
HUNGARIAN JOURNAL
OF INDUSTRY AND CHEMISTRY

VESZPRÉM
Vol. 41(1) pp. 65-75 (2013)

ROLE OF STEADY STATE DATA RECONCILIATION
IN PROCESS MODEL DEVELOPMENT

BARBARA FARSANGB1, SÁNDOR NÉMETH1, AND JÁNOS ABONYI1

1University of Pannonia, Department of Process Engineering, H-8200 Veszprém, Egyetem Street 10., HUNGARY
BE-mail: farsangb@fmt.uni-pannon.hu

In chemical and hydrocarbon industry operational efficiency is improved by model-based solutions. Historical process data
plays an important role in the identification and verification of models utilized by these tools. Since most of the used
information are measured values, they are affected by errors influencing the quality of these models. Data reconciliaton
aims the reduction of random errors to enhance the quality of data used for model development resulting in more reliable
process simulators. This concept is applied to the development and validation of the complex process model and simulator
of an industrial hydrogenation system. The results show the applicability of the proposed scheme in industrial environment.
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Introduction

In recent years, development of industrial technologies
has been determined by the proliferation of computing
and information technology. Today’s technologies are
characterized by widespread application of process
engineering tools. The success of these tasks depends
on the accuracy of data and applied models [1]. Thanks
to the evolution of information technology, on-line and
historical process data — coming from chemical process
systems — are available. The collected data provide
the opportunity for engineers to better understand the
processes, anomalies, and malfunctions [2]. Monitoring
of process variables allows us to ensure the consistent
product quality. Collected data can also be used for
the development and validation of process simulators.
However, measurements are always affected by errors
during the measurement, processing and transmission
of the measured signal. Errors (gross, random, bias) in
measured data affect the quality of process models and
can lead to significant decrease in plant performance.
Estimation of true conditions of process states is
important to achieve optimal process monitoring, control
and optimization.

Therefore, several methods have been developed to
minimize measurement errors thereby enhancing the
reliability, accuracy and precision of data. First, analogue
and digital filters were used to reduce the effect of
high frequency noise [3]. Gross errors were detected
with various data validation methods, which include
checking whether the measured data and the rate at
which it is changing is within predefined operational
limits. Nowadays, smart sensors are used for determine
whether there is any hardware problem or the measured

data are appropriate. New methods were statistical
quality control tests that are applied to each measured
variable separately. Although these methods improve the
reliability and accuracy of the measured data, they do
not ensure consistency of the data with respect to the
inter-relationships between different process variables.
Therefore new methods – data reconciliation and gross
error detection – are developed in chemical engineering
[4]. The main difference between data reconciliation and
other filtering methods is that data reconciliation uses
process model constraints and that the results satisfy
constraints and balance equations. Data reconciliation
techniques can be applied to reduce random errors of
measurements, while the other techniques mentioned
above do not. Gross error detection can be used
for eliminate systematic errors so simultaneous data
reconciliation and gross error detection have emerged as
a key of online optimization [5] (see Fig. 1).

Data reconciliation techniques take minimal
corrections of the measured variables to satisfy a
set of model constraints. Based on the difference
between the measured and reconciled data, the following
questions can be answered. Can we consider a related
set of measurements acceptable based on our previous
knowledge of the system? Are the measurements
consistent? If not, what can be the source of the error?
Based on the available measurements and a prior
knowledge, what is the most likely state of the system?
Answers to these questions are important in development
of technology (e.g., monitoring, optimization, simulation,
control, instrument maintenance). Using this technique,
we can verify the acceptability of measurements,
improve the accuracy of measurements, estimate model
parameters and unmeasured variables, and it can be used
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Figure 1: General methodology for on-line data
correction [6]

for fault detection.
In order to ensure the consistency of measured

process variables, models are used in data reconciliation.
During data reconciliation, information is obtained from
both measurements and process models. Depending on
the types of the models, data reconciliation techniques
can be separated into two different problems: steady state
and dynamic (see Fig. 2). In the case of steady state data
reconciliation, model constraints are algebraic equations.
If we are dealing with dynamic processes, differential
equations are used as model constraints. In the case of
linear data reconciliation, model constraints are defined
by linear equations. The simplest data reconciliation
technique is the steady state linear method that can
describe, e.g., the mass balance of technology. Moreover,
most chemical processes have nonlinear characteristics
and constraints are nonlinear equations; this problem can
be called as nonlinear data reconciliation.

The goal of the presented research is to propose a
methodology to support the development and validation
of complex process models and simulators based on
increasing the quality of measurement data used for
(kinetic) parameter identification and validation. In
section Literature survey, a historical background of
steady data data reconciliation is briefly reviewed.
The basic method of linear and nonlinear steady state
data reconciliation is described in section Theoretical
background of steady state data reconciliation. Data
reconciliation cannot be used in process development
only, but it is a useful tool in model improvement
too. The principle of this application is introduced in
section Combined application of data reconciliation
and flowsheeting simulator. Our approach aims the
reduction of random errors to enhance the quality
of data using data reconciliation and flowsheeting
simulator simultaneously. The method is described
in subsection The developed model based data
reconciliation technique. The proposed approach is
illustrated based on an industrial hydrogenation system.

Figure 2: Types of data reconciliation [7]

In section Case study, the analyzed technology is
introduced and the applicability of the method is
illustrated on the basis of the mass balance of the
hydrogenation system. Then, some consequences are
drawn in section Conclusion.

Literature survey

KUHAN and DAVIDSON presented the first study about
minimizing measurement errors in chemical process
industry using a data reconciliation technique in 1961 [4].
They described the steady state linear data reconciliation
technique and demonstrated a general solution for mass
balance of technology. This seminal paper has started
a new research area in process engineering. NOGITA
[8] and MAH [9] improved a new method capable of
detection of gross errors. Later, MAH [10] found that
the base method requires a process system in steady
state conditions and that the process constraints must
be linear. CAO and RHINEHART confirmed that the
methodology will be successful if process data come
from steady state conditions [11]. In these cases, data
reconciliation problems can be solved with standard
numerical methods like sequential quadratic procedures
[12] and quasi-Newton algorithms [13]. A multiple
Gauss-Jordan elimination algorithm was published by
MADRON and VEVERKA [14]. The classification method
is based on matrix decomposition and permutation.
The linear method was improved by CROWE (1986)
who published a new technique to solve nonlinear data
reconciliation using matrix projection [15]. Furthermore,
BAGAJEWICZ and JIANG [16] presented an improved
method that is applicable for dynamics system. The
developed method from PRATA [17] is suitable for
examination of dynamic nonlinear process systems.

Despite of the numerous good reviews of data
reconciliation techniques, industrial application of
this method started only in the 1980s. There are
several complex software packages supporting data
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Table 1: Industrial application of data reconciliation (newer industrial scenario and publications are added to PRATA’s
summary [18])

Industrial scenario Author (year)
Absorption refrigeration systems MARADIAGA et al. (2013) [19]
Beverage alcohol distillation plant MEYER et al. (1993), NOUNOU and BAKSHI

(1999), SCHLADT and HU (2007)
Chemical extraction plant HOLLY et al. (1989)
Ethylene and ammonia plant SANCHEZ et al. (1992), SANCHEZ and

ROMAGNOLI (1996), PLÁCIDO and LOUREIRO
(1998)

Exxon chemical process MCBRAYER et al. (1998) , SODERSTROM et al.
(2000)

Gas pipeline systems BAGAJEWICZ and CABRERA (2003)
Gases network in an iron and steel
making plant

YI and HAN (2004)

Hydrogen plant BUSSANI et al. (1995), CHIARI (1997), SARABIA
et al. (2012) [20]

Industrial coke-oven-gas
purification process

FABER et al. (2006) HU and SHAO (2006)

Industrial distillation column ISLAM (1994), WEISS et al. (1996), SANCHEZ
et al. (1996), BOUROUIS et al. (1998), LI et al.
(2001), BHAT and SARAF (2004), CHATTERJEE
and SARAF (2004), CHEN et al. (2013) [21],
KELLER et al. (2012) [22]

Industrial ETBE reactor DOMINGUES et al. (2012) [23]
Industrial furnace PIERUCCI et al. (1996), EKSTEEN et al. (2002)
Industrial hydrometallurgical plants
for a gold extraction

DE ANDRADELIMA (2006)

Industrial polymerization reactor VIEIRA et al. (2003), PRATA et al. (2006, 2008,
2009, 2010 [24])

Industrial synthesis gas for
production of ammonia

CHRISTIANSEN et al. (1997)

Industrial utility plant LEE et al. (1998)
Methyl-terc-butyl-ether plant AL-ARFAJ (2006)
Mineral and metallurgical plants VASEBI et al(2012) [25]
Nuclear power reactor VALDETARO (2011) [26]
Refinery PICCOLO and DOUGLAS (1996), ZHANG et al.

(2001)
Sulfuric acid plant CHEN et al. (1998), OZYURT and PIKE (2004)
Turbine cycle of a boiling water
reactor

SUNDE and BERG (2003)

Vinyl acetate and ketene plants DEMPF and LIST (1998)
Water processes MARTINS et al. (2010) [27]
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reconciliation (for instance SigmaïňĄne, DataCon, Vali,
Inlibra). These tools have interfaces to information
systems used to manage process data and have special
model building functionalities that allow almost
automatic building of plant-wide balance equations.
Nowadays, data reconciliation is widely applied in
various processing industries (e.g. refining, chemical
industry, metals, mining, and power industry). Despite
of this fact, relatively few articles deal with industrial
applications (PRATA et al. prepared a summary in 2009
[18]; newer applications and papers are collected in
Table 1).

STANLEY et al. classified variables as observable
and unobservable [28]. CROWE categorized the variables
from another point of view: the basis of classification
is the given measured variable can be calculated from
other measured variables using process models or not.
The names of the two classes are redundant and non-
redundant measurements [29]. ALI and NARASIMHAN
applied graph theory to analyse the sensor network,
classify the variables, and compute the redundancy
degree of each variable. They claim that not only
measured variables can be redundant. Those unmeasured
variables that can be estimated in multiple ways are also
termed as redundant [30].

Theoretical background of steady state data
reconciliation

In this section, the basis of linear and nonlinear data
reconciliation techniques are described. Different values
are distinguished. Real values (without error) of variables
are designated by diacritic caron (̌ ), measured values by
tilde (̃ ), while estimated values by circumflex (̂ ).

In general, optimal estimates for process variables
by data reconciliation are solutions to a constrained
least-squares or maximum likelihood objective function,
where measurement errors are minimized with process
model constraints. The steady state data reconciliation
problem can be formulated as an optimization problem
by minimizing

J(y̌, ž) = (ỹ − y̌)
T
V−1

d̃
(ỹ − y̌) (1)

subject to
f(y̌, ž) = 0 (2)

and
g(y̌, ž) ≥ 0. (3)

The solution of the optimization problem is performed
with the following simplifying assumptions

• The measurement error is independent from the
balance variables.

• The expected value of measurement error is zero.
• The measurement error is in a normal (Gauss)

distribution.
• Errors of measurements are independent from each

other (diagonal covariance matrix).

• The covariance matrix is positive definite, so its
inverse matrix exists.

In the following two subsections, solution methods are
presented in the cases of linear and nonlinear models.

Linear data reconciliation

In the linear case, when all variables are measured,
Eq. (1) means minimizing

J(y̌, ž) = (ỹ − y̌)
T
V−1

d̃
(ỹ − y̌)

subject to
Ay̌ = 0. (4)

Gauss distribution (d̃ ∼ N
(
0,Vd̃

)
) is assumed, so the

density function of measurement error is

f
(
d̃
)

= C · exp
[
−0.5 · d̃TV−1

d̃
d̃
]

(5)

from which it follows that

f (ỹ) = C · exp
[
−0.5 · (ỹ − y̌)

T
V−1

d̃
(ỹ − y̌)

]
(6)

and that the
f̌ = Ay̌ − b = 0 (7)

criterion is satisfied in accordance with the balance
equation. The essence of the most likely estimation: if ỹ
is given and its density function is known, which ỹ → ŷ
parameter of density function will be f (function vector
of equality model constraints).

Since the logarithm function is strictly monotonously
increasing, the maximum of the logarithm of the f(y)
function recording only positive values is at the same
place where the maximum of the argument is. Exploiting
it on the above function and using the Lagrange
multipliers method, the result is a vector equation system
with two unknowns:

V−1

d̃
ŷ −AT λ̂ = V−1

d̃
ỹ (8)

Aŷ = b (9)

The solution of the vector equation system is

ŷ =
(
I−Vd̃A

T
(
AVd̃A

T
)−1

A
)
ỹ

+ Vd̃A
T
(
AVd̃A

T
)−1

b (10)

Thus, the estimation requires a matrix-vector
multiplication and a vector addition. Because ỹ is only
the variable, in the other operations there are only
constants [31].

In practice, not all streams and properties are
measured in plant due to physical and economical
reasons. The data reconciliation technique is suitable
for estimating unmeasured variables. In this case, the
optimization problem can be solved by the method of
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Projection Matrix. In the first step, the incidence matrix
is separated into two parts:

Ayy̌ + Az ž = 0. (11)

Unmeasured flows (ž) should be eliminated by pre-
multiplying both sides by a projection matrix, such as
PAz ž = 0. Eq. (4) then can be rewritten as

min J(y̌, ž) = (ỹ − y̌)
T
V−1

d̃
(ỹ − y̌) (12)

subject to
PAyy̌ = 0. (13)

The projection matrix is from Q-R factorization of matrix
Az:

Az = QR = [Q1 Q2] [R1 0]T (14)

The projection matrix is the transformation of Q2 matrix
(P = QT

2 ). If A matrix is replaced by matrix PAy in
Eq. (10), then

ŷ =
(
I−Vd̃(PA)T

(
(PA)Vd̃(PA)T

)−1
(PA)

)
ỹ

+ Vd̃(PA)T
(
(PA)Vd̃(PA)T

)−1
b. (15)

After reconciled values of measured variables are
obtained, the next step is to estimate the unmeasured
variables using the information from process models
(Eq. (11)) as

Ayy̌ = −Az ž (16)

This linear equation can be solved to get estimated
values of the unmeasured variables. Usually, the number
of equations is greater than the number of unmeasured
variables. The least-squares technique can be applied and
the solution is

ẑ = −(AT
z Az)−1AT

z (Ayŷ). (17)

Nonlinear data reconciliation

The data reconciliation problem can be extended to
nonlinear steady state models. It is necessary because
processes in chemical industry cannot be described only
by linear models; behaviour of chemical processes are
often nonlinear. If we wish to simultaneously reconcile
mass flow, composition, or temperature measurements,
mass, component, or energy balances have to be included
as constraints. Sometimes, inequality constraints have
to be defined (e.g. mass/mole fraction of components
have to be in the [0:1] interval). Moreover, if we take
thermodynamic equilibrium relationships and complex
correlations for thermodynamic and physical properties
as constraints, nonlinear data reconciliation techniques
have to be used.

If all variables are measured, the bilinear data
reconciliation problem can be reduced to a linear
problem by introducing the “measured” compound
flows (‘component flows’ or ‘energy flows’). Therefore,
solution of the nonlinear data reconciliation problem is

Figure 3: Integrated application of statistical and white
box models [32]

presented on the basis of the situation when measured and
unmeasured variables occur.

The objective function is the same as in the previous
case (Eq. (1)). The difference is that constraints are
nonlinear equations. This problem can be reduced to
the linear case. This method is referred to as successive
linearisation: nonlinear constraints can be linearised
around working points using first-order Taylor series. The
solution of the linearisation can be written as

h = Byy̌ + Bz ž− f(y̌i, ži). (18)

The initial values are usually the raw values. After
linearisation the procedures of data reconciliation is
described in subsection Linear data reconciliation (Q-
R factorization, reconciliation of measured values, then
estimation of unmeasured variables). If the reconciled
and initial values are far from each other, new iteration
begins. The initial value will be the result of the previous
iteration. Different criteria can be defined: number of
iteration or ||ŷn − ŷn−1|| is smaller than the specified
tolerance values.

Successive linearisation is a relatively simple and
fast solution, but variable bounds cannot be handled
with this method. Another option to solve nonlinear data
reconciliation problem is using Nonlinear Programming
(NLP) techniques that can estimate measured and
unmeasured variables simultaneously. Sequential
quadratic programming (SQP) and generalized
reduced gradient (GRG) are usual techniques in
handling nonlinear problems. These methods are more
computationally demanding, but they are numerically
more robust [33].



70

Figure 4: Iterative model development

Combined application of data reconciliation and
flowsheeting simulator

Mathematical models describe the connection between
the relevant properties of the analyzed phenomena,
process, or activities. In the case of complex chemical
processes, mathematical models usually contain
differential equations whose solution is not always
possible analytically. The process simulator (it is
often applied to improve complex industrial processes)
contains models of the equipments so their mathematical
description is unnecessary for the users. In addition, it
includes different thermodynamic models and component
databases. The flowsheeting simulator can be defined
as “Use of a computer program to quantitatively model
characteristic equations of a chemical process” [34].
The simulator is used in batch processing, integrated
process engineering (for example, economic analysis
and supply chain forecast, supervisory process control,
on-line modeling and optimization, safety and reliability
analysis), and process synthesis and design (for instance,
heat integration, conceptual design). However, lots
of information are needed from technology for the
simulator to describe the real process exactly. Many of
the needed data are measured (e.g., flow, composition,
temperature, pressure). If the input of the simulator is
faulty, the simulator cannot give reliable results.

A new direction is the combination of simulators and
data based statistical models that can handle random and
gross errors [23, 35]. The structure of these hybrid models
are shown in Fig. 3.

• In the first case, the statistical model is the input
of the physical model in the form of differential
or algebraic equations or a complex flowsheeting
simulator. In this case, the statistical model is used
to estimate parameters and phenomena that are

Figure 5: Options of data processing in flowsheeting
simulator

difficult to model.
• Combination 2 shows the case when outputs of

the physical model are transformed by a statistical
model.

• In the third option, the difference between measured
and calculated variables are the inputs of the
statistical model used for correction.

Model-based data reconciliation techniques are similar to
the third approach. Using data reconciliation technique
random errors can be filtered. When accurate data are
available, the flowsheeting simulator gives more reliable
results that make further development of models possible.
This means that data reconciliation allows us to check the
reliability of these measurements [36] and reconsolidated
data can be used to build accurate models.

The developed model based data reconciliation
technique

Our goal is to design an expert system that can
be used to check the acceptability of measurements
and improve the flowsheeting simulator of technology.
The proposed method is based on model-based data
reconciliation techniques. Using data reconciliation,
faulty measurements can be found. Random errors can be
filtered using discrete Fourier transform. The frequency
of the noise is much higher than the frequency of
basic process so the discrete Fourier transform gives a
graphical view about the differences between the basic
process and the noise. Thus, the filtration of the frequency
can be determined so the noise can be separated from the
basic process. If the amplitude of the noise is known,
the standard deviation can be estimated. Thereby, input
of simulator is error-free, so systematic model mismatch
can be recognized and the tuning of the model can be
initiated. Data reconciliation requires an accurate model
whose parameters require reconciled process data. In
th case of an efficient iterative procedure, a properly
working simulator can be developed (see Fig. 4).

Since the simulator is able to process historical
measured data, the difference between the theoretically
achievable values and the measured outputs can give
useful information (see Fig. 5). Four different output
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Figure 6: Flowsheet diagram of the C3 hydrogenation system

values can be compared in the case of the same variable.
Measured output values are known. If all necessary
information is available for data reconciliation, we get
the reconciled output value. In addition, if process model
is prepared in the flowsheeting simulator, we have two
options for analysis: the input of the simulator can be the
measured or the reconciled value.

The difference between outputs can be used for two
purposes. If the difference is insignificant, the measured
data is acceptable and measuring instruments operate
properly; calibration is not necessary. Moreover, it helps
in the development of the flowsheeting simulator. If the
calculated results with reconciled input are far from the
reconciled output, the simulator do not describe the real
process properly; maybe a parameter is not accurate or it
needs structural change.

The proposed method is illustrated on the basis of an
industrial hydrogenation system. The case study shows
examples for both cases; when the difference indicates
the conformity of measurements and when it warns that
some model parameters are incorrect.

Case study

The Tisza Chemical Group Plc. (TVK) is the largest
petrochemical company of Hungary where polymer
raw materials (ethylene, propylene, butylenes, etc.) are
produced by steam cracking of naphtha or gasoline.
At high temperature, numerous free radical reactions
occur. Cracked gas includes light components that are
produced in larger amounts, for example, methane,
ethane, ethylene, acetylene, propane, propylene,
methyl-acetylene, propadiene, n-butane, isobutane,

1,3-butadiene, etc. Some of them are undesirable,
because they poison the catalysts for polymerization
reactions (e.g. acetylene, methyl-acetylene, propadiene).
Another problem is that separation of these components
is difficult from the main products by distillation.
Due to these problems, undesirable hydrocarbons
are hydrogenated. Hydrogenation process of methyl-
acetylene and propadiene is presented in this case study
(see Fig. 6).

The C3-selective hydrogenation process transforms
methyl-acetylene and propadiene to propylene by
catalytic reaction avoiding the transformation of
propylene to propane. The methyl-acetylene and
propadiene content of hydrogenated C3 fraction should
be less than 1000 ppm. The concentration of the main
components (methyl-acetylene, propane) is measured
by online analysers (A1, A2 and A3) and there are two
places where sample is taken twice a day for laboratory
analysis (L1 and L3).

Hydrogen and liquid olefin stream are fed to the
reactor where chemical reactions take place. Outlet
stream of the reactor is cooled by water so the gaseous
C3 component condenses and the hydrogen and the liquid
olefin phases are separated. The recirculated stream has
two important functions: cools the reactor and dilutes
the inlet C3 stream. Blowdown is required due to the
accumulation of inert components.

The most frequent type of hydrogenation reactors is
the trickle-bed reactor in the olefin plant. Liquid olefin
feed and gaseous hydrogen pass through the catalyst
bed in the same direction: from top to bottom. Cooling
of reactor is provided by vaporization liquid flow. The
reactions occur in the top region of the reactor. The
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Figure 7: Measured and filtered values of product C3
fraction

reactions release a large amount of heat. The heat
generation is influenced by the methyl-acetylene and
propadiene (MAPD) content of the inlet C3 and by the
partial pressure of the hydrogen. The MAPD content
of the inlet flow of system is high, so the inlet flow
of the reactor is diluted. In the range of 10 − 80 ◦C
temperature, the average reaction heat of main reactions
are the following:

MA + H2 = C3H6 ∆Hr = −164.8 kJ/mole (19)

PD + H2 = C3H6 ∆Hr = −172.2 kJ/mole (20)

C3H6 + H2 = C3H8 ∆Hr = −124.6 kJ/mole (21)

In the following sections, released heat vaporizes a part
of the liquid phase. This phenomenon also ensures the
cooling of the product flow.

The simulator has been developed in Aspen Plus
software as part of an expert system used for the
monitoring and qualification of the operation of the
technology. Calculations provide useful information
about unmeasured variables, validity of on-line analyzers,
and efficiency of catalysts. The residence time is small
(less than one minute). The sample time was five
minutes, so the steady state simulation gives the same
result as the dynamic simulation. Historical process data
entered the simulator by Aspen Simulation Workbook.
The developed Excel and Visual Basic macro based
framework allows the comparison of the measured data
and the calculated results.

Results and discussion

The process has two inlet streams (C3 fraction and
hydrogen) and two outlet streams (hydrogenated liquid
C3 fraction and blowdown). Mass flows of every stream
are measured. Based on the law of conservation of mass
(there is no accumulation):

Inlet C3 + H2 = Blowdown + Product C3 (22)

Figure 8: Measured and reconciled values of product C3
fraction

If we check whether the measured data satisfy the balance
equation, we find that Eq. (22) is not fulfilled, so data
reconciliation is necessary.

Steps of the procedure are introduced based on mass
flow of C3 product fraction. First time random error
is separated from basic process using discrete Fourier
transformation. Fig. 7 shows the measured and the
filtered values of product C3 fraction. We defined the
random noise as the difference between the measured and
filtered values so the standard deviation and covariance
matrix of random error (Vd̃) can be calculated.

Since there is no accumulation (i.e., b = 0) Eq. (10)
is simplified to

ŷ =
(
I−Vd̃A

T
(
AVd̃A

T
)−1

A
)
ỹ. (23)

Since two input and two output streams are in the system,
the incidence matrix is A = [1 1 − 1 − 1]. Every
needed information are known so the matrix operation
can be performed. Real industrial data are analyzed, so
dimensionless units are included in the figures. The result
of reconciliation is visible in Fig. 8. The result shows that
the proposed method gives a minor improvement of the
process values. Thanks to the validated accuracy of the
mass measurements, these process values can be directly
used for the validation of the simulator.

In the next step, we compare the reconciled output
with the values calculated by the simulator in two
different ways. First, the input of the simulator is the
measured data, then, the reconciled input data. The
result of the comparison is shown in Fig. 9. First, we
thought that the three curves coincide. However, as a
portion is zoomed, the difference became apparent (see
Fig. 10). If the input of simulator is the reconciled data,
the calculated and the reconciled output are nearly the
same. Although the difference between the two calculated
curves may seem small in dimensionless space, do not
forget that the small percentage difference can mean
significant mass flow values in a real industrial process.
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Figure 9: Calculated and reconciled data of product C3
fraction if the input of the simulator is the measured and

reconciled data

Figure 10: Reconciled and calculated outputs of
simulator in case of product C3 fraction

We calculated the square error in both cases (deviation
from the reconciled output) and found that the difference
decreased by 87% if the reconciled values are the input of
the simulator. This shows that the simulator gives more
accurate results if previously data are reconciled.

The simulator supported by data reconciliation can
be applied in fault diagnosis. Fig. 11 shows how
the hydrogen flow changes over time. The continuous
line represents the simulator results without data
reconciliation, while the dashed line shows the reconciled
values.

Fig. 11 shows the similarity of the calculated and
the measured values. After 300 hours of operation the
calculated values exceed the measured data. There are
several possible reasons. Less hydrogen goes to this
system if

• The MAPD content of the inlet stream is lower,
because the mass flow of hydrogen is controlled in
proportion of the MAPD mole flow of the input C3

Figure 11: Calculated and reconciled dimensionless
mass flow of H2 if the input of the simulator is the

measured data

fraction.
• After the regeneration when catalyst is active.
• Other reactor is regenerated or reactivated.

In this case, another reactor in the Olefin 2 plant was
reactivated (after 300 hours). The reactivation process
needed a lot of hydrogen so the hydrogen for the studied
reactor was reduced. The received data did not include the
rate of reduction. The result of the simulation showed that
something was changed in the technology. This shows
the technique can be used for monitoring and diagnostics
of complex processes because it can be discovered if the
operating condition has changed.

Conclusion

Data reconciliation is an effective method to obtain
accurate process data that satisfy balance equations using
process constraints. The application of steady-state data
reconciliation is widespread in the process industry.
Simulators are often applied to improve industrial
processes, optimize operation, and identify bottlenecks
of technology. Historical process data can be used for
the identification and verification of models utilized by
these tools. Usually, measured data do not satisfy balance
equations, because all measurements are incorrect to
some extent. Thus, it is necessary to develop a method
which can simultaneously and iteratively improve data
and model performance. A method based on data
reconciliation technique has been developed for this
purpose.

An industrial C3 selective hydrogenation process
has been analysed as a case study. The steady state
simulator of the process has been developed in Aspen
Plus flowsheeting software. Calculated and historical
process data were compared using Aspen Simulation
Workbook.
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The proposed technique can be used for monitoring
complex processes. Results showed that the proposed
technique slightly improves the quality of flow data.
Thanks to the accuracy of flow measurements, these
process values are directly applicable for the validation
of simulator and suitable for further studies, e.g., for the
determination of kinetic parameters.
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SYMBOLS

A incidence matrix
Ay incidence matrix of balances in terms

of measured flows
Az incidence matrix of balances in terms

of unmeasured flows
By Jacobian matrix of measured variables
Bz Jacobian matrix of unmeasured

variables
b source of extensive quantity
d y − y̌ error
f function vector of equality model

constraints
f̃ balance error (Aỹ − b vector)
f̂ balance error (A˜̂y − b vector)
g function vector of inequality model

constraints
I identity matrix
MA methyl-acetylene
MAPD methyl-acetylene and propadiene
PD propadiene
P projection matrix
Vd̃ covariance matrix of measurements
y̌ vectors of real values of measured

variables
ỹ vectors of measured variables
ŷ vectors of reconciled measured

variables
ž vectors of real values of unmeasured

variables
z̃ vectors of unmeasured variables
ẑ vectors of estimated unmeasured

variables
λ Lagrange multiplier
∆Hr reaction heat
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