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Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This
behavior may have a biological importance but can also be exploited by using microfabricated structures to
manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria s,
however, still an open question. By studying the swimming motion of Escherichia coli cells near
microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of
sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a
simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise
relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment.
Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main
mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell

adhesion, and thus biofilm formation, using convex features of appropriate curvature.
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Self-propelled bacteria living in aqueous media have
constant, vivid interactions with their local environment,
which may dramatically alter their swimming behavior
[1-8]. Often, bacterial habitats are physically confined
by solid boundaries. Physical interactions with these
solid surfaces give rise to a rich variety of dynamical
phenomena like steering or rectification of swimming
direction [9] and the propulsion of microfabricated struc-
tures [10]. Understanding the physical mechanisms behind
cell-surface interactions is of crucial importance to design
structures that could fully exploit those effects for micro-
fluidic applications. On the other hand, a quantitative
understanding of wall entrapment and subsequent adhesion
would allow us to design surfaces that hinder unwanted
biological processes like biofilm formation. Surface colo-
nization by biofilm-forming bacteria is initiated by cell
contact and adhesion to the surface [11-13]. The sub-
sequent biofilm growth can cause highly resistant bacterial
infections on medical implants and catheters or impaired
industrial equipment [14—19].

Using a tracking microscope, Frymier et al. observed
that bacteria display a marked tendency to swim adjacent to
wall surfaces [20]. At the beginning, this behavior was
attributed to an attractive interaction potential between the
cell body and the solid surface. It was later proposed,
however, that, while DLVO forces could be responsible
for irreversible adhesion, wall entrapment during swim-
ming may have a purely hydrodynamic origin [21,22].
Hydrodynamic effects can indeed give rise to wall entrap-
ment via two distinct mechanisms. The first one is via far-
field, dipolar flows that, once reflected by a flat wall, give
rise to reorientation parallel to the wall surface as well as an
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attraction by the wall [23]. The second mechanism involves
hydrodynamic torques that arise in anisotropic bodies
swimming in close contact with the wall and leading to
swimming at a finite angle with the wall surface [22]. More
recently, the role of hydrodynamic interactions has been
questioned [24,25], suggesting that steric repulsion and
rotational Brownian motion are enough to reproduce the
observed accumulation of bacteria in the proximity of solid
walls. Despite the extensive theoretical and numerous
experimental works on the hydrodynamics of bacterial
swimming, a straightforward, unambiguous, and direct
identification of a main mechanism responsible for wall
entrapment is still lacking. In a way, all these models
capture different aspects of the problem and are all capable
of justifying the accumulation effects observed over flat
walls. While concave confining walls will tend to stabilize
trapping [26], what happens if the wall is convex? Will all
proposed mechanisms for wall entrapment still give the
correct answer when the walls are curved? Can we break
entrapment at some critical curvature radius and inhibit cell
adhesion by using only geometry?

In this Letter, we study bacterial entrapment by micro-
fabricated convex surfaces. The trajectories of swimming
bacteria display a marked tendency to follow the wall
curvature, although entrapment by convex walls is pro-
gressively reduced below a characteristic radius. Our results
demonstrate that the main mechanism for wall entrapment
is hydrodynamic in nature and involves a finite swimming
angle that keeps the cell in close contact with bounding
surfaces. If the surface is convex, the swimming angle
is progressively reduced for increasing surface curvature
up to a critical curvature radius where entrapment becomes

© 2015 American Physical Society
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unstable. As a direct consequence of that, we show that cell
colonization of solid walls can be strongly inhibited by
choosing convex surfaces with a curvature radius below a
characteristic size.

The polydimethylsiloxane (PDMS) microfluidic devices
were fabricated by using soft lithography techniques
[27,28]. (See Supplemental Material [29] for a more
detailed materials and methods.) Each device was attached
to a glass coverslip by oxygen plasma treatment. The
microfluidic chips contained 75 pm high straight walls and
pillars with circular bases of different radii (20-350 pum).
The devices were filled with a suspension of smooth
swimming E. coli cells of the HCB437 strain [30] carrying
the pMPMA2-GFPmut2 plasmid [31]. Bacteria were
imaged at 10 frames per second by an epifluorescence
microscope equipped with 10x and 40x objectives and an
EM-CCD camera. Bacterial trajectories were considered to
be tracing the solid surface of the walls and pillars if the
tracing time was longer than 30 frames (3 s) [32], and the
cells remained in the 3.5 ym vicinity of the surface.

We tracked and analyzed 1124 bacterial trajectories
along the walls and the perimeter of the pillars in micro-
chambers (Fig. 1; see Supplemental Material [29] for an
additional image of the microfluidic chip). Most of these
cells indeed followed the curvature of the pillars, indicating
the presence of a hydrodynamic trapping mechanism acting
on the swimming cells [Fig. 2(a)]. It is known that bacteria
tend to swim in clockwise circles over a solid flat wall
[33-37]. In order to exclude interaction with the bottom
surface as the source of the observed curved trajectories, we
included in the statistical analysis only those bacteria that
circulate around the pillars in an anticlockwise direction.
We found that more than 90% of the cells colliding to a
planar wall swam along its surface. At pillars with radii
larger than 50 um, 60%-90% of the cells swam around.
Below 50 ym radius, the tracing cell fraction seems to
decrease with the decreasing pillar radius. However, the
trapping effect was able to keep some bacteria near the wall

FIG. 1 (color online). (a) A scanning electron micrograph of the
PDMS-based microdevice containing several micropillars. The
height of the posts is 75 um. The scale bar is 250 ym. (b) A
montage of fluorescence microscopy images of a bacterial cell
following the curved surface of a micropillar. The time between
each position of the cell shown is 2.5 s. The arrow indicates the
swimming direction of the cell. The perimeter of the pillar is
indicated by a solid red line. The scale bar is 100 ym.

even in the case of the smallest radius of curvature (20 ym).
The existence of a characteristic pillar radius below which
the trapping probability decreases can be explained by
using a simple hydrodynamic model. We model a swimmer
as the combination of a spherical cell body and a helical
flagellar bundle that are rigidly connected as shown in
Fig. 3. We neglect hydrodynamic interactions between the
cell body and flagellar bundle. Since our main focus here is
on hydrodynamic entrapment to the wall, we constrain cell
motions on the x, y plane and neglect z motions that arise
from axial rotations of both the cell body and flagellar
bundle. When the cell body “hits” a wall, a normal reaction
force develops that constrains body motions to the x
direction. From the linearity of Stokes equation, the viscous
torque acting on the cell body will be linearly connected to
the instantaneous values of rotational and translational
velocities. Having restricted the motion of the cell on
the x, y plane and as long as the cell moves in contact with
the wall, we are left with only two velocity components: the
x component of linear speed U and the z component of
angular speed Q. Calling 7 the z component of the viscous
torque acting on the cell body, we can write
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FIG. 2. (a) The measured ratio of the cells that followed the wall
of a pillar after collision (open circles) and the model prediction
for the fraction of trapped cells (solid line). The dashed line
represents the value for flat walls. The gray shaded area extends
for one standard deviation above and below the predicted result.
(b) The average tracing speed of bacteria near pillars. The dashed
line represents the average speed in bulk. (c) The measured
average residence time of bacteria for each pillar (open circles)
and the model prediction (solid line). The error bars indicate
standard errors.
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FIG. 3 (color online). A schematic illustration and notation for
the hydrodynamic model proposed in the text.

Tb = —C"'Q - B'U. (1)

The first term —C?Q represents the viscous drag that
would act on the cell body if purely rotating. The value of
C" is affected by the presence of the wall, and it would be
nonzero even in the bulk. The coupling term —B’U
represents the viscous torque acting on the cell body when
purely translating. The value of B? is zero in the bulk and
becomes positive nearby a wall due to the higher shear rates
in the gap region. The resistance coefficients C” and B®
depend on the origin we choose for torque evaluation. Here
and in the following, we set the origin in the cell body
center O and choose the signs so that all resistance
coefficients are positive. Similarly, the torque on the
flagellar bundle will display, in addition to a rotational
drag proportional to €, a coupling term connected to the
linear speed U:

T/ = -C'Q+ B/U. (2)

The coupling term is now positive and arises from the
displacement of the bundle center of resistance from the
origin O:

B/ = Ly, sin#, (3)

where y, is the drag coefficient determining the viscous
resistance encountered by the flagellar bundle when trans-
lating in a direction perpendicular to its axis. The only
external force is represented by the reaction force from the
wall. The normal component of that force will not produce
any torque about our origin O. We cannot exclude, in
principle, the presence of a tangential friction component,
but it will just add up to the hydrodynamic component B”.
The overall system is therefore torque-free so that we can
add Eqgs. (1) and (2) and solve for Q:

_ B'—B” Ly sing-B"
ST vy

4)

The swimming angle 6 has a stable equilibrium value 6,
for which 0 = -Q = O:

Bb
sinf, = —, (5)
Ly,

where the subscript oo indicates that we are here consid-
ering the case of flat wall or, in other words, an infinite
pillar radius R. Pillar radii are always enough larger than
the cell size so that we can assume that all hydrodynamic
resistance matrices are negligibly affected by the small wall
curvature. In that situation, we can take into account the
finite curvature of the pillar by moving to a reference frame
that rotates around the pillar axis with an angular speed
given by —U/R. In this new reference frame, the time
derivative of @ will be given by

9:—9——:
R

. U B’ — Ly, sinf 1 U
ct+ ¢/ R

(6)

The stable value for € now decreases as the pillar radius
becomes smaller:

ct+ ¢/
sin O = sinf, — L (7)
LR]/l

There exists a critical value R* for the pillar radius below
which there is no positive stable value for 8; 6 will still be
negative even when 6 = 0, so that the cell will eventually
swim away from the surface (Fig. 3):

ct+cf
R= 1= (8)

Ly, sinfy’

A first estimate of the critical radius can be obtained by
noting that C/ > C’ and that C/ =¢%y,/3 [35].
Substituting into (8), we obtain

£? 2 7

T 3Lsinf, 3sinf’

©)

where, in the last passage, we used the fact that the cell
length 2L is mostly given by the length of the flagellar
bundle 7. As shown in (5), the actual value of 8, depends
on B”, a quantity that is expected to be very sensitive on the
actual value of the gap between the cell and the wall.

If we neglect wall effects on the cell body and set B” to
zero as in Ref. [24], we would predict a vanishing
swimming angle 6, with cells swimming parallel to flat
walls. A vanishing 6, would also lead to a diverging
critical radius for trapping and fail to predict stable trapping
around curved surfaces. Rather than entering into the
difficulties of theoretically predicting B?, we prefer to
obtain ., from experimental observations and check the
theory by directly verifying relation (9). To this aim, we
used video microscopy with higher magnification to
determine the cell orientation during swimming near flat
obstacles. A total of 58 individual cells were tracked. As
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expected, we found that the cells swim with a finite
average swimming angle to the surface plane (Fig. 4;
see Supplemental Material [29] for images of a bacterium
near a convex surface). The observed average value for 6
is 5°, which for a typical bundle length of 7.5 um gives
R* =57 ym. The distribution of average 6, is actually
very broad and is reported in Fig. 4(b). The observation that
most of the cells are trapped by pillars of radii larger than
150 um [Fig. 2(a)] is consistent with a 6, distribution
dropping quickly below 2° (corresponding R* ~ 140 yum).
Using the distribution in Fig. 4(b), we can predict the
fraction of trapped cells for pillars of radius R as the
fraction of 0, angles whose corresponding values of R* is
lower than R. The results are shown as a solid line in
Fig. 2(a), where we have just rescaled predicted fractions to
give the correct limit for infinite radius of curvature.
Equations (9) and (5) also show that the critical radius
for trapping does not depend on the swimming speed as
expected from a purely hydrodynamic treatment.
Therefore, pillars do not preferentially trap bacteria based
on their speed. However, even in a purely hydrodynamic
framework, the swimming speed can be affected by a
nearby wall [38], and a weak dependence of speed on wall
curvature cannot be excluded. This picture is consistent
with our data in Fig. 2(b), where the average swimming
speed for trapped cells is plotted as a function of the pillar
radius. The measured speeds seem to be quite constantly
lower than the average bulk speed (24 &4 um/s) with
possible deviations for radii smaller than 100 ym. So far,
we have considered a very idealized situation where each
cell is characterized by a well-defined 6, whose value
decides whether a cell escapes from a pillar or is trapped
around it forever. However, the actual value of the swim-
ming angle at a confining wall displays large fluctuations
with time due to Brownian motion and mostly to cell
wobbling. Therefore, even when the average value of 6y is
positive, fluctuations can occur, leading to a negative
swimming angle and the consequent escape from the pillar.
In this situation, trapped states are expected to show a finite
lifetime. The measured average lifetimes of trapped states

number of cells

0 2 4 6 8
swimming angle (deg)

10 12 14 16 18 20

FIG. 4 (color online). A histogram of the average angles of
orientation of individual cells with respect to the solid wall
(n = 58). The inset shows a montage of frames with a swimming
bacterium near a planar solid wall. The red line shows the surface
of the wall. The scale bar is 5 ym.

are reported in Fig. 2(c) as a function of the pillar radius.
We found that bacteria tend to spend more time swimming
around pillars with larger radii. This observation can be
accounted for by noting that the larger 6y, the larger and
more unlikely the fluctuation that is needed to escape from
the pillar. Assuming the simple linear relation 7 = afg, we
can predict the average residence time (z) around each pillar
from (7) based on the values of 0, in Fig. 4(b). The solid
line in Fig. 2(c) shows the predicted average lifetimes
corresponding to the best fit value for the phenomenologi-
cal parameter a. It has been shown recently that artificial
microswimmers can be captured into sphere-bound orbits
by colloidal particles of fixed size [39]. The existence of a
critical size for trapping of dipolar swimmers around
spherical colloids was recently theoretically predicted by
using far-field hydrodynamics [38]. In contrast to what we
find here, however, trapped swimmers are found to swim
with their axis pointing away from the surface (negative 6
with our sign convention) by an angle that goes to zero in
the limit of a flat wall. This discrepancy is probably due to
the neglected near-field contributions that, in the case of
bacterialike swimmers, tend to reorient the cell in a
direction that points into the surface [40].

The observed wall entrapment may have biological
importance. The first step of biofilm formation is the
sticking of planktonic (swimming or floating) cells to
surfaces [11]. This initial process may be greatly affected
by hydrodynamic effects arising when a cell moves near a
surface. In order to investigate the effect of curvature on cell
adhesion, we incubated our device with a bacterial culture
inside for 18-24 h. During this, the cells reproduced within
the microfluidic channel. We flushed the planktonic cells
out of the device and imaged the pillars with the adhered
cells [Fig. 5(a)]. In order to quantify the level of cell
adhesion, we calculated the average fluorescence intensity
per pixel around the perimeter of each pillar [Fig. 5(b)]. A
larger bacterial concentration was found around pillars with
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FIG. 5. (a) A representative fluorescence microscopy image
showing the bacterial cells adhered to the surface of the
micropillars. The scale bar is 200 ym. (b) The fluorescence pixel
intensity over a unit area in the vicinity (3 ym) of pillars and
next to a planar wall. The dashed line represents the value for flat
walls.
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larger radii. This suggests that cells are more likely to attach
to more flat surfaces as they spend a longer time around
their walls. Bacterial concentration around a pillar shows a
dependence on the radius that is very similar to what was
previously described for the fraction of trapped cells
(Fig. 2).

We studied the swimming motion of E. coli cells near
convex surfaces to elucidate the main mechanisms behind
wall entrapment. We showed that cells orient at an angle so
that they swim against the surface while moving along it.
As a result, swimming cells can also be trapped by round
pillars and follow the convex curvature of the pillar surface.
However, we found that this tendency is markedly reduced
below a critical radius of curvature of about 50 ym. These
observations are quantitatively reproduced by a simple
hydrodynamic model that connects the critical radius for
entrapment to the swimming angle over flat walls. Finally,
we showed that surface curvatures can strongly affect
bacterial colonization in growing cultures, suggesting that
a suitable surface geometry may inhibit biofilm formation.
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