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Influence of Sur face Roughness on Interdiffusion Processes
in InGaP/Ge Heteroepitaxial Thin Films
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In the present work, we report on the study of InGaP/Ge heterojunctions grown by metal organic vapor phase epitaxy at different
growth temperatures, with the aim of analyzing properties of the layer and interface between InGaP epilayer and germanium substrate.
Secondary Neutral Mass Spectroscopy, Rutherford Backscattering Spectrometry, High Resolution X-Ray Diffraction, Transmission
Electron Microscopy and Atomic Force Microscopy have been used to characterize the layers. The main goal of this work is to get
information about diffusion processes of Ga, In, P in the substrate and of Ge in the epitaxial film. Since the interface roughness during
sputtering and the effect of diffusion depends on the growth temperature, depth profiles measured experimentally were combined
with surface roughness data in order to get more reliable information about diffusion profiles and the real depth distribution of
elements in the interface.
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Indium gallium phosphide (InGaP) is the fundamental material for21

many electronic and optical devices1 such as heterojunction bipolar22

transistors, metal oxide semiconductor field effect transistors (MOS-23

FETs), light emitting diodes (LEDs), lasers and multi-junction solar24

cells.2–6 The properties of InGaP and germanium (Ge) make them25

interesting materials for diffusion studies. Hence, the knowledge of26

diffusion mechanisms is significant in order to understand the differ-27

ent processes involved in the interface. Germanium junctions in high28

efficiency solar cells are usually realized by diffusion between the29

substrates and epitaxial GaAs or InGaP layers.7 For example, depo-30

sition of a GaAs layer on n-type germanium substrate8 can result in31

p-n junction due to higher concentration of gallium (Ga) in the top-32

most part of the Ge substrate. On the other hand, InGaP deposition on33

p-type germanium substrate produces n-p junction due to the differ-34

ent diffusion process between phosphorous (P), indium (In) and Ga35

elements, resulting in a top layer doped highly with P.36

In spite of its large application capability, this compound suffers37

problems connected with the lattice mismatch between the epitax-38

ial/binary/ternary compounds and germanium substrate. Spontaneous39

formation of ordered phase and different surface morphology can be40

due to the different growth conditions.9 The poor surface quality is41

a critical factor for junction abruptness. Moreover, the ordering pro-42

cess occurs through the formation of a mosaic of ordered domains43

dispersed in disordered matrix that cause materials inhomogeneity,44

which negatively affects the device performance.45

In the present paper, we performed the study of InGaP/Ge thin films46

grown by low pressure metal organic vapor phase epitaxy (MOVPE)47

and were characterized from the interdiffusion point of view, in par-48

ticular, the role of the surface morphology and roughness in the real49

depth profile determination. This work gives a detailed insight into the50

diffusion profiles of the film/substrate interface induced by the growth51

temperature.52

Experimental53

The InGaP films were grown on Ge (001) substrates by MOVPE54

technique in a horizontal reactor without substrate rotation at dif-55

ferent growth temperatures of 600, 650 and 675◦C with a pressure56

of 60 mbar. The precursors used were trimethylgallium (TMG) and57

trimethylindium (TMI) for the elements of group III and phosphine58

(PH3) in a 10% mixture of hydrogen for the group V element. In59

a typical growth experiment, the Ge substrate was thermally etched60

at 650◦C for 5 minutes in order to remove the native oxide prior to61
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introduction of the precursors into the reactor chamber. In order to 62

obtain the same composition for all the samples, the ratio of In/Ga 63

was varied from 1.1 to 1.4, while the ratio of V/III groups elements 64

ranged from 95 to 87. The InGaP was not intentionally doped. 65

Secondary Neutral Mass Spectroscopy (SNMS, type INA-X, 66

SPECS GmbH) in the direct bombardment mode using Ar+ ions with 67

a fairly low energy for sputtering (EAr+ = 350 eV) was employed. 68

The erosion area was confined to a circle of 2 mm in diameter by 69

means of a tantalum (Ta) mask. The lateral homogeneity of the ion 70

bombardment was checked by a profilometric analysis of sputtered 71

craters. Rutherford Backscattering Spectrometry in combination with 72

Channeling (RBS/C) analysis was performed in a scattering chamber 73

with a two-axis goniometer connected to a 5 MV Van de Graaff accel- 74

erator. The 1 MeV 4He+ analyzing ion beam was collimated with two 75

sets of four-sector slits with the dimensions of 0.5 × 0.5 mm2, while 76

the beam divergence was kept below 0.06◦ . The beam current was 77

measured by a transmission Faraday cup.10 In the scattering chamber, 78

the vacuum measurement was about 10− 4 Pa. In order to reduce the 79

hydrocarbon deposition, liquid N2 cooled traps were used along the 80

beam path and around the wall of the chamber. Backscattered He+
81

ions were detected using an ORTEC surface barrier detector mounted 82

in Cornell geometry at scattering angle of θ= 165◦ . The energy reso- 83

lution of the detection system was 16 keV. Atomic Force Microscopy 84

(AFM) in contact mode (Digital Instruments Nanoscope IIIa) was em- 85

ployed to study the surface morphology. The average surface rough- 86

ness values were estimated from the analysis of AFM images. AFM 87

measurements were performed over 15 × 15 μm2 areas on four dif- 88

ferent randomly selected places of the sample surface and the AFM 89

image analysis was carried out by Gwyddion software. Transmission 90

Electron Microscopy (TEM) operated in two-beam diffraction con- 91

trast and high resolution (HR-TEM) modes, using a JEOL 2200FS 92

TEM/STEM field emission gun at 200 kV was employed. 93

Results and Discussion 94

In order to estimate the composition of the layer, the mismatch 95

(� d/d) was determined from X-ray diffraction profiles recorded for the 96

three samples grown at different temperatures (600, 650 and 675◦ C). 97

We used the first order formula � d/d = − � θ/tanθ to obtain the av- 98

erage indium content of 0.43 (In0.43Ga0.57P). In addition, the X-ray 99

measurements showed that the layers were crystalline with defects 100

inside the lattice and reciprocal lattice map of the same sample in 115 101

geometry indicated the presence of strain release. 102

AFM images of the samples grown at three different temperatures 103

were presented in Fig. 1. Average surface roughness values were 104
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Figure 1. AFM images of InGaP layers grown on germanium substrates at
a) 600◦ C, b) 650◦ C and c) 675◦C.

determined from large image areas (15 × 15 μm2) and it was assured105

that the scan area was always large enough to yield a representative106

roughness value for the whole sample. AFM measurements show that107

the average surface roughness of the samples decreases from about108

42 to 20 nm with the increase in the growth temperature from 600 to109

675◦ C (Table I).110

Table I. Roughness and Inter face width vs Growth Temperatures.

Growth Average surface Interface width
Sample temperature (˚C) roughness (nm)* (nm)**

1 600 ∼42 195
2 650 ∼32 60
3 675 ∼20 45

*Determined from AFM.
**Determined from SNMS.

The diffusion of constituents of the InGaP layer into Ge substrate 111

was checked by RBS measurements. Fig. 2 shows the RBS/C spectra 112

for two samples where the InGaP layer was chemically removed using 113

HCl solution from the substrate prior to measurements in order to have 114

only the contribution of the elements In, Ga, P diffused into the Ge 115

substrates during growth time. Among elements, the background free 116

detection was only possible for In, while the Ga signal was detected 117

very close to Ge (see Fig. 2). The detection limit was the highest for 118

P due to its low atomic number and backscattering cross section. The 119

presence of about 1–3 at% In can be observed in the subsurface region 120

of the samples. The higher amount of In diffused into the substrate of 121

Sample 1 can be explained by an intensive grain boundary diffusion 122

in the twin crystal structure which characterizes the 600◦ C growth 123

mechanism, see the AFM patterns in Fig. 1a and 1c. It is difficult to 124

estimate the presence of Ga and P due to overlapping with Ge and 125

the high detection limit compared to In. The channelling spectrum for 126

the sample grown at 650◦ C showed a minimum yield of about 5% 127

indicating a good crystalline quality for the Ge substrate. 128

Depth distribution of constituents determines the physical proper- 129

ties of thin films and has an important role in doping of Ge substrate, 130

particularly in study of the infrared cell doping behavior. According 131

to chemical reactions of CVD technology, the substrates are usually 132

kept at high temperatures during sample preparation. As this time 133

is long enough to let any atomic motion or diffusion between the 134

substrate and film to take place, it is very important to determine 135

the in-depth chemical composition, mainly at the interface. Since the 136

main elements composition of a film determine the basic properties, 137

the diffusion from the overlayer through the substrate during prepara- 138

tion time can modify these basic properties, as it is practically a doping 139

process. In our previous works,9,11 we have already shown that a sput- 140

ter based depth profile analysis is a unique tool for revealing interface 141

Figure 2. RBS channeling spectra of two substrates after removal of the InGaP
layers grown at different temperatures of 600 and 675◦C. For comparison a
random spectrum is also shown. Surface peak positions for In, Ga, Ge, and P
are represented by the arrows.
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structures. However, the depth resolution determining the quality of142

such measurements depends strongly on the roughness of the sputtered143

surface which is the bottom of the crater. Moreover, this roughness144

can change during sputtering. Since the depth profile analysis of a145

sample starts at the surface, the high surface roughness plays a cru-146

cial role in determination of depth resolution. In case of high surface147

roughness (e.g. 250 nm peak-to-valley value of Sample 1), it is unex-148

pected that the surface becomes smooth at the end of sputtering. Even149

if the roughness decreases by sputtering, the thickness of the layer is150

not high enough to obtain finally a smooth surface. In this way, the151

interface roughness is expected to be high when the surface roughness152

is high. Here the interface roughness is the real surface roughness at153

the bottom of the crater during sputtering through the interface re-154

gion between the film and substrate. At high interface roughness, the155

interface width is mainly determined by the roughness independent156

of sputtering processes and it is high as well. In contrary to this, the157

interface width is small when the interface surface is smooth, i.e. the158

sample surface is smooth. In general, the definition of interface width159

is arbitrary and phenomenological. Experimentally, it is usually given160

by the difference between the depth coordinates belong to 10% and161

90% intensities of the analysed element. This is similar to the defi-162

nition of depth resolution at a sharp interface.12 In Fig. 3a we have163

shown the method for determining the interface width.164

In our experiments, from the surface analyses it turned out that our165

samples had high surface roughness depending on the growth temper-166

ature (Table I). As the growth temperature increases, the roughness167

decreases. The depth distribution of elements was revealed by SNMS168

technique. Fig. 3 shows the trend of elements in InGaP layers grown169

at 600, 650 and 675◦ C with the layer thickness of about 400 nm. As170

it can be seen, the interface width decreases with the decrease of the171

surface roughness. According to Table I, the surface roughness of the172

sample grown at 675◦C much higher than that is of the sample grown173

at 600◦ C.174

From the point of surface roughness, the depth profile analysis175

of A/B interface can be critical. Due to sputtering mechanism, the176

elements of A and B can be mixed by the sputtering itself even they177

were not mixed before. In this manner, the atomic mixing means that178

both the elements are sputtered at the same time. This type of atomic179

mixing can be evoked by ion bombardment, crater shape and surface180

(interface) roughness. The main goal of this work is to get informa-181

tion about diffusion processes of Ga, In, P in the substrate and of182

germanium in the film. However, it is not simple to make a distinction183

between the processes of diffusion mechanism and surface roughness184

with only depth profile analysis. A sharp change in concentration at185

a rough surface/interface can result in the same effect as a diffuse186

change in concentration at a smooth surface/interface.13 Both phe-187

nomena result in the same depth distribution of elements which can188

be characterized by the error function. In order to get information189

about the surface roughness contribution to the depth distribution of190

elements, we supplemented our SNMS measurements with calcula-191

tions of element depth distribution induced by the surface roughness.192

If the depth distribution measured experimentally differs from this193

calculated one, the deviation is caused by diffusion. Moreover, in194

a sputter depth profile analysis this deviation solely gives the real195

information about diffusion process.196

The surface roughness determined experimentally was approached197

by a Gaussian distribution similar to that reported previously.12 Using198

this measured value and assuming a Gauss type depth distribution199

of the surface roughness, the depth concentration of elements can be200

calculated. If the calculated value fit with the experimental one, the201

depth distribution was only determined by the surface roughness, if202

not, it was governed by other physical process, e.g. by diffusion. Con-203

sequently, the difference between the calculated and experimentally204

measured concentration profiles refers to diffusion. Fig. 4 shows the205

In and Ge depth distributions at two growth temperatures (650◦C and206

675◦C) measured by SNMS. As it can be seen, the measured values207

of Ge intensity in the interface region are higher than the calculated208

ones. This implies that the diffusion of Ge into the film took place209

more intensively at higher growth temperatures.210

Figure 3. SNMS profiles for the InGaP/Ge sample grown at 600, 650 and
675◦ C. The method of interface thickness (dint) determination for Ge of Sample
1 is shown in the upper figure.

The volume diffusion and grain boundary diffusion compete with 211

each other in the diffusion mechanism accompanied by MOVPE 212

growth process. The linear fittings of the tails of ln C vs. d2 and 213

ln C vs. d6/5 functions, where C is the concentration and d is the depth 214

as given in Fig. 4 which yield a possibility to estimate the diffusion 215

coefficients.14,15 While ln C vs. d2 function gives information about 216

the effective diffusivity, the linear part of ln C vs. d6/5 curve deter- 217

mines the grain boundary diffusion coefficient. The effective diffusion 218

coefficient of Ge in InGaP layer was estimated to be 3.7 ·10− 23 m2/s 219

in case of Sample 2, and 1,5 ·10− 22 m2/s in case of Sample 3. We 220

also found that the linear part of ln C vs. d6/5 function was longer 221

seen in Sample 3 than in Sample 2, i.e. the effect of grain boundary 222

diffusion was higher in Sample 3 than in Sample 2. The results of 223

Sample 1 could not be used to determine the diffusion coefficient 224

because the thickness of the interface layer was so high that the infor- 225

mation concerning to the diffusion was totally smeared out. A deeper 226

understanding of the diffusion process took place during preparation 227

requires more experiments. Our results showed that a diffusion con- 228

trolled doping effect can exist only when the substrate is kept at high 229

temperature during preparation. 230

Diffusion of film constituents into the opposite direction, i.e. into 231

the substrate, also exists with lower intensity because the substrate is a 232
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Figure 4. Indium and germanium depth distributions in Samples 2 and 3. The
symbols denote the values measured experimentally, the lines are the calculated
depth distribution. It can be seen that the diffusion process is more effective at
temperature of 675◦ C than it is at 650◦C.

single crystal. The indium signal in Fig. 4 and the RBS spectra in Fig. 2233

represent the result of this process. Although the interface width of the234

sample grown at 650◦C was higher than that of the Sample 3 grown235

at 675◦ C, the diffusion was more intensive at higher temperature.236

This result supports our conclusion that the interface width is mainly237

determined by the surface roughness and not by the diffusion.238

The largest interface width of 195 nm was found in sample 1.239

The explanation for that lies in the crystal structure. The InGaP layer240

grown at 600◦C has an ordered phase.9 Fig. 5a shows the TEM image241

of sample grown at 600◦C taken in cross section, i.e. by viewing the242

sample along 011 direction. It was taken in 220 bright field mode243

Figure 5. a) TEM image of the sample grown at 600◦ C taken in cross section;
b) HRTEM image of a twin in the top part of the layer. Inset: Diffraction pattern
extracted by fast Fourier transform of the image, showing the twin 1/3 extra
spots along the 111 direction perpendicular to the twin plane.

of operation of TEM. The interface was indicated by the black arrow. 244

The defects shown in the image were stacking faults and twins lying on 245

(111) planes inclined 54.7◦ to the (100) plane. The HR-TEM image of 246

a twin is shown in Fig. 5b. Such defects in the InGaP film originated at 247

the Ge surface, but sometimes quite far (30–50 nm). During sputtering 248

the surface of this region is rough, the interface widens due to the twin 249

structure, and the surface roughness is non-Gaussian type preventing 250

the calculation of depth distribution. 251

Conclusions 252

InGaP layers grown by MOVPE were characterized to understand 253

the diffusion mechanism between the film and substrate. Surface anal- 254

ysis by AFM showed a temperature dependency of surface roughness. 255

The roughness decreased with the increase of growth temperature. 256

SNMS technique reported the depth distribution of elements and re- 257

vealed that the interface width decreased with decreasing the surface 258

roughness. Supplementary measurements with calculations based on 259

surface roughness showed that Ge diffused in thefilm more intensively 260

at higher temperature. Diffusion of film constituents into the opposite 261

direction, i.e. into the substrate, can also exist. We demonstrated that 262

although the interface width of the sample grown at 650◦ C was higher 263

than that of the sample grown at 675◦ C, the diffusion was more inten- 264

sive at the higher temperature, i.e. the interface width is determined 265

by the surface roughness and not by the growth temperature. 266
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