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On-line analyzers can provide accurate and timely information for process control and monitoring. Statistical Process
Control (SPC) techniques can be effectively utilized to support the development and maintenance of these tools. The D6299-
10 ASTM standard details how on-line analyzers should be validated. The applicability of this standard is demonstrated
through the analysis of industrial data collected from an on-line gas chromatograph. The results confirm that automatized
SPC can effectively improve the reliability of advanced process control systems.
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Introduction

Process variables characterizing and influencing product
quality have a significant role in process control and opti-
mization. Off-line laboratory tests mostly take more than
two hours. This time delay can cause control problems re-
sulting in economic loss. In such situations, an improved
on-line monitoring system is required. On-line analyzers
eliminate the dependence on laboratory data. Analysers
are valuable instruments for real time control because of
their fast response time (1-4 minutes) (see Fig. 1) [1].

Quality control techniques can be effectively used to
support the development of on-line analyzers [2] and ad-
vanced process control systems [3]. The D 6299 ASTM
standard (Applying Statistical Quality Assurance Tech-
niques to Evaluate Analytical Measurement System Per-
formance) provides information for the design and oper-
ation statistical quality control (QC) tools to monitor and
control of analytical measurement systems using a col-
lection of statistical quality control (SQC) tools [4].

The goal of the performance monitoring is the peri-

Figure 1: Soft sensors and on-line analyzers enable
feedback control

odic comparison of the on-line analyzer’s results to the
reference value of the same sample measured by labora-
tory test methods. Precision and bias (see Fig. 2) are cal-
culated to provide information for updating test methods
as well as for indicating areas of potential improvements.

Control charts and other statistical techniques can be
used for performance monitoring. Statistical estimates of
the measurement system precision and bias can be calcu-
lated on the basis of periodically updated data. Plotting
and interpreting these test results can ascertain the in-
statistical-control status of the measurement system [5].
On-line Statistical Process Control (SPC) based real-time
validation of measurement systems has been already re-

Figure 2: Type of faults. The dashed line shows when
the fault occurs. ◦: data free of fault; • corrupted data for

the following cases: (a) bias, (b) complete failure, (c)
drifting, and (d) precision degradation [4]
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Figure 3: Illustrative example: MOL aromatic block gas chromatograph IP benzene content (m/m %), Lab, Analyser
and APC soft sensor

ported in 1997 [6]. The SPC based approach can also be
applied for off-line performance evaluation [7]. This ap-
proach has a wide range of application areas like steel
industry [8], electronic device assembling [9], and build-
ings’ energy demand monitoring [10].

The goal of this paper is to present the theoretical
background and application details of SPC based perfor-
mance evaluation of on-line analyzers. The applicabil-
ity of the concepts is illustrated by a case study based
on data collected from an on-line gas chromatograph of
the MOL Plc (see Fig. 3) . Typical patters that show out
of control status of the system are also presented. To
check the normality of the residuals, an easily applicable
and interpretable tool is proposed. The developed demon-
stration tools are available at the website of the authors
(www.abonyilab.com).

Control Chart based Evaluation of System
Performance

The studied D6299 practice is devoted to a special test-
ing of analyzers [4]. Quality Control (QC) test specimen
samples from a specific lot are introduced and tested in
the analytical measurement system on a regular basis to
establish system performance history in terms of both sta-
bility and precision.

The control chart is one of the seven basic tools of
QC. Control charts - also known as SHEWHART charts
- are used to determine if process is in a state of sta-
tistical control. The analysis of the control chart indi-
cates whether the process is currently under control. This
means that these charts are used to check the stability of
the production. In stable operation, the variations of the
process and quality variables are only random, normally
distributed variables. In these cases, no corrections of the
control parameters are needed. When the chart indicates
that the monitored process is out-of-control, the analysis
of the chart can help to determine the sources of the vari-
ation. Typically, control charts are used for time-series

data, though they can be used for data that have logi-
cal comparability [11]. In this section, we present these
charts and detail how these should be applied for the per-
formance assessment of on-line analyzers.

Control Charts

Run Chart

The run chart is a plot of sample values in chronological
order (Fig. 4). The run chart can be used to screen data
for unusual patterns such as continuous trending in either
direction, unusual clustering, and cycles. The run chart
of the data used in our case study is shown in Fig. 3. The
plotted time series shows the signal of the on-line ana-
lyzer and the related laboratory measurements.

I Chart

The I (individual) chart is a run chart to which control
limits and center line have been added (see top panel of
Fig. 5). The center line is based on the mean of the sam-
ples,

Ī =

∑n
i=1 Ii
n

(1)

Figure 4: Example for a run chart
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Figure 5: I and MR charts show out of control samples
of the gas chromatograph IP benzene content (m/m) %

while the upper and lower control limits are based on the
estimated variance (range of the data) MR [12]

MR =

∑n−1
i=1 |Ii+1 − Ii|

n− 1
, (2)

UCLI = Ī + 2.66MR, (3)

LCLI = Ī − 2.66MR. (4)

Individual values that are outside the upper or lower con-
trol limits are indications of an unstable system, and ef-
forts should be made to determine the cause [5]. Option-
ally, any one of the following occurrences should be con-
sidered as potential signs of instability:

1. Two out of three consecutive results on the I chart
that are more than 1.77MR distant from the center
line in the same direction;

2. Five consecutive results on the I chart that are more
than 0.89MR distant from the center line in the
same direction;

3. Eight or more consecutive points in the I chart that
fall on the same side of the center line.

MR Chart

MR (Moving Range) charts are also used to detect un-
usual patterns by plotting the sequential range of two val-
ues given by

∆i = MRi = |Ii − Ii−1| , (5)

and connecting each point (see Fig. 6 for an example).
There is no lower control limit for an MR chart [5]. The
upper control limit for the MR chart is given by

UCLMR = 3.27MR. (6)

Figure 6: Example for a MR chart

Figure 7: Example for an EWMA chart

EWMA chart

An EWMA (Exponentially Weighted Moving Average)
chart is used to enhance the sensitivity in detecting mean
shifts that are small relative to the measurement system
precision (see Fig. 7 for an example). Each EWMA
value is a weighted average of the current result and pre-
vious results with the weights decreasing exponentially
with the age of the reading [5]:

EWMA1 = I1, (7)

EWMAi = (1− λ)EWMAi−1 + λIi, (8)

where λ is the exponential weighting factor. For applica-
tion of this practice, a λ value of 0.4 is recommended.

The control limits for the EWMA chart are calculated
using a weight (λ) as follows:

UCLλ = Ī + 2.66MR

√
λ

2− λ
, (9)

LCLλ = Ī − 2.66MR

√
λ

2− λ
. (10)

The complexity of multivariate and autocorrelated pro-
cesses makes it difficult to use standard control charts.
To construct simple and interpretable charts, dimensional
reduction could also be used as SIMOGLU and MARTIN
have done [13], but in case of autocorrelated data, model-
based control charts should be applied as KIM and JITPI-
TAKLER have done in their research [14].

Pretreatment of Test Results

Assessment, control charting, and evaluation are applied
only to appropriately pretreated test results. The purpose



80

of pretreatment is to standardize the control chart scales
so as to allow for data from multiple check standards to
be compared on the same chart. For QC sample test re-
sults, no data pretreatment is typically used since results
for different QC samples are generally not plotted on the
same chart.

In our case, the difference between the measure-
ments and their accepted reference values (ARVs) are
monitored. ARV serves as an agreed-upon reference for
comparison and that is derived based on (1) a theoreti-
cal value, based on scientific principles, (2) an assigned
value, based on experimental work, or (3) a consensus
value, based on collaborative experimental work under
the auspices of a scientific or engineering group.

I = test result−ARV. (11)

Assessment of Initial Results

In the initial phase of the application assessment tech-
niques are applied to test results collected during the
startup phase of or after significant modifications to a
measurement system. It is required to perform the fol-
lowing assessment after at least 15 pretreated results have
become available. The purpose of this assessment is to
ensure that these results are suitable for deployment of
control charts.

Pretreated results should first be visually screened for
values that are inconsistent with the remainder of the data
set, such as those that could have been caused by tran-
scription errors. Those flagged as suspicious should be
investigated. Discarding data at this stage must be sup-
ported by evidence gathered from the investigation. If af-
ter discarding suspicious pretreated results there are less
than 15 values remaining, collect additional data and start
over.

The next step is to examine the pretreated results for
non-random patterns such as continuous trending in ei-
ther direction, unusual clustering, and cycles. One way to
do this is to plot the results on a run chart and examine
the plot. If any non-random pattern is detected, investi-
gate for and eliminate the root cause(s).

Typical Control Chart Patterns

In the previous sessions, the main charts used for perfor-
mance measurement were presented. In SPC, the Western
Electric Rules are the decision rules for detecting “out-
of-control” or non-random conditions on control charts.
Locations of the observations relative to the control chart
control limits (typically at ±3 standard deviations) and
centerline indicate whether the process in question should
be investigated for assignable causes. The Western Elec-
tric Rules were codified by a specially-appointed com-
mittee of the manufacturing division of the Western Elec-
tric Company and appeared in the first edition of its Sta-
tistical Quality Control Handbook in 1956 [15]. Their

Figure 8: This process is out of control because a point
is either above the UCL or below the LCL. For example,

in Fig. 5-B at sequence number 28 there is a unique
point below the LCL

Figure 9: In this case the system produce 2 out of 3
consecutive points either in or beyond zone A. The

process on Fig. 5-B shows this behaviour at sequence
number 45 where the values are close to the Upper

Control Limit.

purpose was to ensure that line workers and engineers in-
terpret control charts in a uniform way [5, 12]. The eight
standard Western electric rules are:

1. The most recent point plots outside one of the 3-
sigma control limits (see Fig. 8). If a point lies
outside either of these limits, there is only a 0.3%
chance that this was caused by the normal process.

2. Two of the three most recent points plot outside and
on the same side as one of the 2-sigma control limits
(see Fig. 9). The probability that any point will fall
outside the warning limit is only 5%. The chances
that two out of three points in a row fall outside the
warning limit is only about 1%.

3. Four of the five most recent points plot outside and
on the same side as one of the 1-sigma control lim-
its. In normal processing, 68% of points fall within
one sigma of the mean, and 32% fall outside it. The
probability that 4 of 5 points fall outside of one
sigma is only about 3%.

4. Eight out of the last eight points plot on the same
side of the center line, or target value. Sometimes
you see this as 9 out of 9, or 7 out of 7. There is an
equal chance that any given point will fall above or
below the mean. The chances that a point falls on the
same side of the mean as the one before it is one in
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two. The odds that the next point will also fall on the
same side of the mean is one in four. The probability
of getting eight points on the same side of the mean
is only around 1%.

5. Six points in a row increasing or decreasing. The
same logic is used here as for rule 4 above. Some-
times this rule is changed to seven points rising or
falling.

6. Fifteen points in a row within one sigma. In normal
operation, 68% of points will fall within one sigma
of the mean. The probability that 15 points in a row
will do so, is less than 1%.

7. Fourteen points in a row alternating direction. The
chances that the second point is always higher than
(or always lower than) the preceding point, for all
seven pairs is only about 1%.

8. Eight points in a row outside one sigma. Since 68%
of points lie within one sigma of the mean, the prob-
ability that eight points in a row fall outside of the
one-sigma line is less than 1% (see Fig. 10).

Normality Checks

Since the control chart and limits prescribed in this prac-
tice are based on the assumption that the data behavior
is adequately modeled by the normal distribution, it is
recommended that a test of this normality assumption be
conducted. One way to do this is to use a normal proba-
bility plot and the ANDERSON-DARLING Statistic [16].
If the results show obvious deviation from normality, the
statistical control charting techniques described are not
directly applicable to the measurement system [5].

Quantile-quantile plot (q-q plot) is a graphical tool for
comparing two probability distributions by plotting their
quantiles against each other. The normality plot of the
process can be obtained by comparing the empirical dis-
tribution of the data against a standard normal distribution

Figure 10: Long runs (8 or more consecutive points)
either above or below the centerline. (See Fig. 5-A in

range 28-40)

Figure 11: Normality check of the studied gas
chromatograph.

(see Fig. 11). When the results are normally distributed,
the plot should be approximately linear. Major deviations
from linearity are an indication of non-normal distribu-
tions of the differences [17, 16].

Conclusions

We showed that statistical process control can be effec-
tively used to support the development and maintenance
of on-line process analyzers. A case study is presented
based on the analysis of data taken from the chemical
process industry. The proposed concept has been imple-
mented in MATLAB. The results illustrate the applica-
bility the developed tools in improving the reliability of
advanced process control systems.
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