# Existence results for a two point boundary value problem involving a fourth-order equation 

Gabriele Bonanno ${ }^{\boxtimes 1}$, Antonia Chinni ${ }^{* 1}$ and Stepan A. Tersian ${ }^{* * 2}$<br>${ }^{1}$ Department of Civil, Computer, Construction, Environmental Engineering and Applied Mathematics, University of Messina, 98166 - Messina, Italy<br>${ }^{2}$ Department of Mathematics, University of Ruse, 7017 Ruse, Bulgaria

Received 3 March 2015, appeared 29 May 2015
Communicated by Petru Jebelean


#### Abstract

We study the existence of non-zero solutions for a fourth-order differential equation with nonlinear boundary conditions which models beams on elastic foundations. The approach is based on variational methods. Some applications are illustrated.


Keywords: fourth-order equations, critical points, variational methods
2010 Mathematics Subject Classification: 34B15.

## 1 Introduction

In this paper, we consider the following fourth-order problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)=\lambda f(x, u(x)) \quad \text { in }[0,1] \\
u(0)=u^{\prime}(0)=0, \\
u^{\prime \prime}(1)=0, \quad u^{\prime \prime \prime}(1)=\mu g(u(1)),
\end{array}\right.
$$

where $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an $L^{1}$-Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and $\lambda, \mu$ are positive parameters. The problem $\left(P_{\lambda, \mu}\right)$ describes the static equilibrium of a flexible elastic beam of length 1 when, along its length, a load $f$ is added to cause deformation. Precisely, conditions $u(0)=u^{\prime}(0)=0$ mean that the left end of the beam is fixed and conditions $u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=\mu g(u(1))$ mean that the right end of the beam is attached to a bearing device, given by the function $g$.

Existence and multiplicity results for this kinds of problems has been extensively studied. In particular, by using a variational approach, the existence of three solutions for the problems $\left(P_{\lambda, 1}\right)$ and $\left(P_{\lambda, \lambda}\right)$ has been established respectively in [6] and in [4]. Moreover, in [8] the author obtained the existence of at least two positive solutions for the problem ( $P_{1,1}$ ). Finally, we point out that the problem ( $P_{\lambda, \mu}$ ) can be also studied by iterative methods (see for instance [7])

[^0]and, for fourth order equations subject to conditions of different type, we refer, for instance, to $[3,5]$ and references therein.

In this paper we will deal with the existence of one non-zero solution for the problem $\left(P_{\lambda, \mu}\right)$. Precisely, using a variational approach, under conditions involving the antiderivatives of $f$ and $g$, we will obtain two precise intervals of the parameters $\lambda$ and $\mu$ for which the problem ( $P_{\lambda, \mu}$ ) admits at least one non-zero classical solution (see Theorem 3.1). As a way of example, we present here a special case of our results.

Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative continuous function.
Then, for each $\lambda \in] 0, \frac{1}{10 \int_{0}^{2} f(t) d t}[$ the problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)=\lambda f(u(x)) \quad \text { in }[0,1], \\
u(0)=u^{\prime}(0)=0, \\
u^{\prime \prime}(1)=0, \quad u^{\prime \prime \prime}(1)=\sqrt{|u(1)|}
\end{array}\right.
$$

admits at least one non-zero classical solution.
We explicitly observe that in Theorem 1.1, assumptions on the behavior of $f$, as for instance asymptotic conditions at zero or at infinity, are not requested, whereby $f$ is a totally arbitrary function.

The paper is arranged as follows. In Section 2, we recall some basic definitions and our main tool (Theorem 2.2), which is a local minimum theorem established in [1]. Finally, Section 3 is devoted to our main results. Precisely, under a suitable behaviour of $f$ and for parameters $\mu$ small enough, the existence of a non-zero solution for $\left(P_{\lambda, \mu}\right)$ is obtained (Theorem 3.1) and a variant is highlighted (Theorem 3.3). Moreover, some consequences are pointed out (Corollaries 3.4 and 3.5) and a concrete example of application is given (Example 3.7).

## 2 Basic definitions and preliminary results

We consider the space

$$
X:=\left\{u \in H^{2}([0,1]): u(0)=u^{\prime}(0)=0\right\}
$$

where $H^{2}([0,1])$ is the Sobolev space of all functions $u:[0,1] \rightarrow \mathbb{R}$ such that $u$ and its distributional derivative $u^{\prime}$ are absolutely continuous and $u^{\prime \prime}$ belongs to $L^{2}([0,1])$. $X$ is a Hilbert space with inner product

$$
\langle u, v\rangle:=\int_{0}^{1} u^{\prime \prime}(t) v^{\prime \prime}(t) d t
$$

and norm

$$
\|u\|:=\left(\int_{0}^{1}\left(u^{\prime \prime}(t)\right)^{2} d t\right)^{\frac{1}{2}}
$$

which is equivalent to the usual norm $\int_{0}^{1}\left(|u(t)|^{2}+\left|u^{\prime}(t)\right|^{2}+\left|u^{\prime \prime}(t)\right|^{2}\right) d t$. Moreover, the inclusion $X \hookrightarrow C^{1}([0,1])$ is compact (see [6]) and it results

$$
\begin{equation*}
\|u\|_{\mathcal{C}^{1}([0,1])}:=\max \left\{\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}\right\} \leq\|u\| \tag{2.1}
\end{equation*}
$$

for each $u \in X$. We consider the functionals $\Phi, \Psi_{\lambda, \mu}: X \rightarrow \mathbb{R}$ defined by

$$
\Phi(u):=\frac{1}{2}\|u\|^{2}
$$

and

$$
\Psi_{\lambda, \mu}(u):=\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1))
$$

for each $u \in X$ and for each $\lambda, \mu>0$ where $F(x, \xi):=\int_{0}^{\tau} f(x, t) d t$ and $G(\xi):=\int_{0}^{\xi} g(t) d t$ for each $x \in[0,1], \xi \in \mathbb{R}$. By standard arguments, $\Phi$ is sequentially weakly lower semicontinuous and coercive. Moreover, $\Phi$ and $\Psi_{\lambda, \mu}$ are in $C^{1}(X)$ and their Fréchet derivatives are respectively

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x
$$

and

$$
\left\langle\Psi_{\lambda, \mu}^{\prime}(u), v\right\rangle=\int_{0}^{1} f(x, u(x)) v(x) d x+\frac{\mu}{\lambda} g(u(1)) v(1)
$$

for each $u, v \in X$. In [6] the authors proved that $\Phi^{\prime}$ admits a continuous inverse on $X^{*}$ and $\Psi^{\prime}$ is compact. In particular, in Lemma 2.1 of [6] it has been shown that, for each $\lambda, \mu>0$, the critical points of the functional

$$
I_{\lambda, \mu}:=\Phi-\lambda \Psi_{\lambda, \mu}
$$

are solutions for problem $\left(P_{\lambda, \mu}\right)$.
In order to obtain solutions for the problem $\left(P_{\lambda, \mu}\right)$, we make use of a recent critical point result, where a novel type of Palais-Smale condition is applied (see Theorem 3.1 of [1]). We recall it.
Definition 2.1. Let $\Phi$ and $\Psi$ two continuously Gâteaux differentiable functionals defined on a real Banach space $X$ and fix $r \in \mathbb{R}$. The functional $I=\Phi-\Psi$ is said to verify the Palais-Smale condition cut off upper at $r$ (in short (P.S.) ${ }^{[r]}$ ) if any sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ in $X$ such that
(a) $\left\{I\left(u_{n}\right)\right\}$ is bounded;
( $\beta$ ) $\lim _{n \rightarrow+\infty}\left\|I^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0$;
( $\gamma$ ) $\Phi\left(u_{n}\right)<r$ for each $n \in \mathbb{N}$;
has a convergent subsequence.
The following theorem is a particular case of Theorem 5.1 of [1] and it is the main tool of the next section.

Theorem 2.2 (Theorem 2.3 of [2]). Let $X$ be a real Banach space, $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals such that $\inf _{x \in X} \Phi(x)=\Phi(0)=\Psi(0)=0$. Assume that there exist $r>0$ and $\bar{x} \in X$, with $0<\Phi(\bar{x})<r$, such that:
$\left(a_{1}\right) \frac{\sup _{\Phi(x) \leq r} \Psi(x)}{r}<\frac{\Psi(\bar{x})}{\Phi(\bar{x})^{\prime}}$,
$\left(a_{2}\right)$ for each

$$
\lambda \in] \frac{\Phi(\bar{x})}{\Psi(\bar{x})}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[
$$

the functional $I_{\lambda}:=\Phi-\lambda \Psi$ satisfies (P.S.) ${ }^{[r]}$ condition.
Then, for each

$$
\left.\lambda \in \Lambda_{r}:=\right] \frac{\Phi(\bar{x})}{\Psi(\bar{x})^{\prime}}, \frac{r}{\sup _{\Phi(x) \leq r} \Psi(x)}[
$$

there is $x_{0, \lambda} \in \Phi^{-1}(] 0, r[)$ such that $I_{\lambda}^{\prime}\left(x_{0, \lambda}\right) \equiv \vartheta_{X^{*}}$ and $I_{\lambda}\left(x_{0, \lambda}\right) \leq I_{\lambda}(x)$ for all $x \in \Phi^{-1}(] 0, r[)$.

## 3 Existence of one solution

Before introducing the main result, we define some notation. With $\alpha \geq 0$, we put

$$
F^{\alpha}:=\int_{0}^{1} \max _{|\xi| \leq \alpha} F(x, \xi) d x
$$

and

$$
G^{\alpha}:=\max _{|\xi| \leq \alpha} G(\xi)
$$

Theorem 3.1. Assume that
$\left(f_{1}\right)$ there exist $\delta, \gamma \in \mathbb{R}$, with $0<\delta<\gamma$, such that

$$
\frac{F^{\gamma}}{\gamma^{2}}<\frac{1}{8 \pi^{4}}\left(\frac{3}{2}\right)^{3} \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\delta^{2}}
$$

$\left(f_{2}\right) F(x, t) \geq 0$ for almost every $x \in[0,1]$ and for all $t \in[0, \delta]$.
Then, for each

$$
\left.\lambda \in \Lambda_{\delta, \gamma}:=\right] 4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}, \frac{\gamma^{2}}{2 F^{\gamma}}[
$$

and for each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, there exists $\eta_{\lambda, g}>0$, where

$$
\eta_{\lambda, g}= \begin{cases}\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}} & \text { if } G(\delta) \geq 0  \tag{3.1}\\ \min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\} & \text { if } G(\delta)<0\end{cases}
$$

such that for each $\mu \in] 0, \eta_{\lambda, g}\left[\right.$ the problem $\left(P_{\lambda, \mu}\right)$ admits at least one non-zero solution $u_{\lambda}$ such that $\left\|u_{\lambda}\right\|_{\infty},\left\|u_{\lambda}^{\prime}\right\|_{\infty}<\gamma$.

Proof. Fix $\lambda \in \Lambda_{\delta, \gamma}$. We observe that $\eta_{\lambda, g}>0$. Indeed, if $G(\delta) \geq 0$, then $G^{\gamma} \geq 0$ and by $\lambda \in \Lambda_{\delta, \gamma}$ it follows that $\gamma^{2}-2 \lambda F^{\gamma}>0$. Hence $\eta_{\lambda, g}>0$. Let $G(\delta)<0$. We have by $\lambda \in \Lambda_{\delta, \gamma}$ that $4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{\int_{3 / 4}^{1} F(x, \delta) d x}<\lambda$, which implies $4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{3 / 4}^{1} F(x, \delta) d x<0$. Hence $\eta_{\lambda, g}>0$, in this case as well.

Now, fix $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, $\mu \in] 0, \eta_{\lambda, g}[$ and consider the space $X$. Our aim is to apply Theorem 2.2 to the functionals $\Phi, \Psi_{\lambda, \mu}$ defined above. To this end, we fix $r=\frac{\gamma^{2}}{2}$.

The properties of the functionals $\Phi$ and $\Psi_{\lambda, \mu}$ ensure that the functional $I_{\lambda, \mu}=\Phi-\lambda \Psi_{\lambda, \mu}$ verifies (P.S.) ${ }^{[r]}$ condition for each $r, \lambda, \mu>0$ (see Proposition 2.1 of [1]) and so condition $\left(a_{2}\right)$ of Theorem 2.2 is verified.

Denote by $\bar{v}$ the function of $X$ defined by

$$
\bar{v}(x)= \begin{cases}0 & x \in\left[0, \frac{3}{8}\right]  \tag{3.2}\\ \delta \cos ^{2}\left(\frac{4 \pi x}{3}\right) & x \in] \frac{3}{8}, \frac{3}{4}[ \\ \delta & x \in\left[\frac{3}{4}, 1\right]\end{cases}
$$

for which it results

$$
\begin{equation*}
\Phi(\bar{v})=4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3} \tag{3.3}
\end{equation*}
$$

Taking into account that $\bar{v}(x) \in[0, \delta]$ for each $x \in\left[\frac{3}{8}, \frac{3}{4}\right]$, condition $\left(f_{2}\right)$ ensures that

$$
\int_{0}^{\frac{3}{4}} F(x, \bar{v}(x)) d x \geq 0
$$

and

$$
\int_{\frac{3}{4}}^{1} F(x, \delta) d x \geq 0,
$$

which implies

$$
\Psi_{\lambda, \mu}(\bar{v})=\int_{0}^{1} F(x, \bar{v}(x)) d x+\frac{\mu}{\lambda} G(\delta) \geq \int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} G(\delta) .
$$

This ensures that

$$
\begin{equation*}
\frac{\Psi_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} \geq \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}} . \tag{3.4}
\end{equation*}
$$

For each $u$ : $\Phi(u)=\frac{\|u\|^{2}}{2} \leq r$, by (2.1) one has

$$
\|u\| \leq \gamma=\sqrt{2 r}
$$

and

$$
\|u\|_{\infty} \leq \gamma .
$$

It results

$$
\Psi_{\lambda, \mu}(u)=\int_{0}^{1} F(x, u(x)) d x+\frac{\mu}{\lambda} G(u(1)) \leq F^{\gamma}+\frac{\mu}{\lambda} G^{\gamma}
$$

for each $\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)$. This leads to

$$
\begin{equation*}
\frac{1}{r} \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \Psi_{\lambda, \mu}(u) \leq \frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma} . \tag{3.5}
\end{equation*}
$$

Now, taking into account $\left(f_{1}\right)$, if $G(\delta) \geq 0$, then, it results

$$
\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\eta_{\lambda, g}}{\lambda} G^{\gamma}=\frac{1}{\lambda}
$$

and

$$
\frac{1}{\lambda}<\frac{1}{4 \pi^{4} \delta^{2}}\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x \leq \frac{1}{4 \pi^{4} \delta^{2}}\left(\frac{3}{2}\right)^{3}\left(\int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} G(\delta)\right)
$$

If $G(\delta)<0$, taking into account that

$$
\begin{equation*}
\mu<\eta_{\lambda, g}=\min \left\{\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}, \frac{4 \pi^{4} \delta^{2}-\lambda\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\left(\frac{3}{2}\right)^{3} G(\delta)}\right\} \tag{3.6}
\end{equation*}
$$

it results

$$
\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\eta_{\lambda, g}}{\lambda} G^{\gamma} \leq \frac{1}{\lambda}
$$

if $G^{\gamma}>0$, and $\frac{2}{\gamma^{2}} F^{\gamma}+\frac{2}{\gamma^{2}} \frac{\mu}{\lambda} G^{\gamma}<\frac{1}{\lambda}$ if $G^{\gamma}=0$.
Moreover, again from (3.6),

$$
\frac{1}{\lambda}<\frac{1}{4 \pi^{4} \delta^{2}}\left(\frac{3}{2}\right)^{3} \int_{\frac{3}{4}}^{1} F(x, \delta) d x+\frac{\mu}{\lambda} \frac{1}{4 \pi^{4} \delta^{2}}\left(\frac{3}{2}\right)^{3} G(\delta) .
$$

In all cases, taking into account (3.4) and (3.5), we have

$$
\frac{1}{r} \sup _{\left.u \in \Phi^{-1}(J-\infty, r]\right)} \Psi_{\lambda, \mu}(u)<\frac{1}{\lambda}<\frac{\Psi_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} .
$$

Moreover, we observe that from $\delta<\gamma$, taking $\left(f_{1}\right)$ into account, we obtain $\sqrt{8 \pi^{4}\left(\frac{2}{3}\right)^{3}} \delta<\gamma$. In fact, arguing by a contradiction, if we assume $\delta<\gamma \leq \sqrt{8 \pi^{4}\left(\frac{2}{3}\right)^{3}} \delta$, we obtain

$$
\frac{F^{\gamma}}{\gamma^{2}} \geq \frac{1}{\pi^{4}}\left(\frac{3}{4}\right)^{3} \frac{\int_{\frac{3}{4}}^{1} F(x, \delta) d x}{\delta^{2}}
$$

and this is an absurd by $\left(f_{1}\right)$. Therefore, we have $\Phi(\bar{v})=4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}<\frac{\gamma^{2}}{2}=r$ and the condition ( $a_{1}$ ) of Theorem 2.2 is verified.

Moreover, since

$$
\left.\lambda \in \Lambda_{\delta, \gamma} \subseteq\right] \frac{\Phi(\bar{v})}{\Psi_{\lambda, \mu}(\bar{v})}, \frac{r}{\sup _{\Phi(u) \leq r} \Psi_{\lambda, \mu}(u)}[
$$

Theorem 2.2 guarantees the existence of a local minimum point $u_{\lambda}$ for the functional $I_{\lambda}$ such that

$$
0<\Phi\left(u_{\lambda}\right)<r
$$

and so $u_{\lambda}$ is a nontrivial classical solution of problem $\left(P_{\lambda, \mu}\right)$ such that $\left\|u_{\lambda}\right\|_{\infty},\left\|u_{\lambda}^{\prime}\right\|_{\infty}<\gamma$.
Remark 3.2. We observe that in Theorem 3.1 we read $\frac{\gamma^{2}-2 \lambda F^{\gamma}}{2 G^{\gamma}}=+\infty$ when $G^{\gamma}=0$.
By reversing the roles of $\lambda$ and $\mu$, we obtain the following result.
Theorem 3.3. Assume that
( $g_{1}$ ) there exist $\delta, \gamma \in \mathbb{R}$ with $0<\delta<\gamma$ :

$$
\frac{G^{\gamma}}{\gamma^{2}}<\frac{1}{8 \pi^{4}}\left(\frac{3}{2}\right)^{3} \frac{G(\delta)}{\delta^{2}}
$$

Then for each $\left.\mu \in \Gamma_{\delta, \gamma}:=\right] 4 \pi^{4}\left(\frac{2}{3}\right)^{3} \frac{\delta^{2}}{G(\delta)}, \frac{\gamma^{2}}{2 G^{\gamma}}\left[\right.$, and for each $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R} L^{1}$-Carathéodory function verifying condition $\left(f_{2}\right)$ of Theorem 3.1, there exists $\theta_{\mu, f}>0$, where

$$
\theta_{\mu, f}:=\frac{\gamma^{2}-2 \mu G^{\gamma}}{2 F^{\gamma}},
$$

such that for each $\lambda \in] 0, \theta_{\mu, f}\left[\right.$ the problem ( $P_{\lambda, \mu}$ ) admits at least one non-zero solution $u$ such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$.

Proof. Fix $\mu \in \Gamma_{\delta, \gamma}$ and $\left.\lambda \in\right] 0, \theta_{\mu, f}[$. Put

$$
\tilde{\Psi}_{\lambda, \mu}(u):=\frac{\lambda}{\mu} \int_{0}^{1} F(x, u(x)) d x+G(u(1)), \quad \tilde{I}_{\lambda, \mu}(u):=\Phi(u)-\mu \tilde{\Psi}_{\lambda, \mu}(u),
$$

for all $u \in X$. Clearly, one has $\tilde{I}_{\lambda, \mu}=I_{\lambda, \mu}$.
Now, let $\bar{v}$ the function as given in (3.2) and $r=\frac{\gamma^{2}}{2}$. Arguing as in the proof of Theorem 3.1 (see (3.4) and (3.5)) we obtain

$$
\begin{equation*}
\frac{\tilde{\Psi}_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} \geq \frac{\frac{\lambda}{\mu} \int_{\frac{3}{4}}^{1} F(x, \delta) d x+G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r} \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \tilde{\Psi}_{\lambda, \mu}(u) \leq \frac{2}{\gamma^{2}} \frac{\lambda}{\mu} F^{\gamma}+\frac{2}{\gamma^{2}} G^{\gamma} \tag{3.8}
\end{equation*}
$$

Therefore, from (3.7) we obtain

$$
\frac{\tilde{\Psi}_{\lambda, \mu}(\bar{v})}{\Phi(\bar{v})} \geq \frac{G(\delta)}{4 \pi^{4} \delta^{2}\left(\frac{2}{3}\right)^{3}}>\frac{1}{\mu}
$$

and from (3.8) it follows that

$$
\frac{1}{r} \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)} \tilde{\Psi}_{\lambda, \mu}(u)<\frac{2}{\gamma^{2}} \frac{\theta_{\mu, f}}{\mu} F^{\gamma}+\frac{2}{\gamma^{2}} G^{\gamma}=\frac{1}{\mu} .
$$

Moreover, from $\left(g_{1}\right)$, arguing as in the proof of Theorem 3.1, one has $\Phi(\bar{v})<r$. So, assumption $\left(a_{1}\right)$ of Theorem 2.2 is verified and

$$
\mu \in] \frac{\Phi(\bar{v})}{\tilde{\Psi}_{\lambda, \mu}(\bar{v})}, \frac{r}{\sup _{\Phi(u) \leq r} \tilde{\Psi}_{\lambda, \mu}(u)}[,
$$

for which $\Phi-\mu \tilde{\Psi}_{\lambda, \mu}$ admits a non-zero critical point and the conclusion is obtained.
Now, we present some consequences of previous results.
Corollary 3.4. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and non negative function such that $\left(f_{1}^{\prime \prime}\right) \lim \sup _{t \rightarrow 0^{+}} \frac{F(t)}{t^{2}}=+\infty$.

Then, for each $\gamma>0, \lambda \in] 0, \frac{\gamma^{2}}{2 F(\gamma)}[$, for each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous and nonnegative and for each $\mu \in] 0, \frac{\gamma^{2}-2 F(\gamma) \lambda}{2 G(\gamma)}[$, the problem

$$
\left\{\begin{array}{l}
u^{(i v)}(x)=\lambda f(u(x)) \quad \text { in }[0,1], \\
u(0)=u^{\prime}(0)=0, \\
u^{\prime \prime}(1)=0, \quad u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
$$

admits at least one non-zero classical solution $u$ such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$.

Proof. Fix $\gamma>0, \lambda \in] 0, \frac{\gamma^{2}}{2 F(\gamma)}[, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous and nonnegative and $\mu \in] 0, \frac{\gamma^{2}-2 F(\gamma) \lambda}{2 G(\gamma)}[$.
Condition $\left(f_{2}\right)$ of Theorem 3.1 is verified. Moreover, by $\left(f_{1}^{\prime \prime}\right)$, there exists $0<\bar{\delta}<\gamma$ such that

$$
\frac{F(\bar{\delta})}{\bar{\delta}^{2}}>\frac{16 \pi^{4}\left(\frac{2}{3}\right)^{3}}{\lambda}
$$

Taking into account that $\lambda \in] 0, \frac{\gamma^{2}}{2 F(\gamma)}$ [, it results

$$
\frac{F(\gamma)}{\gamma^{2}}<\frac{1}{2 \lambda}<\frac{F(\bar{\delta})}{\bar{\delta}^{2}}\left(\frac{3}{2}\right)^{3} \frac{1}{16 \pi^{4}}
$$

and so condition $\left(f_{1}\right)$ of Theorem 3.1 is verified. Since $g$ is nonnegative, $\eta_{\lambda, g}=\frac{\gamma^{2}-2 F(\gamma) \lambda}{2 G(\gamma)}$ and the conclusion follows easily.

Clearly, arguing as in the proof of Corollary 3.4, from Theorem 3.3 we obtain the following result.

Corollary 3.5. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative continuous function such that $\lim _{t \rightarrow 0^{+}} \frac{g(t)}{t}=+\infty$. Then, for each $\gamma>0$, for each $\mu \in] 0, \frac{\gamma^{2}}{2 G(\gamma)}[$, for each nonnegative continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and for each $\lambda \in] 0, \frac{\gamma^{2}-2 \mu G(\gamma)}{2 F(\gamma)}\left[\right.$, the problem $\left(\tilde{P}_{\lambda, \mu}\right)$ admits at least one non-zero classical solution $u$ such that $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<\gamma$.

Remark 3.6. Theorem 1.1 in the Introduction is an immediate consequence of Corollary 3.5. Indeed, it is enough to pick $g(t)=\sqrt{|t|}$ for all $t \in \mathbb{R}$ and $\gamma=2$, so that one has $\lim _{t \rightarrow 0^{+}} \frac{q(t)}{t}=$ $+\infty, \mu=1<\frac{2^{2}}{G(2)}$ and $\lambda<\frac{1}{10 F(2)}<\frac{12-8 \sqrt{2}}{6 F(2)}=\frac{\gamma^{2}-2 \mu G(\gamma)}{2 F(\gamma)}$.

Example 3.7. Let us take $\delta=1 / 2, \gamma=22$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(u):= \begin{cases}0, & u<0 \\ u-u^{2}, & 0 \leq u \leq 1 \\ 0, & u>1\end{cases}
$$

Then, by Theorem 3.1, for each $\lambda \in] 1385.4,1452[$ and each $g: \mathbb{R} \rightarrow \mathbb{R}$ continuous there exists $\eta_{\lambda, g}>0$ such that for each $\left.\mu \in\right] 0, \eta_{\lambda, g}\left[\right.$, the problem $\left(P_{\lambda, \mu}\right)$ admits at least one non-zero solution $u_{\lambda}$ with $\|u\|_{\infty},\left\|u^{\prime}\right\|_{\infty}<22$.

## Acknowledgements

The authors have been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) - project "Problemi differenziali non lineari con crescita non standard".

## References

[1] G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75(2012), 2992-3007. MR2878492; url
[2] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1(2012), 205-220. MR3034869; url
[3] G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343(2008), 1166-1176. MR2417133; url
[4] A. Cabada, S. Tersian, Multiplicity of solutions of a two point boundary value problem for a fourth-order equation, Appl. Math. Comput. 24(2011), 1599-1603. MR3009485; url
[5] M. R. Grossinho, St. A. Tersian, The dual variational principle and equilibria for a beam resting on a discontinuous nonlinear elastic foundation, Nonlinear Anal. 41(2000), 417-431. MR1762153; url
[6] L. Yang, H. Chen, X. Yang, The multiplicity of solutions for fourth-order equations generated from a boundary condition, Appl. Math. Lett. 24(2011), 1599-1603. MR2803717; url
[7] T. F. Ma, J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order, Appl. Math. Comput. 159(2004), 11-18. MR2094952; url
[8] T. F. MA, Positive solutions for a beam equation on a nonlinear elastic foundation, Math. Comput. Modelling 39(2004), 1195-1201. MR2078420; url


[^0]:    ${ }^{\boxtimes}$ Corresponding author. Email: bonanno@unime.it
    *Email: achinni@unime.it
    ${ }^{* *}$ Email: sterzian@uni-ruse.bg

