's instructions. The final 10 μl reaction mixture 

contained 5 μl LightCycler FastStart DNA Master SYBR Green I (Roche 

Diagnostics), 1 μl of 2.5 μM forward and reverse primers, 2 μl of water, and 1 μl of 

template cDNA. Cycling was performed using the following amplification conditions: 

One cycle at 95°C for 5 min was followed by 45 cycles at 95°C for 30 s, 61°C for 10 

s and 72°C for 10 s with subsequent heating to 95°C for 20 s, cooling to 45°C for 10 s 

and reheating to 95°C at a rate of 0.11°C/s. Primer specific amplification was checked 

by 2% (w/v) agarose gel electrophoresis as well as melting temperature (Tm) 

analysis. 

The delta-delta cycle threshold (CT) method was used for the gene expression 

assays. Statistical analysis was performed using STATISTICA 8 software (StatSoft, 

Tulsa, OK, USA). “Nonparametric method” and “comparing multiple independent 

samples” was used to assess differences between the well characterized stages of the 

differentiation. Kruskal-Wallis ANOVA and Median Test ‘p’ values less than 0.05 

were considered as statistically significant. Data are representative from three 

independent experiments. 

 

2.5. Immunostaining of differentiated cells 

For immunofluorescence staining of TJ components, HUES9 cells were 

seeded onto Imaging dishes (no. 5160, Zellkontakt, Nörten-Hardenberg, Germany), 

and differentiated as detailed in Section 2.2. The differentiated cells at the final stage 
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were fixed and permeabilized with ice cold methanol for 15 minutes, and labeled with 

primary antibodies against claudin-1 (1:100), claudin-4 (1:100), claudin-5 (1:120), 

claudin-7 (1:100), and tricellulin (1:50) antibodies for 2 hours, following a one hour 

blocking with Dulbecco’s modified PBS containing 2 mg/ml BSA, 1% fish gelatin, 

0.1% Triton X-100, and 5% goat serum (pH 7.2). AlexaFluor-488-conjugated anti-

mouse and anti-rabbit IgG secondary antibodies were used (1:250). The antibodies 

were obtained from Life Technologies/Thermo Fisher Scientific (Waltham, MA, 

USA) with the exception of anti-claudin-1 antibody, which was from Cell Marque 

(Rocklin, CA, USA). The cell nuclei were stained with 1 μM DAPI in DPBS for 10 

minutes. The blue and green red fluorescence of stained samples was studied by an 

Olympus FV500-IX confocal laser scanning microscope using a PLAPO 60× (1.4) oil 

immersion objective (Olympus) at 405 and 488 nm excitations, respectively. 
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3. Results 

 

3.1. Morphological and functional characterization of HUES cell-derived 

hepatocyte-like cells 

A three-stage hepatic differentiation protocol depicted in Figure 1a was 

performed with two human embryonic cell lines, HUES1 and HUES9. To evaluate 

the progression of differentiation, the cells were characterized at four critical points of 

differentiation. These phases are the original HUES9 cell line, the embryonic stem 

cells on Matrigel after 3 days (undifferentiated stage), the cells following a 5-day 

activin A treatment (endodermal stage), and the hepatocyte-like cells at the end of the 

differentiation (hepatic stage). First, the morphological parameters of the cells were 

analyzed by microscopy at the end of each stage (Figure 1b-e). By the end of 

differentiation HUES9 cells developed into cells, which exhibited polygonal shape 

and were enriched in cytoplasmic granules, which morphology is characteristic of 

human hepatocytes in culture. 

Next, glycogen storage of the differentiated cells was assayed by Periodic 

Acid-Schiff (PAS) staining to confirm this characteristic feature of hepatocyte 

functions. The hepatocyte-like cells derived from HUES9 cells generated and 

accumulated substantial amount of glycogen (Figure 2b). PAS positivity of 

differentiated cells was paralleled with the hepatocyte-like morphology. No glycogen 

accumulation was observed in adjacent cell populations showing fibroblast-like 

morphology, or in undifferentiated HUES9 cells (Figure 2a). As positive control for 

PAS staining, primary cultures of rat hepatocytes were used (Figure 2d), whereas 

MDCK (Madin-Darby canine kidney) cells served as negative control for these 

experiments (Figure 2c). 
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As another assessment of hepatocyte functions, uptake and release of 

indocyanine green (ICG) dye were measured in hepatocyte-like cells differentiated 

from HUES9 cells. Differentiated cells accumulated ICG from the medium and 

subsequently released the absorbed dye (Figure 2e, f), demonstrating the functionality 

of hepatic transport processes in the HUES9-derived hepatocyte-like cells. In 

contrast, no ICG accumulation was observed in undifferentiated HUES9 confirming 

the specificity of the assay (Figure 2g, h). 

Both morphological and functional assessments demonstrated typical hepatic 

characteristics of the cells differentiated from HUES9 cells. In contrast, the cells 

originated from the HUES1 cell line did not exhibit hepatic features, as neither 

glycogen production nor ICG accumulation was observed in these cells (data not 

shown). 

 

3.2. The expression levels of stage-specific differentiation marker genes 

To monitor the progression of hepatic differentiation of HUES9 cells, the 

mRNA expression levels of a series of differentiation marker genes were determined 

by quantitative RT-PCR at the four characteristic stages of differentiation. To make 

quantitation of PCR more reliable, the expression levels of a numerous housekeeping 

genes including GAPDH, cyclophilin, 36b4, 18S ribosomal RNA, beta-2-

microglobulin, TATA box binding protein, and ABL were determined at each 

differentiation stage (not shown). Out of the studied housekeeping genes, ABL was 

found to be the most stable gene during hepatic differentiation, thus, ABL was used 

as a reference gene in the subsequent experiments. 

As demonstrated in Figure 3a, expression levels of pluripotency markers, 

such as Oct 3/4 and Nanog rapidly declined during hepatic differentiation of HUES9 
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cells (50-fold and 40-fold), whereas liver-specific genes, such as alpha-fetoprotein 

(AFP) and albumin (ALB) were remarkably induced (2500-fold and 500-fold, 

respectively). The mRNA expression levels of cytokeratins, including CK-7, CK-8, 

CK-18, and CK-19 were also monitored during HUES9 cell differentiation (Figure 

3b), and found that CK-7 expression was significantly increased by the end of the 

differentiation (120-fold), whereas CK-19 showed only a slight and gradual raise. In 

contrast, expression of CK-8 and CK-18 was not significantly altered during hepatic 

differentiation of HUES9 cells (Figure 3b). 

Taken together, the expression pattern of stage-specific differentiation marker 

genes demonstrate that HUES9 cells can be differentiated into hepatocyte-like cells. It 

is noteworthy that cells differentiated from HUES1 cells did non exhibit hepatic 

character in terms of expression of liver-specific markers (data not shown). Given 

that HUES1-derived differentiated cells lack of hepatic functions and marker genes, 

in subsequent experiments we focused only on hepatocyte-like cells differentiated 

form HUES9 cells. 

 

3.3. The gene expression levels of hepatic ABC transporter genes 

Since numerous ABC transporter proteins play essential role in various 

hepatic functions, the expression levels of selected ABC transporters, such as 

ABCG2, ABCC2, and ABCC7 were determined during the course of hepatic 

differentiation of HUES9 cells. In accordance with previous reports [18-20], we 

observed substantial mRNA level of ABCG2 in the parental HUES9 cells, which 

expression rapidly declined, when the cells were seeded onto Matrigel, and further 

decreased during endodermal induction (Figure 4). However, hepatic maturation of 

the cells resulted in significant induction in the ABCG2 expression (20-fold) 
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surpassing the level found in the original HUES9 cell line. The expression of the 

hepatocyte-specific ABC transporter, ABCC2 significantly increased during hepatic 

differentiation of HUES9 cells (30-fold). Surprisingly, ABCC7 expression was also 

significantly induced in the HUES9 cell-derived differentiated bile duct cells (80-

fold) (Figure 4). 

 

3.4. The gene expression levels of the hepatic tight junction genes 

Gene expressions of TJ components were also monitored at various stages of 

differentiation. As demonstrated in Figure 5, gene expression levels of claudin-1 and 

claudin-4 were induced significantly (30-fold and 20-fold) during hepatic 

differentiation of HUES9 cells. In normal liver, claudin-1 is expressed in both 

hepatocytes and cholangiocytes. In our experiment the endoderm-like cells expressed 

higher levels of claudin-1, which declined by the end of the differentiation. The gene 

expression of the cholangiocyte-specific claudin-4 gradually increased and was the 

highest at the end of the differentiation. Claudin-5 expression only modestly 

increased during the hepatic differentiation. The gene expression of the biliary 

epithelial cell-specific claudin-7 showed no significant changes during differentiation 

(Figure 5). 

The extracellular matrix component, agrin, which mediate cell adhesion, was 

induced significantly during hepatic differentiation (10-fold) (Figure 5). However, 

the gene expression of tricellulin was not changed significantly (Figure 5). The 

difference seen in gene expression levels of agrin and tricellulin indicates that the 

formation of cell junctions is still in an initial phase. 
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Taken together, the expression pattern of the hepatic tight junction genes 

suggests the presence of both hepatocyte-like and cholangiocyte-like cells in the 

culture differentiated from HUES9 cells. 

 

3.5. Expression and subcellular localization of tight junction proteins 

To study the protein expression of TJ components in the HUES9-derived 

differentiated cells, immunofluorescence staining and confocal imaging were 

performed with the cell cultures at the final stage (Figure 6). The presence of claudin-

1, -4, -5, -7, and tricellulin proteins in the HUES9-derived hepatic cells was verified 

by these experiments. Claudin-1, -5, and tricellulin were clearly localized to the cell 

periphery, whereas claudin-4 and -7 exhibited also some intracellular (mostly 

submembrane) staining in addition to the predominant membrane localization. In 

contrast to the other studied TJ components, claudin-1 was not uniformly localized to 

the plasma membrane, but exhibited patchy distribution at the periphery of the 

HUES9-derived hepatocyte-like cells. 
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4. Discussion 

 

It has been proposed that most epithelial tumors originate from cancer stem 

cells (CSCs) or tumor initiating cells (TICs) with stem cell-like properties, including 

self-renewal and multilineage differentiation capacity [42, 54]. Stem cell lines can be 

differentiated to hepatocyte-like cells implementing an in vitro model for the cancer 

cell formation from tissue stem cells [55]. During the differentiation process the 

continuous changes in the expression level of various genes can also be monitored 

[18, 23, 56-58]. 

The liver is a good objective for studying tissue stem cell differentiation into 

tumor tissue cells in vitro [55], since several stem cells lines can differentiate and 

regenerate into functional liver cells [59] , and effective hepatic differentiation 

protocols have already been established [49-53, 60]. It has also been demonstrated 

that the in vitro produced hepatocyte-like cells transplanted into patients can 

differentiate into functional liver cells [6]. Human embryonic stem cells are 

pluripotent cells derived from the inner cell mass of blastocyst stage embryos [47, 

61]. Pluripotent embryonic stem cells can be differentiated into cells of all three germ 

layers by adding different morphogens and growth factors [5]. A number of human 

embryonic stem cell lines are available by now, with well documented characteristics 

[47, 57].  For the current study, HUES1 and HUES9 as human embryonic stem cell 

lines were used. There are a number of models, based on which human embryonic 

stem cell lines are differentiated into hepatic direction [51, 53, 60]. The 

differentiation protocol applied in our study is straight forward and characterized with 

well-defined differentiation stages [49, 50]. 
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By way of various methods – morphology studies, PAS staining, ICG uptake 

and release measurement, mRNA expression profiling of stem cell and hepatocyte 

marker genes – we demonstrated the capability of HUES9 cells to differentiate to the 

hepatic lineage. In contrast, the cells differentiated from HUES1 cells didn’t show 

hepatic characteristics. Although a pluripotent stem cell by definition is expected to 

be able to differentiate toward any somatic lineages, the human stem cell lines 

originated from the inner cell mass of embryos are not in ground state pluripotency 

[62]. Since the different HUES cell lines are originated from distinct embryos, and 

their establishment procedures were also diverse, an intrinsic differentiation bias of 

the various HUES stem cell lines can be observed. The favored differentiation 

directions of the 17 different HUES stem cell lines have been previously documented 

in a detailed report [63]. 

A set of marker genes specifically expressed in the liver allows us to follow 

the progress of hepatic differentiation [51, 60], whereas the stem cell character can be 

monitored by pluripotency marker genes [57]. In the current study, the gene 

expression of Oct3/4 and Nanog significantly decreased during the hepatic 

differentiation of HUES9 cells, and these genes were not expressed by the end of 

differentiation, suggesting that HUES9 cells gradually lost their stem cell 

characteristics during the differentiation process. AFP is a marker of endodermal 

differentiation and early fetal hepatocytes [51, 60]. ALB is the most abundant protein 

synthesized by functional hepatocytes [52]. The gene expression patterns of AFP and 

ALB imply that the cells differentiated from HUES9 stem cells exhibit immature 

hepatocyte characteristics. 

Cytokeratins (CK) constitute the cytoskeleton of intermediate filament type in 

most epithelial cells [51] and are abundantly expressed in polarized hepatocytes [10, 
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11, 13, 59]. The gene expression of ductal marker CK-7 was significantly increased in 

HUES9 cell-derived differentiated cells, and the gene expression of CK-19, which is 

normally expressed in biliary epithelial cells and hepatoblasts, was gradually 

increased in the course of our differentiation experiments. RT-PCR analyses of the 

hepatic marker genes and CKs suggested the presence of immature hepatocytes and 

cholangiocytes. 

With regard to the hepatic ABC transporters, the gene expression of ABCC2 

(MRP2), which is normally expressed in the canalicular (apical) membrane of 

polarized hepatocyte cells [15], was significantly induced in our experiments, 

indicating that the differentiated cells are almost fully polarized, functional 

hepatocytes. ABCC7 (CFTR) is expressed in the epithelia by intrahepatic and 

extrahepatic bile duct cells in the apical domain [16, 64]. ABCC7 significant gene 

expression pattern suggest the presence of cholangiocytes and immature hepatocytes 

as it has been demonstrated in our study. The transient decline and significant regain 

of ABCG2 expression during hepatic differentiation of HUES9 cells is consistent 

with the literature data reporting high expression of ABCG2 in both stem cells and 

hepatocytes [18, 20, 58]. In summary, mRNA expression profiles of the studied ABC 

transporters suggest that the differentiated cells are similar to mature hepatocyte, and 

possess transient, bipotential characteristics. 

TJs play important role in hepatic differentiation, regeneration, and 

hepatocarcinogenesis [56, 65]. To date the cell contacts and different components of 

TJs have not been studied during human embryonic stem cell differentiation into 

hepatic direction. In the current work, we demonstrated the expression of various TJ 

components including claudin-1,-4, -5, -7 and tricellulin in the HUES-9-derived 

hepatic cells at both mRNA and protein levels. The changes in their expression levels 
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and that of an extracellular matrix protein, agrin at different stages of the hepatic 

differentiation were also demonstrated. 

Claudins are the main transmembrane proteins of TJs. By separating the 

sinusoidal (basolateral) and bile canalicular (apical) plasma membrane domains, 

claudins have an important barrier function and are responsible for the polarization of 

hepatocytes [24, 25, 27, 64]. These TJ components are associated with both cell 

polarity and permeability [24, 25, 43]. The combination and mixing ratios of claudin 

isoforms determine the paracellular permeability in TJs [31, 32]. Claudins have been 

shown to be differentially regulated in malignant tumors, and to play role in 

carcinogenesis and progression [23]. 

Hepatocellular expression of claudin-1 was found to be increased in HCV-

infected livers [66, 67]. Attenuated expression of claudin-1 closely correlates with the 

dedifferentiation and portal invasion of hepatocellular carcinoma [35]. Defect in 

claudin-1 expression increases paracellular permeability in polarized hepatic cell 

lines, supporting the hypothesis that paracellular bile leakage through deficient TJs is 

involved in liver pathology observed in NISCH syndrome [28]. In our experiments, 

the endoderm-like cells at day 8 expressed significantly higher levels of claudin-1 

than the hepatocyte-like cells at the end of the differentiation, which is consistent with 

previous reports demonstrating  that claudin-1 is widely expressed in the epithelia 

[65] . 

Claudin-4 expression reported to be a useful marker for distinguishing 

between biliary tract cancers and hepatocellular carcinomas [7]. The Clostridium 

perfringens enterotoxin induces cytolysis very rapidly through binding to its receptors 

[68], which were identified as claudin-4 [23]. Clostridium perfringens enterotoxin 

binds specifically to hepatocytes, and causes pyogenic liver abscess [68]. Claudin-4 
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can be found in cholangiocyte tumors and cholangiocytes too [7, 29], and cytokeratin-

7 is a conventional markers of cholangiocytes [11, 12]. In our experiments the gene 

expression of claudin-4 significantly increased and reached the highest level in the 

cells at the end of the differentiation. 

Claudin-5 expression also gradually increased in our experiments of stem cell 

differentiation. Claudin-5 is usually expressed in endothelial cells [22], but also 

present in fibrolamellar carcinoma of the liver, in contrast to ordinary hepatocellular 

carcinoma and cholangiocarcinoma, which lack claudin-5 expression [27, 38]. Our 

findings that claudin-5 is detected during differentiation from HUES9 is consistent 

with the observation that certain tumors of epithelial origin deriving from different 

stages of differentiation express claudin-5 [43]. A significant increase in the 

expression of claudin-7 was observed in hepatocellular carcinoma (HCC) versus 

nontumorous tissues [30]. Survival analysis showed a trend toward a better prognosis 

among patients with overexpression of claudin-7 in tumor tissues [39]. Unlike 

claudin-1, and 4 expressions, claudin-5, and 7 expressions did not change 

significantly during the hepatic differentiation of HUES9 cells. 

Tricellulin contributes to the structure and function of tricellular contacts of 

neighboring cells in many epithelial tissues [26, 69]. We found that the tricellulin 

mRNA expression was slightly elevated in the endoderm-like cells at day 8 of the 

hepatic differentiation, and subsequently returned to the basal level. Despite the fact 

that this increase was not significant, immunofluorescence staining revealed normal 

tricellulin distribution in the differentiated cells at the final stage. It can be speculated 

that the small, transient elevation in the tricellulin mRNA level during the hepatic 

differentiation may result in sufficient protein production. 



 21 

The heparin sulfate proteoglycan agrin selectively deposits in HCC 

microvessels versus sinusoidal walls, and also accumulates in cholangiocarcinoma 

[34, 70]. Agrin immunohistochemistry can be used to discriminate between HCCs 

and benign parenchymal lesions [70, 71]. The gene expression of agrin, which is 

associated with basement membranes in several tissues, was significantly increased 

during hepatic differentiation of HUES9 cells. This further suggests the important 

role of agrin in hepatic proliferation and hepatocarcinogenesis [71]. 

The matured hepatocytes are highly polarized cells, where intercellular 

junctions, including TJs, determine cell polarity [32, 65]. Changes in the marker gene, 

ABC transporter gene and TJ gene expression patterns in our experiments may reflect 

the in vivo hepatocyte differentiation process. Expression patterns of the hepatocyte-

specific genes, ABC transporter genes and the TJ genes observed in our study were 

typical for cells having both hepatocyte and cholangiocyte characteristics [13]. This 

may be caused by complete polarization of cells, which also observed in hepatocytes 

during development, leading to adequate targeting of proteins specific to the 

canalicular membrane [13, 14, 21] . Our study indicates that the main cell types in the 

heterogeneous cell cultures obtained by the end of the hepatic differentiation of 

HUES9 cells were almost matured hepatocytes and cholangiocytes. 

In conclusion, our findings demonstrate that HUES9 cells can be 

differentiated into typical liver cells with appropriate morphology, functional 

properties, and characteristic expression pattern. The hepatocyte-like cells 

differentiated from HUES9 cells can serve not only as cell source to substitute human 

hepatocytes, but also provide a model that may reveal molecular mechanisms of the 

pathogenesis of different types of liver cancers, thus, helping to develop novel 

therapeutic strategies for primary liver tumors. 
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Figures legends 

 

Fig. 1 Hepatic differentiation of HUES cells 

(a) Schematic illustration of the 3-stage differentiation procedure. Human embryonic 

stem cells were maintained undifferentiated in MEF conditioned medium for 3 days 

(Stage 1), then were cultured in the presence of activin A (50 ng/ml) for 5 days (Stage 

2), finally, endodermal-like cells were cultured in the presence of HGF (20 ng/ml) 

without activin A for 7 days in Matrigel-coated culture dishes (Stage 3). 

(b-d) Morphology of HUES9 cells and their derivatives during differentiation. 

Representative images of undifferentiated HUES9 at day 3 (b) endoderm-like cells at 

day 8 (c), and hepatocyte-like cells at day 15 (d) are displayed. Scale bar = 50 μm. 

For better perceptibility a DIC image with higher magnification at the final stage is 

also shown (e). Scale bar = 10 μm. By the end of differentiation the cells exhibited 

polygonal shape and were enriched in cytoplasmic granules, which morphology is 

characteristic of human hepatocytes in culture.  

 

Fig. 2 Assessment of hepatocyte functions in cells differentiated from HUES9 

cells 

Periodic Acid Schiff-staining (a-d) demonstrates the glycogen production and storage 

in HUES9 cell-derived cells (b) and primary hepatocytes (d). In contrast, no PAS 

staining was observed in undifferentiated HUES9 cells (a) or MDCK cells (c), which 

served as a negative control. Scale bar = 20 μm. 

ICG uptake (e, f, g, h). (e-h) Indocyanin Green uptake and release assay evaluates the 

capability of cells for accumulation and extrusion of the organic anion dye. HUES9-

derived differentiated cells at day 15 accumulated ICG (e), whereas no dye uptake 

was observed in undifferentiated HUES9 cells (g). The ICG was released from the 

differentiated cells 6 hours after dye uptake (f). Representative images from three 

independent experiments are displayed. Scale bar = 50 μm. 
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Fig. 3 mRNA expression levels of differentiation markers during the course of 

hepatic differentiation of HUES9 cells 

Gene expressions of various stem cell markers, liver markers, and cytokeratins were 

measured by RT-PCR at different stages of differentiation as indicated. 

(a) Expression levels of the stem cell markers, Oct3/4 and Nanog significantly 

decreased, whereas the hepatic markers, α-fetoprotein (AFP) and albumin (ALB) 

were significantly induced during hepatic differentiation of HUES9 cells. (b) The 

expression level of Cytokeratin-7 increased significantly, while Cytokeratin-19 was 

hardly induced. No change in the expression levels of Cyokeratin-8 and Cytokeratin-

18 was observed in the course of differentiation. Data are shown as mean SD of three 

independent experiments. Asterisks denote significant changes (p<0.05). 

 

Fig. 4 Hepatic ABC-transporter genes expression levels during hepatic 

differentiation of HUES9 cells 

The substantial expression level of ABCG2 found in undifferentiated HUES9 cells 

gradually decreased until the end of the endodermal stage, and then robustly rose by 

the end of the differentiation exceeding the expression level observed at the 

pluripotent stage. The mRNA level of the organic anion transporter, ABCC2 (MRP2) 

significantly increased during hepatic differentiation of HUES9 cells. Similarly, the 

expression of ABCC7 (CFTR), which is characteristic of cholangiocytes, was also 

significantly induced Data are shown as mean SD of three independent experiments. 

Asterisks denote significant changes (p<0.05). 

 

Fig. 5 Changes in gene expression levels of tight junction and extracellular 

matrix components typical of liver cells 

The mRNA expressions of claudin-1 and claudin-4 were significantly increased, 

while that of claudin-5 exhibited only small changes during hepatic differentiation of 

HUES9 cells. No change in claudin-7 expression was observed. The gene expression 

of agrin was significantly increased, whereas tricellulin expression level did not 

change. Data are shown as mean SD of three independent experiments. Asterisks 

denote significant changes (p<0.05). 
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Fig. 6 Expression and subcellular localization of tight junction proteins in 

HUES9-derived hepatic cells 

HUES9 cells were differentiated toward the hepatic lineage, and immunostained for 

claudin-1, -4, -5, -7, and tricellulin proteins. Representative confocal microscopy 

images of cultures at the final stage of differentiation are shown. For the control 

experiment, the primary antibody was omitted from the staining procedure. The 

studied TJ components are expressed in the differentiated cells, and predominantly 

localized to the plasma membrane. In addition, intracellular expression of claudin-4 

and -7 is also observed. Scale bar = 10 μm. 



Table 1. Primers used in RT-PCR analyses 
 

Gene Name 
Primer sequence (5'- 3') Product 

length 

(bp) 

Annealing 

temperature 

(°C) 

Gene bank 

code 
Sense Antisense 

ABL ACGAGTCTGGTTGATGCTGTG GGCGGACTGTGGCTTTGG 105 61 NM_007313 

Oct3/4 TGGGCTCGAGAAGGATGTG GCATAGTCGCTGCTTGATCG 78 61 NM_002701 

Nanog TGAACCTCAGCTACAAACAG AACTGCATGCAGGACTGCA 350 61 NM_024865 

Alpha-

fetoprotein (AFP) 
TGCAGCCAAAGTGAAGAGGGAAGA CATAGCGAGCAGCCCAAAGAAGAA 217 

61 
NM_001134 

Albumin (ALB) TGAGAAAACGCCAGTAAGTGAC TGCGAAATCATCCATAACAGC 265 61 NM_000477 

ABCG2 TACCTGTATAGTGTACTTCAT GGTCATGAGAAGTGTTGCTA 159 61 NM_004827 

ABCC2 (MRP2) TCCTTGCGCAGCTGGATTACAT TCGCTGAAGTGAGAGTAGATTG 202 61 NM_000392 

ABCC7 (CFTR) CATTTTTGGCCTTCATCACATT TGCCTTCCGAGTCAGTTTCAG 474 61 NM_000492 

Cytokeratin-7 

(CK-7) 
CAGTGGCGGTGGCATTGG CGGATGGAATAAGCCTTCAGGAG 105 

61 
NM_005556 

Cytokeratin-8 

(CK-8) 
CTCCTCACCAAGAAGCAG CCTGATGGACATGGTAGAG 94 

61 
NM_002273 

Cytokeratin-18 

(CK-18) 
GAGATCGAGGCTCTCAAGGA CAAGCTGGCCTTCAGATTTC 357 

61 
NM_000224 

Cytokeratin-19 

(CK-19) 
TGACACCATTCCTCCCTTCCC AGCACGGACGGAGCAACC 119 

61 
NM_002276 

Claudin-1 GTGCGATATTTCTTCTTGCAGGTC TTCGTACCTGGCATTGACTGG 113 61 NM_021101 

Claudin-4 GGCTGCTTTGCTGCAACTGTC GAGCCGTGGCACCTTACACG 108 61 NM_001305 

Claudin-5 TTCCTGAAGTGGTGTCACCTGAAC TGGCAGCTCTCAATCTTCACAG 97 61 NM_003277 

Claudin-7 CATCGTGGCAGGTCTTGCC GATGGCAGGGCCAAACTCATAC 118 61 NM_001307 

Agrin TCGAGTACCTCAACGCTGTGACC CCAGTGCCACATAGTCTGCCC 198 61 NM_198576 

Tricellulin TGGAACAACAGGAGATAAATGAGC GTCTCTTTGTCTGTCACCACTG 86 61 NM_144724 
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