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ABSTRACT 

 

Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in 

cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function while 

the molecular nature of the sterol-sensing sites has not been elucidated. The Cholesterol 

Recognition Amino acid Consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of 

the conserved motifs involved in cholesterol binding in several proteins. We have identified 

five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In 

order to define their roles in sterol sensing, the central tyrosines of these CRACs (Y413, 459, 

469, 570 and 645) were mutated to S or F, and the mutants were expressed both in insect and 

mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S 

and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained 

function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S 

mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol 

and bile acids was significantly altered. We suggest that the Y413 residue within a putative 

CRAC motif has a role in sterol-sensing and the ATPase / drug transport coupling in the 

ABCG2 multidrug transporter.  

 

Keywords: ABCG2, multidrug resistance, cholesterol, bile acids, cholesterol recognition 

amino acid consensus 
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1. Introduction 

 

ABCG2 is a plasma membrane glycoprotein in the ABC (ATP Binding Cassette) family of 

proteins that are characterized by a unique nucleotide binding/hydrolyzing domain (NBD) and 

hydrophobic membrane spanning sequences (transmembrane domain, TMD), mediating 

ATPase activity and the recognition and translocation of transported substrates, respectively. 

Several ABC transporters, called multidrug resistance (MDR) proteins, extrude various 

chemically unrelated compounds from the cells by utilizing the energy of ATP hydrolysis. 

ABCG2 is an MDR half transporter, harboring only a single NBD and a single TMD, and must 

at least homodimerize to exert its proper transporter function [1-3].  

ABCG2 is expressed in many tissues, most abundantly in organs displaying barrier 

functions (brain, placenta, and intestine) where it influences the passage of hydrophobic or 

slightly negatively charged molecules, including numerous drugs and food constituents. 

Therefore, ABCG2 can significantly influence the ADME-Tox (Absorption, Distribution, 

Metabolism, Excretion and Toxicity) properties of drugs, especially the absorption from the 

intestine, penetration to the central nervous system through the blood-brain-barrier, or the 

elimination from the liver or kidney [3-6]. Optimal activity of ABCG2 has been shown to be 

important in the regulation of serum urate levels, and polymorphic ABCG2 variants with 

decreased function or expression were shown to be associated with a higher risk of gout [7-9]. 

Human ABCG2 is expressed in stem cells of various origins, where it provides a protective role 

under hypoxic conditions [10]. Overexpression of ABCG2 confers multidrug resistance to 

cancer cells [11-13]. 

We and others have shown that both the ATPase and the transport activity of ABCG2 are 

significantly accelerated by cholesterol enrichment of “cholesterol poor” insect cell 

membranes; whereas cholesterol depletion of mammalian cells results in decreased ABCG2 

function [14, 15], implying that cholesterol is a major modulator of ABCG2 function. 

Subsequent studies have shown that functional reconstitution of purified ABCG2 requires 

cholesterol, suggesting that it is in fact essential for ABCG2 activity [16].  

The mechanisms by which cholesterol-ABCG2 interactions translate into the observed 

changes of function, or the site(s) involved in cholesterol sensing have not been defined. There 

is no experimental evidence proving direct binding of cholesterol by ABCG2 and it is not 

known if ABCG2 recognizes cholesterol as a transported substrate, as shown for some related 

ABCG transporters [17, 18]. More probably, cholesterol is an allosteric modulator of the 
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transporter, or may also have an indirect effect through influencing the biophysical properties 

of the lipid bilayer.  

Previous studies have suggested that single amino acids can influence cholesterol sensing 

of ABCG2. Mutation of R482 to small amino acids (D, G, N, S, T) were shown to alter the 

cholesterol sensitivity [19]; mutation of the leucines in the LxxL motif (potential steroid binding 

element (aa 555-558 [20]) resulted in an apparent cholesterol insensitivity of ABCG2 in Sf9 

membranes [19]. While these results may suggest that the mutated amino acids directly 

participate in cholesterol binding, they are not part of known motifs that characterize dedicated 

cholesterol binding regions. Many proteins that interact with cholesterol possess an amino acid 

consensus sequence termed “CRAC” (Cholesterol Recognition Amino acid Consensus) with 

the pattern (L/V-(X)(1-5)-Y-(X)(1-5)-R/K). The CRAC sequence was shown to be an essential 

determinant of cholesterol recognition in the peripheral-type benzodiazepine receptor, caveolin, 

the gp41protein of the HIV virus, or an integral outer mitochondrial membrane translocator 

protein [21-24]. The length of a CRAC motif varies between 5-13 amino acids, however, only 

the first and last amino acids and the central tyrosine residue are conserved. Various mutational 

studies of the CRAC motifs of cholesterol binding proteins and cholesterol-regulated ion 

channels have demonstrated the crucial role of the central tyrosine in cholesterol binding [22, 

23, 25]. 

Given the modulatory effects of cholesterol on ABCG2 activity, we screened the amino 

acid sequence of the protein for CRAC motifs. We have identified five putative CRAC 

sequences, and changed the central tyrosines to define each motif’s role in cholesterol-sensing. 

Here we show that the CRAC motif containing tyrosine at position 413 in transmembrane helix 

1, is involved in sterol sensing and the modulation of ATPase / transport coupling of the 

ABCG2 transporter. 
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2. Experimental procedures 

 

2.1. Materials - Cholesterol-RAMEB (Randomly Methylated -Cyclodextrin) was a kind 

gift from Cyclolab Hungary. All other chemicals were purchased from Sigma (Sigma Aldrich, 

Hungary) unless stated otherwise. 

2.2. Plasmid constructs - For the expression of ABCG2 mutants in insect cells, baculovirus 

plasmids containing the appropriate mutant ABCG2 cDNAs were generated by PCR 

mutagenesis, as described earlier [26]. The list of primers used for mutagenesis is provided in 

the “Supplementary material”. The PCR products were digested with PstI and NcoI enzymes 

and were ligated into the corresponding sites of the pAcUW21-L/wtABCG2 plasmid [27]. The 

base order of the constructs was confirmed by sequencing. The generation of the vector 

construct with the ABCG2-K86M mutant was described earlier [26]. 

The plasmids for stable expression in mammalian cell lines were created by the ligation of 

the appropriate fragments from pAcUW21-L/ABCG2-Tyr mutant between the NotI-BamHI 

sites of the pSB-CMV-wtABCG2 plasmid [28].  

2.3. Cells and cell lines - Sf9 cells (Invitrogen, Life technologies) were grown in TNM-FH 

insect cell medium complemented with 10 % FBS and 100 g/ml penicillin/100 U/ml 

streptomycin at 27oC. HEK 293 cells were cultured in D-MEM medium containing 10 % FBS 

and 100 g/ml penicillin/100 U/ml streptomycin and 5 mM glutamin at 37oC in 5% CO2. 

2.4. Generation of insect cells expressing ABCG2-Tyr mutants - Sf9 cells were co-

transfected with 250 ng linearized baculovirus DNA + 250 ng baculovirus plasmid DNA using 

the BaculoGold transfection kit following the protocol provided by the supplier (BD 

Biosciences). The presence of the engineered mutations was verified by restriction 

endonuclease digestion of the PCR-amplified ABCG2 DNA. 

2.5. Generation of HEK 293 cells stably overexpressing human ABCG2 and its Tyr 

mutants - Cells were transfected using 3 l Fugene6 reagent (Promega) and 500 ng of the 

Sleeping Beauty pSB-ABCG2 plasmid DNA and 500 ng plasmid coding a transposase [29]. 

48h post transfection the cells were cultured in 1 g/ml puromycin for 14 days. Cells 

overexpressing the highest amounts of the appropriate ABCG2 variant were sorted based on 

5D3 labeling using FACSAria cell sorter (Becton Dickinson). In cholesterol depletion 

experiments we used the HEK 293 cell line stably expressing the R482G mutant established 

earlier [15]. 
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2.6. Membrane preparation – Isolation of membranes from Sf9 cells expressing human 

ABCG2 or its Tyr mutants and the determination of membrane protein concentrations by the 

modified Lowry method were performed as described [30]. Besides control membranes 

prepared from untreated Sf9 cells, cholesterol pre-loaded membranes were also generated by 

co-incubation of the membranes with 0.25, 0.5, 1 or 2 mM cholesterol-RAMEB at 0oC for 30 

minutes prior to the final ultracentrifugation step of the membrane preparation procedure [15]. 

2.7. Detection of ABCG2 by Western blotting - Sf9 membranes or HEK 293 whole cells 

were suspended in sample loading buffer (62.5 M Tris HCl pH 6.8, 2 % SDS, 10 M EDTA-

Na pH 6.8, 10 % glycerol, 2M urea, 0.14 mg/ml bromophenol blue, 100 M dithiothreitol). 

Protein samples were separated on 7.5% Laemmli gels. Western blot analysis was performed 

as described earlier [26], by using the BXP-21 monoclonal antibody in a 2,000x dilution, and a 

goat anti-mouse HRP-conjugated secondary antibody (10,000x dilution, Jackson 

Immunoresearch). 

2.8. BXP-21 or 5D3 labeling - 5 x 105 HEK 293 cells were incubated in 1 ml HPMI buffer 

(120 mM NaCl, 5 mM KCl, 400 M MgCl2, 40 M CaCl2, 10 mM Hepes, 10 mM NaHCO3, 

10 mM glucose and 5 mM Na2HPO4 pH7.4), containing 0.5% bovine serum albumin and 1 

g/ml 5D3 antibody for 30 min at 37oC in the presence of 1 M Ko143. After washing, the 

cells were further incubated with a secondary, phycoerythrin-conjugated anti-mouse antibody 

(Molecular Probes, 2 g/ml). Fluorescence was analyzed in an Attune focusing flow cytometer 

(Applied Biosystems). 

When Sf9 membranes were labeled with anti-ABCG2 antibodies, 90 g membranes were 

incubated with BXP-21 (100x dilution) or 5D3 (final concentration 2 g/ml) antibody in a 

buffer containing 40 mM MOPS-Tris, 50 mM KCl and 500 M EGTA-Tris for 30 minutes at 

37oC, and after washing with phycoerythrin-conjugated goat anti-mouse antibody (final 

concentration 1 g/ml) for additional 30 minutes at 37oC. Fluorescence was analyzed in a 

FACSCalibur cytometer (BD Biosciences) [15, 31]. 

2.9. ATPase assay - Measurement of ATP hydrolysis was performed as described earlier 

[27]. The concentrations of test compounds used in the different experiments are indicated in 

the figure legends. Basal or drug-stimulated ATPase activities were compared to that measured 

in the absence of excess cholesterol. For the calculation of the KA values, the data were fitted 

with a non-linear dose response curve using the Origin 8.6 program. 

2.10. Vesicular uptake assay - The accumulation of 50 M 3H-methotrexate was measured 

for 10 minutes at 37oC, and the transport reaction was terminated by rapid filtration [32]. ATP-
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dependent transport was determined by subtracting the transport measured in the absence of 

MgATP from that of measured in the presence of 4 mM MgATP. 

2.11. Cellular uptake of Hoechst 33342, BODIPY-prazosin, Pheophorbide A and 

mitoxantrone – Accumulation of 1 M Hoechst 33342, 20 nM BODIPY-prazosin, 2 M 

Pheophorbide A or 5 M mitoxantrone was measured as described earlier [26]. Briefly, 5 x 105 

HEK 293 cells were co-incubated with the given compound at 37oC for 20 (Hoechst 33342 and 

BODIPY-prazosin) or 30 (Pheophorbide A and mitoxantrone) minutes. The reaction was 

terminated by the addition of ice-cold PBS. After centrifugation at 100 g for 5 minutes at 4oC, 

the cells were suspended in 1 ml PBS containing 1.25 g/ml propidium iodide and intracellular 

fluorescence was measured in an Attune (Hoechst 33342 and BODIPY-prazosin) or 

FACSCalibur (Pheophorbide A and mitoxantrone) cytometer. In the case of Hoechst 33342, 

cellular fluorescence “transport factor” was calculated as follows: (F100-F0)/F100*100, where F0 

is the fluorescence (mean values) of Hoechst 33342 in the absence of an inhibitor; F100 is the 

fluorescence (mean values) in the presence of 1 M Ko143.  

2.12. Cholesterol depletion - 1 x 106 HEK 293 cells were incubated with 0.9 ml 4 mM 

empty RAMEB diluted in HPMI for 30 minutes at 37oC. Then RAMEB was removed by 

centrifugation at 700 g for 5 minutes at room temperature, and the transport experiment was 

performed as described above. 

2.13. Determination of doxorubicin efflux - 5 x 105 HEK 293 cells were incubated with 

5 M doxorubicin in a final volume of 100 l for 30 minutes at 37oC in the presence or absence 

of 1 M Ko143. After washing the cells with 1 ml HPMI, the cells were further incubated in 

100 lHPMIwith or without 1 M Ko143 for 30 minutes at 37oC. The reaction was stopped 

by washing the cells with 1 ml ice-cold PBS. After centrifugation at 100 g for 5 minutes at 4oC, 

the cells were suspended in 1 ml PBS containing 1.25 g/ml propidium iodide and intracellular 

fluorescence was measured in an Attune flow cytometer at Ex/Em= 488 nm/574 nm.  

2.14. Cytotoxicity assay – 3 x 103 HEK 293 cells were seeded on flat bottom 96-well plates 

one day prior to the addition of the given drug. On day 0 drugs were pipetted onto the cells; at 

72h the supernatant was removed and 100 l 5% PrestoBlue (Life Technologies) was added to 

the cells. After incubation at 37oC, 5% CO2 for 1.5 hours, metabolized PrestoBlue was 

measured in a Perkin Elmer Victor X3 2030 Multilabel Plate Reader at 540 nm excitation and 

579 nm emission wavelengths. 

2.15. Statistical analysis of data – Statistical significance was assessed using paired 

Student’s t-test.  
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3.  Results 

 

3.1. Identification of potential CRAC motifs 

Cholesterol sensor motifs are located in or near the membrane plane; therefore we restricted 

our analysis to the transmembrane domain of ABCG2. We identified five putative CRAC motifs 

in ABCG2 (Fig. 1).  Alignment of the corresponding regions of the human ABCG proteins 

revealed that three out of the five identified CRAC motifs are also present in other members of 

the human ABCG family (see Figure 1, insert). The putative CRAC motifs identified in the 

sequence of human ABCG2 are also present in ABCG2 homologs. The 1st CRAC motif (aa 

407-418) is conserved amongst mammals (with the exception of rhesus monkey), but is absent 

in chicken, or lower species. The 2nd and 3rd potential CRAC motifs (aa 454-465 and 466-473, 

respectively) can be found even in various fish, e.g.  Atlantic salmon or Rainbow trout; the 4th 

and 5th putative CRAC motifs (aa 564-575 and 641-647, respectively) are conserved amongst 

vertebrates. 

 

3.2.  Expression and ATPase activity of ABCG2 CRAC mutants in Sf9 insect cells 

To analyze whether the putative CRAC motifs of ABCG2 influence cholesterol-sensing, 

we mutated the central tyrosines (Y413, 459, 469, 570 and 645) to Ser. The mutant proteins 

were expressed in Sf9 insect cells for functional measurements. All but one of the ABCG2 

mutants were successfully expressed in Sf9 insect cells. Mutation of Y459 to S prevented the 

expression of the protein, precluding this mutant from further analysis (Fig. 2A).  

Transport of substrates by ABCG2 is coupled to the hydrolysis of ATP. Measurement of 

the ATPase activity of the transporter is a well-established tool for the characterization of the 

activity of various mutant protein variants as well as for the screening of potential ABCG2-

interacting compounds [5]. In order to determine the functionality and the cholesterol 

dependence of the CRAC mutant ABCG2 proteins, we measured their ATP hydrolytic capacity 

in isolated Sf9 insect cell membranes. We found that mutation of Tyr to Ser at position 469 or 

645 resulted in the loss of ATP hydrolysis (even if the activity is corrected for the lower 

expression level of the Y469S mutant); while mutations in the other two positions apparently 

did not alter ABCG2 functionality, as both the Y413S and Y570S mutants showed a high level 

of ATPase activity, inhibited by a general ATPase inhibitor vanadate or the specific ABCG2 

inhibitor Ko143 (Fig. 2B).  
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In order to test if the inactivity of the Y469S and Y645S mutants was due to a specific loss 

of Tyr at this position, we also mutated these tyrosines to phenylalanines. We found that the 

Y469F and Y645F mutants were active (Fig. 2B), indicating the importance of the phenyl ring, 

but not of a hydroxyl group at these positions. 

 

3.3.  Effects of cholesterol on the ATPase activity of the CRAC mutants 

To test whether the CRAC tyrosine mutants are sensitive to the cholesterol content of the 

membranes, we characterized their ATPase activity in cholesterol-enriched insect cell 

membranes (Fig. 2C). The cholesterol content of the insect cell membranes is relatively low, as 

compared to mammalian cells (5-8 g cholesterol/mg membrane protein vs. 50 g 

cholesterol/mg membrane protein in insect and mammalian cells, respectively). Co-incubation 

with cholesterol-loaded cyclodextrin complexes was shown to be a reliable experimental tool 

to increase the cholesterol contents of Sf9 membranes by up to 10-fold [15]. Using this 

approach, we have shown that the ATPase activity, especially the activation of ATP hydrolysis 

by transported substrates, in the case of the wild-type ABCG2 is greatly enhanced when the Sf9 

membranes are enriched in cholesterol ( see [15] and Fig. 2C and Fig. 3A).  

We found that the basal ATPase activity of the Y469F, Y570S and Y645F mutants showed 

a moderate (approximately 20%, p<0.05) increase upon cholesterol addition, while the substrate 

stimulated ATP hydrolysis of the same mutants was significantly (50-100% increase, p<0.01) 

accelerated by cholesterol loading (Fig. 2C).  Therefore, these CRAC mutants behaved 

similarly to the wild-type ABCG2 protein. These results argue against a role of tyrosines 469, 

570 and 645 in cholesterol sensing, suggesting that the corresponding regions are not functional 

CRAC motifs.  

Conversely, we found that in the presence of cholesterol, the ATPase activity of ABCG2-

Y413S was distinct from that of the wild-type transporter. In the case of Y413S, cholesterol 

resulted in a major (50 +/- 8 %; p<0.01) enhancement of the basal ATP hydrolysis, which could 

be only slightly stimulated by the addition of prazosin or quercetin (Fig. 2B and C, and Fig. 

4B).  

Next, we investigated whether other compounds which are known substrates of wtABCG2 

also differently modify the Y413S-ATPase in the presence of cholesterol (Fig. 3). Again, 

cholesterol potentiated the drug-stimulated ATPase activity of the wild-type (Fig. 3A), as well 

as the 469F, the 570S and 645F mutants in the presence of several substrates (Supplementary 

Figure S1). In contrast, the Y413S mutant had a significantly altered ATPase modulation 

pattern. Quercetin showed a 30 +/- 6.5 %  stimulation (p<0.01), whereas doxorubicin, 
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flavopiridol, topotecan and SN-38 resulted in a concentration dependent inhibition (ranging 

from 26-70 %) of the ATPase activity of the protein (Fig. 3B, C, D and not shown).  

 For a detailed analysis of the effects of cholesterol loading, the basal and drug-

stimulated ATPase activities of the wild-type and Y413S ABCG2 mutants were compared at 

increasing membrane cholesterol concentrations. As shown in Fig. 4A, the baseline ATPase of 

Y413S is activated by lower cholesterol concentrations than that of the wild-type protein, with 

a lower apparent half-maximum cholesterol activation concentration (KA value of 0.37 +/- 0.27  

mM ) as compared to the apparent affinity of the wild-type protein (KA for cholesterol of 0.70 

+/- 0.09 mM). In contrast, in the case of the substrate-stimulated ATPase activities, wtABCG2 

showed higher sensitivity to cholesterol loading (Fig. 4B): in the presence of quercetin the 

calculated KA value for cholesterol activation of the wild-type protein was 0.22 +/- 0.20  mM, 

while, due to the low level of cholesterol activation a reliable KA for the Y413S protein could 

not be determined.  

 

3.4.  Altered bile acid sensitivity of the ABCG2-Y413S mutant  

The experiments described above showed that both the baseline ATPase activity and also 

the stimulation of the baseline ATP hydrolysis by various drugs of the Y413S mutant differ 

significantly from that of the wild-type protein when excess cholesterol is present. We have 

recently found that bile acids (steroids formed from cholesterol in the liver) significantly 

decrease the high basal ATPase activity of wtABCG2, while they do not interfere with the 

ABCG2-mediated ATP hydrolysis measured in the presence of substrates [16, 19]. This 

phenomenon results in a significant (up to 5-7 fold) increase in the relative, substrate stimulated 

ATP hydrolysis, depending on the type of bile acids.  In order to find out whether the active 

ABCG2 CRAC mutants have any alterations in their interactions with bile acids, we measured 

their ATPase activities in the presence of cholic acid, glycocholate and taurocholate.  

We found that the ATPase activities of the 570S, 469F, 645F and wild-type ABCG2 variants 

were similarly modified by bile acids (data not shown). In contrast, we found major differences 

in the effects of bile acids on the ATPase activity of the Y413S mutant. Though the addition of 

bile acids decreased the baseline ATPase activity of this ABCG2 mutant (Fig. 5A), bile acids 

also decreased ATP hydrolysis in the presence of substrates. Therefore the net result of bile 

acid effects was only a slight increase in the relative substrate stimulation of the Y413S mutant 

(Fig. 5B-D).  
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3.5.  Effects of cholesterol on the transport activity of the ABCG2 CRAC mutants in 

Sf9 membranes 

In addition to its effect on the ABCG2-ATPase activity, cholesterol has also been shown to 

significantly enhance the transport capacity of the protein – e.g. methotrexate transport by the 

wild-type ABCG2 was about 4-fold activated when the insect cell membrane vesicles were 

enriched in cholesterol [15]. To further analyze the consequence of the putative CRAC Tyr 

mutations on the cholesterol-sensing of ABCG2, we measured 3H-methotrexate transport both 

in control and cholesterol-loaded Sf9 membrane vesicles. As documented in Fig. 6, all the 

examined ABCG2 mutants, including Y413S, exhibited a methotrexate transport activity that, 

similarly to the wild-type transporter, was significantly (3-4 fold) enhanced by cholesterol 

loading of the membranes.  

 

3.6.  Expression and transport activity of ABCG2 CRAC mutants in HEK 293 cells – 

effect of cholesterol depletion  

According to the presented results the baseline ATPase activity of the ABCG2-Y413S 

mutant showed a sterol sensitivity that significantly differed from that of the wild-type, while 

in the vesicular transport measurement the effect of cholesterol on this mutant did not differ 

from that measured for wtABCG2. In order to further characterize the “cholesterol-

dependence” of the CRAC mutant ABCG2 proteins, we generated mammalian HEK 293 cells 

stably expressing the Y413S, Y469F, Y570S and Y645F mutants. Western blotting confirmed 

successful expression of these proteins (data not shown). Moreover, labeling with the anti-

ABCG2 5D3 antibody, which recognizes an extracellular epitope, indicated proper plasma 

membrane localization of these mutants (Supplementary Fig. S2).  

To characterize the effect of cholesterol on the ABCG2 transport function, we depleted the 

cholesterol content of the cells by co-incubation with cyclodextrin (RAMEB). This method 

decreases membrane cholesterol levels by about 25%, and was successfully used in earlier 

studies to define the effects of various cholesterol levels on ABCG2 function in mammalian 

cells [15, 33]. Previously we have demonstrated that mild cholesterol depletion of HEK 293 

cells resulted in a decreased transport function of wtABCG2, while did not alter the localization 

of ABCG2 or the viability of the cells [15].  

For measuring ABCG2 transport activity, intracellular accumulation of Hoechst 33342 was 

followed in control and cyclodextrin-treated HEK 293 cells, expressing the wild-type and the 

CRAC mutant ABCG2 variants. As shown in Fig. 7, all ABCG2 mutants, including Y413S, 
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were able to actively transport Hoechst 33342, and cholesterol depletion significantly decreased 

the Hoechst 33342 transport activity of all the CRAC mutants similarly to wild-type ABCG2.  

 

3.7. Putative CRAC mutants of ABCG2, including Y413S, effectively transport 

substrate drugs and protect HEK 293 cells against cytotoxic substrates 

The differential effects of the transported substrates on the wild-type and the Y413S 

ABCG2 ATPase activity may reflect different transport properties. Still, we did not find any 

alteration of the transport capacity or the cholesterol sensitivity of the Hoechst 33342 transport 

in the CRAC mutants.  

In order to further explore the relationship of altered drug-stimulated ATPase and transport 

activities, the transport of various fluorescent ABCG2 substrates was compared in HEK 293 

cells overexpressing wtABCG2 and the Y413S mutant, respectively.  No major difference was 

found in BODIPY-prazosin, Hoechst 33342, mitoxantrone and Pheophorbide A transport by 

any of the active mutants analyzed in this study (Table I). Interestingly, in spite of its different 

behavior in the ATPase assay, the Y413S mutant also did not differ significantly from the wild-

type protein, with respect to the transport of the above mentioned substrates.  

Among the cytotoxic drugs, the Y413S mutant ABCG2 protein (similarly to the wild-type) was 

able to transport doxorubicin (Fig. 8A) and provided protection against doxorubicin, SN-38, 

flavopiridol and topotecan, strongly indicating an active transport of these compounds by this 

mutant (Fig. 8B and Supplementary Fig. S3).  
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4. Discussion  

 Understanding the regulation of the expression and function of ABCG2 may have 

important implications with regard to the modulation the ADME-Tox parameters of drugs and 

xenobiotics, in anti-cancer therapies, as well as in the treatment of gout. Cholesterol has been 

shown to be an essential activator of ABCG2 function [14-16], although the exact nature of the 

interaction between cholesterol and the transporter has not yet been defined. Also, the molecular 

determinants of cholesterol sensing by ABCG2 remain largely unknown [19, 20]. Cholesterol 

recognition amino acid consensus sequence (CRAC) motifs have previously been confirmed to 

be involved in cholesterol sensing of various proteins [21-25, 34, 35]. Site directed mutagenesis 

studies targeting conserved CRAC amino acids identified a large variety of protein-specific 

phenotypes. In the case of the HIV gp41 protein, CRAC mutations resulted in reduced 

cholesterol binding [35]; mutant peripheral-type benzodiazepine receptor variants showed 

altered cholesterol transport [34], while in ion channels the channel function was retained but 

regulation by cholesterol was abolished [25, 36].  

Here, we aimed to determine whether the CRAC motifs identified in the ABCG2 sequence 

play any role in the sterol sensing of the human ABCG2 multidrug transporter. We found five 

putative CRAC sequences located in or near the transmembrane helices of ABCG2 (Fig. 1). 

Based on the previous CRAC mutagenesis studies described above, we expected that mutation 

of a functional CRAC motif would modify the effect of cholesterol on ABCG2 function. We 

have approached this question by using a number of specific methods. 

ABC transporters couple ATPase and transport activities to promote the transmembrane 

movement of their substrates. This complex enzymatic activity can be followed in several 

experimental systems. ABCG2 expressed in Sf9 membranes displays relatively high baseline 

ATPase activity that can be moderately stimulated by transported compounds. The low intrinsic 

cholesterol content of the insect cell membrane allows the systematic modulation of membrane 

cholesterol levels. Using this model system, we and others have shown that the substrate-

stimulated ATPase activity of ABCG2 is significantly accelerated by cholesterol [14, 15]. 

Cholesterol makes up to 20% of the total lipids in mammalian cell membranes. Partial 

cholesterol depletion can be achieved by using “empty” cyclodextrins, which has been shown 

to result in a decrease of ABCG2 transport activity [15, 33]. Using this repertoire of assays we 

aimed to determine the role of the identified five CRAC motifs in the cholesterol-sensitive 

functions of ABCG2. 
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 We found that tyrosines of putative CRAC motifs predicted to be located in or near to the 

intracellular surface of ABCG2 (Fig. 1) are essential for protein expression and/or function. Tyr 

to Ser mutations at positions 459, 469 and 645 resulted in the loss of protein function, and the 

Tyr 459 to Ser mutation resulted in a complete loss of ABCG2 expression (Fig. 2). Insect cells 

are cultured at 27oC which has been shown to allow the expression of improperly folded 

proteins [37]. The fact that the Y459S mutant could not be expressed properly in insect cells 

suggests that the tyrosine at this amino acid position is crucial for the proper folding and 

processing of the protein and therefore might be an important determinant of ABCG2 structure. 

Recently, the Y459C heterozygous mutation was reported to occur in patients with renal cancer 

[38]. Therefore further exploration of the effect of mutations to residue 459 in ABCG2 is 

warranted.  

The Y469S and Y645S mutants could be expressed in comparable amounts to the wild-type 

protein, however, they were found to be non-functional (Fig. 2). These results may be 

interpreted in two ways. First, these tyrosines may be important for proper function or, 

alternatively, these mutants may lose their cholesterol sensing capability. Interestingly, 

introduction of a phenyl residue at the same position was found to be compatible with normal 

ATPase and transport activity, as well as with cholesterol sensing, indicating that these regions 

are not functional CRAC motifs. Rather, Y469 and Y645, along with Y459, may be important 

for proper folding of ABCG2. Our experiments, in which we tested the conformation of the 

ABCG2 mutants by labeling them with the conformation sensitive anti-ABCG2 5D3 antibody, 

revealed that the Y469S and Y645S mutants have decreased 5D3 binding capacity 

(Supplementary Figure S4). Therefore the loss of the activity of the Y469S and Y645S mutants 

is most probably due to their improper conformation and not by their altered cholesterol 

sensing.  

Previously, the Y645F mutation has been found to be functional, although has shown 

slightly decreased Hoechst 33342 transport capacity [39]. Interestingly, we did not find any 

major alteration in the substrate recognition by this mutant. Even its Hoechst 33342 transport 

capacity did not differ significantly from that of the wild-type protein (Fig. 7).   

The other two tyrosines (Y413 and Y570) mutated in this study are located in or near the 

extracellular surface of the transmembrane domain. We found that changing these amino acids 

is well tolerable for ABCG2, resulting in fully active proteins. The Tyr 570 to Ser mutation did 

not alter protein expression either in Sf9 or in HEK 293 cells, and substrate recognition and 

cholesterol-sensing of this mutant was also similar to that of the wild-type transporter (Fig. 2 

and 6 and Supplementary Fig. S1). 
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However, the Y413S mutant exhibited a distinct ATPase activity. This mutant showed a 

greatly increased baseline ATPase in the presence of low levels of added cholesterol (Fig. 4A), 

revealing an increased cholesterol sensitivity, while no further activation of the ABCG2-413S 

ATPase could be achieved by administration of transported substrates regardless of the 

cholesterol content of the membrane. Moreover, potential substrates that are known to activate 

the wild-type ABCG2-ATPase, rather inhibited the ATPase activity of the Y413S mutant (Fig. 

3). In addition to this altered cholesterol-sensing, the ATPase activity of the Y413S mutant also 

had an altered bile acid sensitivity, as this mutant was less sensitive to bile acids than the wild-

type protein (Fig. 5).  

The nature of the relatively high baseline ATPase activity of the human ABCG2 transporter is 

still not clarified. One explanation is an intrinsic, partially uncoupled function of the protein, 

manifesting in a “futile” ATP hydrolysis, keeping this multidrug transporter alert for rapid 

export of potentially harmful compounds [40]. Another possibility is the presence of an 

endogenous transported substrate, potentially cholesterol, triggering ATP hydrolysis without 

the addition of exogenous compounds. In the case of the Y413S mutant, cholesterol may 

promote “uncoupling” of the ATP hydrolysis in the ABCG2 protein. Alternatively, if we 

consider the possibility that cholesterol is transported by ABCG2, the results could be explained 

by a higher affinity to cholesterol by the ABCG2-Y413S mutant, also observed in the case of 

the R482G mutant [15]. The cholesterol-dependent increase in the ATPase activity is similar to 

that observed for several transported substrates. If ABCG2 can transport cholesterol, our data 

can be interpreted to suggest that the Y413S mutant is a more efficient cholesterol transporter. 

Unfortunately, experimental verification of cholesterol transport is difficult due to the lack of 

dedicated assays measuring ABCG2-mediated cholesterol transport. Tarling et al. [41] 

measured cholesterol efflux to HDL in ABCG1 and ABCG2 overexpressing cells, and found 

that, in contrast to ABCG1, ABCG2 is not able to transport cholesterol to HDL. Since ABCG2-

mediated cholesterol transport has not been experimentally confirmed, we speculate that the 

“cholesterol-stimulated” ATPase activity of the ABCG2-Y413S mutant is a result of its 

differential sensitivity to the modulatory effect of cholesterol.  

In contrast to these findings related to the ABCG2-ATPase activity, we did not find any 

significant alteration in the cholesterol sensitivity of the ABCG2-Y413S mediated transport 

either in insect cell vesicular transport, or mammalian whole cell transport assays. Active 

substrate transport by the Y413S mutant was clearly activated by cholesterol in both systems, 

and by all the compounds examined (Fig. 6 and 7). Moreover, the Y413S mutant protected the 

cells against toxic drugs similarly to the wild-type ABCG2. All these experimental data suggest 
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that although the ABCG2-Y413S mutant has an altered cholesterol interaction, it is rather 

manifested in a partial uncoupling of the ATPase activity of the transporter in the absence of 

transported substrates.   

      5. Conclusions 

Our study is the first detailed analysis of potential CRAC motifs within an ABC protein, 

and here we provide experimental data for various functional consequences of the mutations in 

these motifs in ABCG2. Surprisingly, none of the functional mutants, containing putative 

CRAC motifs analyzed here abolished the cholesterol-sensitivity of the transporter, although 

mutation of Y413 significantly affected cholesterol and bile acid interactions. These data 

suggest that Tyr 413 within a putative CRAC motif is most probably part of a sterol-dependent 

regulatory region of ABCG2 and may regulate the coupling of ATPase to transport activity.  
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FIGURE LEGENDS 
 

Figure 1. Topology model of human ABCG2 indicating the positions of tyrosines mutated 

in this study and also showing sequence alignment of human ABCG proteins. Protein 

sequences of human ABCG proteins (ABCG2 AAG52982.1, ABCG1 P45844.3, ABCG4 

NP_001135977.1, ABCG5 AG40003.1, ABCG8 AAG40004.1) were aligned using Clustalw 

(https://www.ebi.ac.uk/Tools/msa/clustalw2/). Putative CRAC motifs are underlined; the 3 

conserved amino acids in CRAC motifs are labeled with bold letters. The 2D structure was 

drawn by using http://emboss.bioinformatics.nl/cgi-bin/emboss/topo based on the topology 

created by CCTOP (http://htp.enzim.hu/?_=/viewer/HTP_002649) [42, 43].  

 

Figure 2. Expression and ATPase activity of ABCG2 CRAC tyrosine mutants in Sf9 insect 

cells. Panel A: Expression of CRAC mutants in Sf9 membranes. Sf9 membranes expressing 

wtABCG2 and its Tyr mutants were subjected to Laemmli gel electrophoresis. ABCG2 was 

visualized by the BXP-21 antibody. Panel B-C: ATPase activity of ABCG2-CRAC mutants 

in Sf9 insect membranes. Vanadate-sensitive ATPase activity was measured in non-treated 

(labeled as control, Panel B) insect membranes or in membranes loaded with 2 mM cholesterol-

RAMEB (Panel C) during the membrane preparation (see 2.6.) in the absence of added 

compounds (baseline), or in the presence of 1 M quercetin, 100 M prazosin or 1 M Ko143. 

Bars show the average of at least two independent experiments, each with two parallels, +/- 

S.D. values. 

 

Figure 3. Effect of known wtABCG2 substrates on the ATPase activity of wtABCG2 and 

the Y413S mutant. Vanadate-sensitive ATPase activity was determined in 2 mM cholesterol-

RAMEB treated membranes in the absence of substrates (baseline) or in the presence of 5 

quercetin doxorubicin, 20  SN-38, 50 flavopiridol or topotecan 

(Panels A and B). ATPase activity was also determined in the presence of increasing 

concentrations of doxorubicin or topotecan (Panels C and D). Figure shows the result of three 

independent experiments, +/- S.D. values. 

 

Figure 4. Effect of cholesterol on the wtABCG2 and Y413S-ATPase. Vanadate-sensitive 

ATPase activity was determined as described in 2.9. Control membranes were co-incubated 

with 0.25-2 mM cholesterol-RAMEB to achieve various membrane cholesterol levels. ATPase 

activity was measured in the absence of added substrates (Panel A) or in the presence of 5 M 
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quercetin (Panel B). The average of four independent experiments +/- S.D. values are shown. 

*: Student’s t-test, significant difference, p < 0.05. 

 

Figure 5: Effect of bile acids on the wtABCG2 and Y413S-ATPase. ATPase activity was 

determined in Sf9 membrane vesicles loaded with 2 mM cholesterol-RAMEB. Panel A: 

Vanadate-sensitive basal (no added substrate) or 1 M quercetin-stimulated ATPase activity in 

the absence or presence of 1 mM glycocholate (GC), 1 mM cholic acid (CA) or taurocholate 

(TC). Panel B: Relative ATPase activity in the presence of 1 M quercetin compared to the 

baseline is shown against increasing bile acid concentrations. Experiments were performed in 

quadruplicates, average +/- S.D. values are shown. 

 

Figure 6. Transport of 3H-methotrexate into control and cholesterol-loaded inside-out Sf9 

insect membrane vesicles. Intravesicular accumulation of 50 M 3H-methotrexate in Sf9 

membrane vesicles with different ABCG2 mutants containing 90 g of total membrane protein 

was measured at 37oC for 10 minutes in the presence or absence of 1 M Ko143. For the 

investigation of the effect of cholesterol, the membranes were loaded with 2 mM cholesterol-

RAMEB. Control represents non-loaded membranes. Bars represent average Ko143-dependent 

transport obtained in two independent experiments, each with two parallels  +/- S.D. values. 

 

Figure 7. Hoechst 33342 transport in ABCG2-expressing HEK 293 cells - effect of 

cholesterol depletion.  HEK 293 cells stably expressing wtABCG2 and its mutants were 

incubated with 2 M Hoechst 33342 for 20 minutes at 37oC with or without 1 M Ko143. After 

washing, cellular fluorescence of Hoechst 33342 was determined by flow cytometry. 

Cholesterol depletion was achieved by co-incubation of the membranes with empty 

cyclodextrin (see 2.12.); control values show results obtained with non-treated cells. Transport 

factor in living (propidium-iodide negative) cells was calculated as described in 2.11. 

Experiments were performed in quadruplicates; bars show the average of at least three 

independent measurements +/- S.D. values. 

 

Figure 8. Panel A: Doxorubicin efflux from HEK 293 cells. Doxorubicin (5 ) efflux was 

measured as described in 2.13.  Fluorescence of the cells was monitored by flow cytometry. 

Experiments were performed in duplicates. Figure shows representative graphs. Panel B. 

Cytotoxicy of ABCG2 substrates in HEK 293 cells. HEK 293 parental cells or stably 



CRAC motifs in ABCG2 

 22

expressing wtABCG2 or its Y413S mutant were incubated with 50 nM SN-38, 50 nM topotecan 

(TOP), 60 nM doxorubicin (DOX) or 500 nM flavopiridol (FLP) for 72 hours. Cell viability 

was determined by PrestoBlue staining. 100% represents cells incubated at the same conditions 

in the absence of any drugs. Bars show the average of four independent experiments with 

quadruplicates each, +/- S.D. values. 
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