
PRESERVING PROBLEMS OF GEODESIC-AFFINE MAPS AND

RELATED TOPICS ON POSITIVE DEFINITE MATRICES
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Abstract. Based on affine maps in geometry, we study the geodesic-affine maps on Rie-

mannian manifolds Pn of complex positive definite matrices that are induced by different

so-called kernel functions. In this article, we are going to describe the structure of all contin-

uous bijective geodesic-affine maps on these manifolds. We also prove that geodesic distance

isometries are geodesic-affine maps. Moreover, the forms of all bijective maps which pre-

serve norms of geodesic correspondence are characterized. Indeed, these maps are special

examples of geodesic-affine maps.
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1. Introduction

Let Pn be the set of all n × n complex positive definite matrices. An affine map φ on Pn
is a map satisfying that

φ((1− t)A+ tB) = (1− t)φ(A) + tφ(B), t ∈ [0, 1], A,B ∈ Pn.

Namely, φ maps the segment joining A,B onto segment joining φ(A), φ(B). It is known that

the set Pn can be equipped with certain Riemannian structures via different Riemannian

metrics and the geodesics in these manifolds play the same role as segments. Therefore we

can define the geodesic-affine map φ as a map sending the points of geodesic γA,B(t) joining

A,B into geodesic γφ(A),φ(B)(t) joining φ(A), φ(B), i.e.

φ(γA,B(t)) = γφ(A),φ(B)(t), t ∈ [0, 1], A,B ∈ Pn.

In addition, we say that φ preserves norms of geodesic correspondence if

‖γA,B(t)‖ = ‖γφ(A),φ(B)(t)‖, t ∈ [0, 1], A,B ∈ Pn.

In this paper, we will study the geodesic-affine maps in Pn. The paper is organized as

follows. In the present section we introduce the necessary notion and notation which will be
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used throughout the paper. In Section 2, we characterize the structural results of the geodesic-

affine maps on these Riemannian manifolds. Section 3 is concerned with the relationship

between geodesic-affine maps and geodesic distance isometries. We will show that every

geodesic distance isometry is a geodesic-affine map, and the converse is not always true. In

Section 4, the forms of maps which preserve the norm of all points of geodesics in Riemannian

manifolds corresponding to different kinds of kernel functions will be studied. We will show

that these maps are also geodesic distance isometries, and hence are geodesic-affine maps.

Throughout this paper we denote by Mn the set of all n×n complex matrices and Hn the

set of all n × n Hermitian matrices. The elements of Pn form an open subset of Hn and it

can be equipped with a Riemannian structure such that the tangent space at any foot point

D ∈ Pn is identified with Hn. A Riemannian metric KD : Hn×Hn → [0,∞) is a family of inner

products on Hn depending smoothly on the foot point D. If ϕ : (0,∞) × (0,∞) → (0,∞)

is a so-called kernel function, i.e. it is a symmetric function (ϕ(x, y) = ϕ(y, x), for every

x, y ∈ (0,∞)), and is smooth in its both variables, and D has the spectral decomposition
n∑
i=1

λiPi, then a Riemannian metric can be defined by

Kϕ
D(H,K) :=

n∑
i,j=1

ϕ(λi, λj)
−1 trPiHPjK, D ∈ Pn, H,K ∈ Hn, (1.1)

where tr is the usual trace functional on matrices and the Hermitian matrices H,K are

tangent vectors. We denote by (Pn,Kϕ) the Riemannian manifold induced by Riemannian

metric Kϕ
D(H,K).

These Riemannian metrics are induced by different kernel functions and the corresponding

Riemannian manifolds have been studied by many mathematicians. Among others in [5, 6,

16, 18], the authors determined the geodesic curves and geodesic distances between any pairs

of positive definite matrices in Riemannian manifolds. Suppose that ρ : [0, 1] → Pn is a

continuously differentiable curve (or more generally, a continuous and piecewise continuously

differentiable curve). Then the length of ρ with respect to the metric Kϕ is given by

Lϕ(ρ) :=

∫ 1

0

√
Kϕ
ρ(t)(ρ

′(t), ρ′(t)) dt. (1.2)

It is known, that the length Lϕ(ρ) is independent of the choice of the parametrization of ρ.

The geodesic distance δϕ(A,B) between A,B ∈ Pn with respect to the metric Kϕ is defined

by

δϕ(A,B) = inf{Lϕ(ρ)| ρ is a continuously differentiable path from A to B}.
A geodesic (shortest) curve between A,B ∈ Pn is a continuously differentiable curve γ from

A to B such that Lϕ(γ) = δϕ(A,B), and it will be denoted by γϕA,B(t) in this article.

In this article, the geodesic curves in certain Riemannian manifolds Pn will be studied.

More precisely, we will consider several parametrized families of kernel functions and the

geodesic curves in the corresponding Riemannian manifolds.
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The first parametrized family of kernel functions is defined by

hα(x, y) =

(
α
x− y
xα − yα

)2

, with α 6= 0. (1.3)

In [5] Petz and Hiai proved that there exists a unique geodesic curve from A to B in the

Riemannian structure that are induced by kernel function hα and it is given by

γhαA,B(t) =
(
(1− t)Aα + tBα

) 1
α , 0 ≤ t ≤ 1,

and the geodesic distance between A and B is

δhα(A,B) =
1

|α|
‖Aα −Bα‖HS.

The trivial choice α = 1 gives the most general kernel function h1(x, y) ≡ 1. It leads to a

flat space where the Riemannian metric is the Hilbert-Schmidt inner product Kϕ(H,K) =

〈H,K〉HS on Hn. We recall that the Hilbert-Schmidt inner product 〈., .〉HS : Mn×Mn → C is

defined by 〈A,B〉HS = trA∗B for all A,B ∈ Mn and the Hilbert-Schmidt norm is ‖A‖HS =

(trA∗A)
1
2 . In the corresponding manifold the geodesic curve joining A,B ∈ Pn, is just the

segment from A to B, i.e.

γh1A,B(t) = (1− t)A+ tB, 0 ≤ t ≤ 1.

For the second parametrized family, let κ be a positive number and gκ be the kernel function

defined by

gκ(x, y) =

(
κ(xy)

κ
2
x− y
xκ − yκ

)2

. (1.4)

In [5], Theorem 3.3 states that for every A,B ∈ Pn there exists a unique geodesic from A to

B and it can be given by

γgκA,B(t) = (Aκ#tB
κ)

1
κ := (A

κ
2 (A−

κ
2BκA−

κ
2 )tA

κ
2 )

1
κ , 0 ≤ t ≤ 1.

The geodesic distance between A,B is

δgκ(A,B) = ‖ log(A−
κ
2BκA−

κ
2 )

1
κ ‖HS.

If we choose κ = 1 in (1.4), then we get the kernel function g1(x, y) = xy. It leads to the so-

called Fisher-Rao metric which is defined by Kϕ
D(H,K) = trD−1HD−1K. We note, that this

metric plays a significant role in the recent development of the geometric mean of matrices.

By [3, 10, 12] it is known that the geodesic in this Riemannian manifold between A,B ∈ Pn
is given by

γg1A,B(t) = A#tB := A
1
2 (A−

1
2BA−

1
2 )tA

1
2 , 0 ≤ t ≤ 1;

and the geodesic distance between A and B is

δg1(A,B) = ‖ log(A−
1
2BA−

1
2 )‖HS.

The midpoint of the geodesic between A and B is just the geometric mean of matrices A and

B, which is defined by

A#B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 .
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Moreover, if α tends to 0 in (1.3) or κ tends to 0 in (1.4), then we get the kernel function

defined by ϕ(x, y) =

(
x− y

log x− log y

)2

. The Riemannian manifold induced by this kernel

function will be denoted by (Pn,K l). In [5], the authors have shown that the geodesic joining

A,B ∈ Pn is given by

γlA,B(t) = e(1−t) logA+t logB, 0 ≤ t ≤ 1,

and the geodesic distance between A,B ∈ Pn is

δ l(A,B) = ‖ logA− logB‖HS.

2. Structure of Geodesic-affine maps on (Pn,Kϕ)

In this section, we determine the structure of all geodesic-affine maps on (Pn,Khα) and

(Pn,Kgκ).

Theorem 2.1. Let n ≥ 3. Suppose that φ : Pn → Pn is a continuous bijective map on

(Pn,Kg1). Then the following statements are equivalent:

(1) φ is a geodesic-affine map, i.e. φ(A#tB) = φ(A)#tφ(B) for all t ∈ [0, 1];

(2) φ preserves the geometric mean of A and B, i.e. φ(A#B) = φ(A)#φ(B);

(3) There is an invertible matrix S in Mn such that φ is of one of the forms

φ(A) = (detA)cSAS∗, φ(A) = (detA)cSATS∗ (2.1)

or of the forms

φ(A) = (detA)cSA−1S∗, φ(A) = (detA)cS(A−1)TS∗, (2.2)

where c is a real number for which c 6= − 1
n in (2.1) and c 6= 1

n in (2.2). Here AT

denotes the transpose of A.

Proof. Since (1) ⇒ (2) is trivial and (3) ⇒ (1) is a well-known result (see e.g. Chapter 4 in

[2]), it is enough to verify that (2) ⇒ (3) holds. Consider the continuous map ψ : Pn → Pn
defined by

ψ(A) = φ(I)−
1
2φ(A)φ(I)−

1
2 .

Using a similar argument as in [13], we can obtain that ψ is a so-called Jordan triple

automorphism on Pn. Using Molnár’s structural result appearing in [15, Corollary 2] and

noting that ψ(A) = φ(I)−
1
2φ(A)φ(I)−

1
2 , we deduce that φ is of one of the forms in (2.1) or

(2.2). �

Corollary 2.2. Let n ≥ 3 and φ : Pn → Pn be a continuous bijective map on (Pn,Kgκ).

Then φ is a geodesic-affine map if and only if there is an invertible matrix S ∈Mn such that

for all A ∈ Pn, φ is of one of the forms

φ(A) = (detA)c(SAκS∗)
1
κ , φ(A) = (detA)c(S(AT )κS∗)

1
κ (2.3)
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or of the forms

φ(A) = (detA)c(SA−κS∗)
1
κ , φ(A) = (detA)c(S(AT )−κS∗)

1
κ . (2.4)

Here c is a real number for which c 6= − 1
n in (2.3) and c 6= 1

n in (2.4).

Proof. Let ψ : Pn → Pn be a bijective map defined by

ψ(A) = φ(A
1
κ )κ, A ∈ Pn.

One can see that

ψ(A#tB) = ψ(A)#tψ(B), t ∈ [0, 1], A,B ∈ Pn.

The rest of the proof is easy to obtain from the previous Theorem 2.1. �

Remark 2.3. We note that the continuity assumption in Theorem 2.1 cannot be omitted.

Indeed, let f : (0,∞)→ (0,∞) be a multiplicative, non-continuous function and φ : Pn → Pn
be defined by

φ(A) = f(detA)SAS∗.

One can check easily that φ preserves the geometric mean of any two points A,B ∈ Pn, but

it is not of the forms appearing in (2.1) or in (2.2).

Theorem 2.4. Suppose that φ : Pn → Pn is a geodesic-affine map on (Pn,K l), i.e.

φ
(
e(1−t) logA+t logB

)
= e(1−t) log φ(A)+t log φ(B), (2.5)

if and only if there exist real numbers δ1, . . . , δk, n×n matrices M1, . . . ,Mk and a Hermitian

matrix N such that

φ(A) = e
∑k
i=1 δiMi(logA)Mi

∗+N , A ∈ Pn. (2.6)

Proof. It is easy to verify that a map φ which is of the form (2.6) satisfies equation (2.5) for

all t ∈ [0, 1].

On the other hand, we can define ψ : Hn → Hn by ψ(T ) = log φ(eT ) for T ∈ Hn, then

φ(A) = eψ(logA) for A ∈ Pn. From equation (2.5), we have

ψ((1− t) logA+ t logB) = (1− t)ψ(logA) + tψ(logB)

for all A,B ∈ Pn.

Putting Q1 = logA and Q2 = logB, we have

ψ((1− t)Q1 + tQ2) = (1− t)ψ(Q1) + tψ(Q2)

for all Q1, Q2 ∈ Hn. Hence ψ is an affine map from Hn to Hn. From [7, Theorem 2] we know

that, the linear map which maps Hermitian matrices into Hermitian matrices has the form
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k∑
i=1

δiMiTMi
∗ for all T ∈ Hn, where δ1, . . . , δk are real numbers and M1, . . . ,Mk are n × n

matrices. Therefore,

ψ(T ) =
k∑
i=1

δiMiTMi
∗ +N,

where N := ψ(O) is a Hermitian matrix. Hence for any A ∈ Pn, φ(A) has the form

φ(A) = eψ(logA) = e
∑k
i=1 δiMi(logA)Mi

∗+N ,

for some real numbers δ1, . . . , δk, n× n matrices M1, . . . ,Mk and a Hermitian matrix N . �

Remark 2.5. It is easy to see that if we set N = O, M = U for some unitary matrix U

and δ = 1 or − 1 in the above equation (2.6), then φ(A) = UAU∗ or φ(A) = UA−1U∗ are

the special cases of (2.6). Here O is the zero matrix. Furthermore, set N = O, M = I and

δ = α 6= 0, we can see that φ(A) = Aα is a geodesic-affine map. But in general, equation

(2.6) cannot be reduced to a single congruence.

Remark 2.6. Suppose that φ : Pn → Pn is a geodesic-affine map on (Pn,Khα). That is to

say,

φ
(

((1− t)Aα + tBα)
1
α

)
= ((1− t)φ(A)α + tφ(B)α)

1
α , (2.7)

for all t ∈ [0, 1] and A,B ∈ Pn. Then we can define ψ : Pn → Pn by ψ(A) = φ
(
A

1
α

)α
for all

A ∈ Pn. Since A 7→ A
1
α is a bijective transformation, it is clear that ψ satisfies the following

ψ((1− t)A+ tB) = (1− t)ψ(A) + tψ(B), A,B ∈ Pn. (2.8)

As we know, there are many nonstandard affine maps of the form (2.8) on Pn if the metric

is flat. However, the structures of geodesic-affine maps on these Riemannian manifolds are

unknown. One can easily check that,

ψ(A) =
k∑
i=1

SiAS
∗
i , or ψ(A) =

k∑
i=1

SiA
TS∗i

with invertible matrices S1, . . . , Sk are special forms of affine maps on (Pn,Kh1).

3. Geodesic distance isometries and geodesic-affine maps

The famous Mazur-Ulam theorem states that every surjective isometry between two normed

linear spaces is necessarily affine. In this section, we can see that the geodesic distance isome-

tries are geodesic-affine maps. However, geodesic-affine maps are not necessarily isometric

with respect to geodesic distance.

Theorem 3.1. Let φ : Pn → Pn be a surjective geodesic distance isometry in (Pn,Khα), then

φ is a geodesic-affine map.
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Proof. Define ψ : Pn → Pn by the formula

ψ(A) = φ(A
1
α )α, A ∈ Pn.

Then δhα(φ(A), φ(B)) = δhα(A,B) yields that

‖ψ(Aα)− ψ(Bα)‖HS = ‖Aα −Bα‖HS, A,B ∈ Pn.

As the map A 7→ A
1
α is bijective, ψ is surjective and satisfies

‖ψ(A)− ψ(B)‖HS = ‖A−B‖HS, A,B ∈ Pn.

Since Pn is a connected open subset of Hn, Mankiewicz’s result [11, Theorem 2] states

that ψ can be uniquely extended to be an affine isometry from Hn to Hn. Hence, we have

ψ((1 − t)A + tB) = (1 − t)ψ(A) + tψ(B), A,B ∈ Pn. Recalling that ψ(A) = φ
(
A

1
α

)α
, we

obtain that

φ
(

((1− t)Aα + tBα)
1
α

)
= ((1− t)φ(A)α + tφ(B)α)

1
α .

This shows that φ is a geodesic-affine map on (Pn,Khα). �

Theorem 3.2. Let n ≥ 3 and φ : Pn → Pn be a surjective geodesic distance isometry in

(Pn,Kgκ), then there exists an invertible matrix S ∈Mn such that φ is of one of the forms

φ(A) = (SAκS∗)
1
κ , (S(AT )κS∗)

1
κ , (SA−κS∗)

1
κ or, (S(AT )−κS∗)

1
κ ,

or of the forms

φ(A) = (detA)−
2
n (SAκS∗)

1
κ , (detA)−

2
n (S(AT )κS∗)

1
κ ,

(detA)−
2
n (SA−κS∗)

1
κ or, (detA)−

2
n (S(AT )−κS∗)

1
κ ,

for all A ∈ Pn. Furthermore, φ is a geodesic-affine map.

Proof. Since φ is a geodesic distance isometry, we have δgκ(φ(A), φ(B)) = δgκ(A,B). Define

ψ : Pn → Pn by the formula

ψ(A) = φ
(
A

1
κ

)κ
, A ∈ Pn.

This yields that

‖ log(ψ(Aκ)−
1
2ψ(Bκ)ψ(Aκ)−

1
2 )

1
κ ‖HS = ‖ log(A−

κ
2BκA−

κ
2 )

1
κ ‖HS, A ∈ Pn.

Since the map A 7→ Aκ is bijective on Pn for κ > 0, one can obtain that

‖ log(ψ(A)−
1
2ψ(B)ψ(A)−

1
2 )‖HS = ‖ log(A−

1
2BA−

1
2 )‖HS.

Using Theorem 3 in [15] we can obtain the structure of ψ and then by ψ(A) = φ
(
A

1
κ

)κ
we

also get the desired forms of φ. Furthermore, φ is a geodesic-affine map from Corollary 2.2,

which ends the proof. �
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In [4], Hatori and Molnár have determined the Thompson isometries of the spaces of

invertible positive elements in unital C∗-algebras. They have shown that any Thompson

isometry is necessarily a geodesic-affine map. Honma and Nogawa studied a more general

case in [8]. We emphasize that in the just mentioned papers the set of Pn is equipped with

a Finsler-type structure.

Next, we will consider the geodesic distance isometry on Riemannian manifold (Pn,K l).

Theorem 3.3. Let φ : Pn → Pn be a surjective isometry on the Riemannian manifold

(Pn,K l). Then there exists a unitary matrix U and a Hermitian matrix N such that

φ(A) = e±U(logA)U∗+N , or φ(A) = e±U(logA)TU∗+N , A ∈ Pn. (3.1)

Moreover, φ is a geodesic-affine map. If φ is assumed to be unital, then we have that N = O

in (3.1).

Proof. Define f : Hn → Hn by f(T ) = log φ(eT ) for all T ∈ Hn. Clearly, φ(A) = ef(logA),

A ∈ Pn. Hence, the geodesic distance isometry ‖ log φ(A)− log φ(B)‖HS = ‖ logA− logB‖HS

implies that

‖f(logA)− f(logB)‖HS = ‖ logA− logB‖HS A,B ∈ Pn.

Since A 7→ logA is a bijective map from Pn to Hn, we get a surjective f satisfying

‖f(A)− f(B)‖HS = ‖A−B‖HS A,B ∈ Hn.

Set g(A) = f(A) − f(O), which is real linear from Mazur-Ulam Theorem. Then we can

extend g : Mn →Mn by g(A) = g(P ) + ig(Q) for A = P + iQ with P,Q ∈ Hn. Hence, g is a

surjective linear isometry on Mn. The well-known result of Kadison on the surjective linear

isometries of C∗-algebras implies that there exist unitary matrices U, V such that

g(A) = UAV, or g(A) = UATV, A ∈Mn.

Since f maps Hn to Hn, we can see V = ±U∗. Therefore, we have

φ(A) = e±U(logA)U∗+N , or φ(A) = e±U(logA)TU∗+N ,

where N := f(O) is a Hermitian matrix. Obviously, N = O when φ is unital.

Together with Theorem 2.4, we can see immediately that φ is a geodesic-affine map. �

As an application of Theorem 3.2, we consider the maps preserving the length of every

differentiable curves in (Pn,Kg1). This problem has been introduced by many authors. In

[3], the authors studied the map φ(A) = SAS∗ for any invertible matrix S. They have proved

that Lg1(ρ) is invariant under this map. In [5, Proposition 2.3], the authors have shown that

A 7→ A−1 also preserves the length with respect to the metric Kg1 . Since being a length

preserving map is equivalent to being a geodesic distance preserving map, we can see that φ

is a length preserving map if and only if it is one of the forms in Theorem 3.2.
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4. Maps preserving norms of geodesic correspondence on (Pn,Kϕ)

Suppose that a geodesic-affine map φ on Pn is also an isometry with respect to certain

norm ‖ · ‖, then we can obtain that φ preserves norm of geodesic correspondence since

‖γφ(A),φ(B)(t))‖ = ‖φ(γA,B(t))‖ = ‖γA,B(t))‖.

In this section, we consider the converse problem. We will characterize the structure of maps

preserving norm of geodesic correspondence, which shows that these maps are also geodesic

distance isometries and geodesic-affine maps.

Recall that the Schatten p-norm of A in Pn is defined by ‖A‖p = (trAp)
1
p . In particular

case, ‖.‖1 is the so-called trace norm. We denote all n × n positive semi-definite matrices

with unit trace by Sn and Mn denotes the set of all invertible elements of Sn, which is a

submanifold of Pn from differential geometric point of view. For two self-adjoint matrices A

and B we write A ≤ B if and only if B − A is positive semi-definite, i.e., 0 ≤ 〈(B − A)x, x〉
holds for every vector x. We emphasize that we are going to use arguments similar to that

appearing in [14].

Theorem 4.1. Let p ≥ 1 and φ : Pn → Pn be a bijective map. Then the following statements

are equivalent:

(1) φ preserves the Schatten p-norms of geodesic correspondence on (Pn,Khα), where α

is a given positive number such that α 6= p. That is to say,∥∥∥((1− t)Aα + tBα)
1
α

∥∥∥
p

=
∥∥∥((1− t)φ(A)α + tφ(B)α)

1
α

∥∥∥
p
, (4.1)

for all t ∈ [0, 1] and A,B ∈ Pn.

(2) φ preserves the Schatten p-norms of geodesic correspondence on (Pn,Kgκ), where κ

is a given positive number. That is to say,

‖(Aκ#tB
κ)

1
κ ‖p = ‖(φ(A)κ#tφ(B)κ)

1
κ ‖p, (4.2)

for all t ∈ [0, 1] and A,B ∈ Pn.

(3) φ preserves the Schatten p-norms of geodesic correspondence on (Pn,K l). That is to

say, ∥∥∥e(1−t) logA+t logB
∥∥∥
p

=
∥∥∥e(1−t) log φ(A)+t log φ(B)

∥∥∥
p
, (4.3)

for all t ∈ [0, 1] and A,B ∈ Pn.

(4) There exists a unitary matrix U such that

φ(A) = UAU∗, or φ(A) = UATU∗, (4.4)

for all A ∈ Pn.

Moreover, the maps appearing in (1)–(3) are geodesic distance isometries with respect to

their corresponding Riemannian metrics and by the assertions in Section 3 these maps are

geodesic-affine maps.
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Since the Schatten p-norm is invariant under unitarily equivalence, it is easy to check

that (4) in Theorem 4.1 implies the other assertions (1)–(3). In the proofs of the converse

implications ( (1)⇒ (4), (2)⇒ (4), (3)⇒ (4)) , we will consider the derivative of the Schatten

p-norm of the corresponding geodesics with respect to t at t = 0. To do this we need the

following proposition. Since it is a well-known result we present it without proof (for details

see e.g. Theorem 6.6.30(1) in [9]).

Proposition 4.2. Suppose that X(t) is a positive definite matrix for each t ∈ R and X(·) is

continuously differentiable then

d

dt
tr[X(t)p] = p tr[X(t)p−1 d

dt
X(t)]

for all p > 0.

Proof of Theorem 4.1(1)⇒ (4). Define the map ψ : Pn → Pn by the formula

ψ(A) = φ(A
1
α )α, A ∈ Pn.

Since A 7→ A
1
α is bijective, it is obvious that ψ is also a bijective transformation and it has

the following preserver property∥∥∥((1− t)A+ tB)
1
α

∥∥∥
p

=
∥∥∥((1− t)ψ(A) + tψ(B))

1
α

∥∥∥
p
, A,B ∈ Pn. (4.5)

Using Proposition 4.2 and differentiating both sides of this equation at t = 0, we have

tr[A
p−α
α (B −A)] = tr[ψ(A)

p−α
α (ψ(B)− ψ(A))], A,B ∈ Pn.

We also get easily that trA
p
α = trψ(A)

p
α , hence it follows that

tr(A
p−α
α B) = tr(ψ(A)

p−α
α ψ(B)), A,B ∈ Pn. (4.6)

Now, we assert that ψ preserves the order between positive definite matrices. To show this,

we need to verify that

B ≤ B̃ ⇐⇒ trA
p−α
α B ≤ trA

p−α
α B̃, A ∈ Pn. (4.7)

The sufficiency is obvious. For the necessity assume that trA
p−α
α B ≤ trA

p−α
α B̃. Then

taking limits under the trace we see that the inequality holds for every positive semi-definite

matrix A. Choosing A
p−α
α = x ⊗ x for an arbitrary unit vector x into that inequality, we

obtain 〈Bx, x〉 ≤ 〈B̃x, x〉. Together with the bijectivity and preserving property (4.6), we

have

B ≤ B̃ ⇐⇒ ψ(B) ≤ ψ(B̃), B ∈ Pn.
The structure of all order automorphism on Pn is known and it is described by Molnár in

[14, Theorem 1]. It states that there exists an invertible matrix S such that

ψ(A) = SAS∗, or ψ(A) = SATS∗, A ∈ Pn.

Substituting the case ψ(A) = SAS∗ into (4.6), we get

trA
p−α
α B = tr(SAS∗)

p−α
α SBS∗. (4.8)
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Since the equality (4.8) holds for all A ∈ Pn and B ≥ 0 by taking limits under the trace, we

can choose A = I and B = x ⊗ x for any unit vector x. Taking limit under the trace, the

equation (4.8) holds for all A ∈ Pn and positive semi-definite matrix B. Therefore, we have

〈x, x〉 = 〈S∗(SS∗)
p−α
α Sx, x〉

for all unit vector x ∈ Rn. Consequently, S∗(SS∗)
p−α
α S = I and it follows that S is a unitary

matrix. Similarly, one can easily check that the matrix S in the case ψ(A) = SATS∗ is also

a unitary matrix. Therefore we obtain that ψ is of one of the following forms

ψ(A) = UAU∗, or ψ(A) = UATU∗.

for all A ∈ Pn. Recalling that φ(A) = (ψ(Aα))
1
α , the proof is then completed. �

Proof of Theorem 4.1 (2)⇒ (4). Let ψ : Pn → Pn be a bijective map defined by ψ(A) =

φ
(
A

1
κ

)κ
, A ∈ Pn. Then, the map ψ has the following preserving property

tr[(A#tB)
p
κ ] = tr[(ψ(A)#tψ(B))

p
κ ], A,B ∈ Pn. (4.9)

Consequently, using Proposition 4.2 and differentiating both sides of (4.9) at t = 0, one can

obtain that

tr
[
A
p
κ log(A

1
2B−1A

1
2 )
]

= tr
[
ψ(A)

p
κ log(ψ(A)

1
2ψ(B)−1ψ(A)

1
2 )
]
, (4.10)

for all A,B ∈ Pn.

Using a similar proof to that in [14, Lemma 4], we have

B ≤ B̃ ⇐⇒ ψ(B) ≤ ψ(B̃), B, B̃ ∈ Pn.

Hence, there exists a unitary matrix U such that φ is of the form

φ(A) = UAU∗, or φ(A) = UATU∗, A ∈ Pn,

from [14, Theorem 5] and φ(A) = (ψ(Aκ))
1
κ . �

Remark 4.3. Taking α = p in equation (4.1), we have

tr[(1− t)Ap + tBp] = tr[(1− t)φ(A)p + tφ(B)p], A,B ∈ Pn. (4.11)

In this case, the map can be very complicate. For example, define

φ(A) = U(s)AU(s)∗, A ∈ Pn, ‖A‖p = s,

where U(s) is a unitary matrix depending on the Schatten p-norm of A. One can check easily

that φ is bijective and satisfies (4.11), but it is not of one of the forms appearing in Theorem

4.1.

Proof of Theorem 4.1(3)⇒ (4). From the definition of Schatten p-norm, one can get

tr
[
e(1−t) logA+t logB

]p
= tr

[
e(1−t) log φ(A)+t log φ(B)

]p
, A,B ∈ Pn. (4.12)
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In [17] Pedersen studied the differentiability properties of some operator valued functions of

one operator variable. Using one of the results appearing in [17], we get that

d

dt
e(1−t) logA+t logB

∣∣∣
t=0

=

∫ 1

0
es logA(logB − logA)e(1−s) logA ds.

By the above formula and Proposition 4.2 we can differentiate both sides of (4.12) at t = 0

and then we obtain that

tr[Ap(logB − logA)] = tr[φ(A)p(log φ(B)− log φ(A))], A,B ∈ Pn. (4.13)

In the following we apply an approach similar to that appearing in [14, Theorem 3]. We

assert that for any B, B̃ ∈ Pn,

logB ≤ log B̃ ⇐⇒ tr[Ap(logB − logA)] ≤ tr[Ap(log B̃ − logA)], A ∈ Pn. (4.14)

Using the above characterization of ordering (4.14) and the bijectivity and preserver property

(4.13) of φ we deduced that

logB ≤ log B̃ ⇐⇒ log φ(B) ≤ log φ(B̃)

holds for all B, B̃ ∈ Pn. Now, we are in a position to apply Theorem 2 in [14]. Using that

result and an approach similar to that appearing in the proof of Theorem 3 in [14] we can

deduce that there exists a unitary matrix U such that

φ(A) = UAU∗, or φ(A) = UATU∗, A ∈ Pn.

�

Definition 4.4. For any A,B ∈ Sn, the Belavkin-Staszewski relative entropy SBS(A||B) (see

[1]) is defined by

SBS(A||B) =

{
tr[A log(A1/2B−1A1/2)], if suppA ⊂ suppB,

+∞, otherwise.

Here and throughout this paper supp denotes the support of operators, that is the orthogonal

complement of the kernel of an element in Sn.

For any pair A,B ∈ Sn of states, the Umegaki relative entropy SU (A||B) is defined by

SU (A||B) =

{
tr[A(logA− logB)], if suppA ⊂ suppB,

+∞, otherwise.

It can be seen easily that relative entropies are always finite for any A,B ∈ Mn. From

Theorem 4.1, we can get the following corollaries.

Corollary 4.5. Let φ : Pn → Pn be a bijective map preserving the trace norm of geodesic

correspondence on (Pn,Kg1). Then φ preserves the Belavkin-Staszewski relative entropy on

Mn and there exists a unitary matrix U such that

φ(A) = UAU∗, or φ(A) = UATU∗,
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for all A ∈ Pn.

Corollary 4.6. Let φ : Pn → Pn be a bijective map preserving trace norm of geodesic

correspondence on (Pn,K l). Then φ preserves the Umegaki relative entropy on Mn and

there exists a unitary matrix U such that

φ(A) = UAU∗, or φ(A) = UATU∗,

for all A ∈ Pn.
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