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Abstract. We are interested in the asymptotic analysis of singular solutions with blow-
up boundary for a class of quasilinear logistic equations with indefinite potential. Un-
der natural assumptions, we study the competition between the growth of the variable
weight and the behaviour of the nonlinear term, in order to establish the blow-up rate
of the positive solution. The proofs combine the Karamata regular variation theory with
a related comparison principle. The abstract result is illustrated with an application to
the logistic problem with convection.
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1 Introduction

Let Ω be a C2-bounded domain of Rn, (n ≥ 2). Let ∆p denote the p-Laplace operator (p > 1),
that is,

∆pu := div (|∇u|p−2∇u) .

We first recall some notations used in this paper. For some α ∈ (0, 1), we denote by C0,α
loc(Ω)

the Banach space of locally Hölder continuous functions, that is, real-valued functions defined
on Ω which are uniformly Hölder continuous with exponent α on any compact subset of Ω.
The local Hölder space C1,α

loc(Ω) consists of functions whose first order derivatives are locally
Hölder continuous with exponent α in Ω. Similarly, for p > 1, we denote by W1,p

loc (Ω) the
Banach space of locally Lp-integrable functions with locally Lp-integrable weak derivatives,
that is,

W1,p
loc (Ω) :=

{
u : Ω→ R measurable; u|K ∈W1,p(K) for all compact set K ⊂ Ω

}
.
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In this paper, we study the existence and the boundary behaviour of solutions for the
following quasilinear elliptic problem

∆pu = a(x) f (u), x ∈ Ω,

u > 0 in Ω

limδ(x)→0 u(x) = ∞,

(1.1)

where p > 1, f : (0, ∞) → (0, ∞) is a C1 function, a is a positive function, locally Hölder
continuous in Ω and satisfies some conditions related to Karamata regular variation theory
and δ(x) denotes the Euclidean distance from x to the boundary ∂Ω.

By a weak solution of (1.1), we mean a positive function u ∈ W1,p
loc (Ω) ∩ C1,β

loc (Ω) for some
0 < β < 1 which satisfies in the distributional sense

−
∫

Ω
|∇u|p−2∇u∇ϕ dx =

∫
Ω

a(x) f (u)ϕ dx, for any test function ϕ ∈ C∞
c (Ω).

A solution of (1.1) is called a large solution (or boundary blow-up or explosive solution).
Problems such as (1.1) arise in the study of the subsonic motion of a gas [35], the electric

potential in some bodies [23], and Riemann geometry [5].
When p = 2, problem (1.1) becomes

∆u = a(x) f (u), x ∈ Ω, u > 0 in Ω, lim
δ(x)→0

u(x) = +∞. (1.2)

The subject of large solutions to (1.2) has received much attention starting with the pio-
neering works of Bieberbach in 1916 with a(x) = 1, f (u) = eu, n = 2 and with a(x) = 1,
f (u) = eu and n = 3 in Rademacher’s work in 1943 (see [3] and [36]). In 1957, Keller [20]
and Osserman [34] gave a necessary and sufficient condition for the existence of a solution to
(1.2) when a(x) = 1 and Ω is bounded, namely

∫ ∞ 1/
√

F(s) ds < ∞, where F′(s) = f (s) is
an increasing nonlinearity. Later, many authors have considered questions such as existence,
uniqueness and boundary behaviour of the solution and its normal derivative in different
domains and for bounded positive weights a(x).

Problem (1.2) arises from many branches of mathematics and applied mathematics, and
has been discussed by many authors in many contexts. For p = 2, f = 0 and u ∈ C2 one
obtains the classical Laplace equation which was extensively studied in the literature (see, for
example, [1, 37, 39–41]).

In a significant development, Cîrstea and Rădulescu [7] use Karamata’s regular variation
theory to study the blow-up rate and uniqueness, near the boundary to problem (1.2), in the
case where a(x) decays to zero on ∂Ω at a fixed rate along the entire boundary ∂Ω and f ′

varies regularly at infinity.
More recently, some results of existence and nonexistence of solutions to problem (1.2) are

established when the weight a(x) is unbounded near the boundary ∂Ω (see [2, 6–8, 12–16, 23,
27, 37, 44–46] and the references therein).

In the general case (not necessarily p = 2), the problem (1.1) seems to have been first con-
sidered in [9] when a(x) = 1. The question of existence, uniqueness and boundary behaviour
of solutions were dealt there. Since then, there have been some other papers which included
similar results for different types of nonlinearities; we mention for instance [11, 14, 15, 30–32].
We also point out the important contributions of Guo and Webb [17, 18] in the understanding
of the structure of boundary blow-up solutions for quasi-linear elliptic problems.
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When the weight a(x) is bounded, problem (1.1) has been considered by several authors.
But when the weight a(x) is not necessarily bounded very little is known about the global
behaviour of the solution except for the case p = 2, see for example [11, 30, 32].

Our aim in this paper is to establish existence and asymptotic behaviour of solutions of
(1.1) with more general nonlinearities f (u) and weights a(x). In particular, we give global
estimates of solutions (1.1) in the case where a(x) may be unbounded and satisfies some
hypotheses related to the Karamata class of regularly varying functions at zero.

In order to use the method of sub- and super-solutions for (1.1), we begin by giving an
auxiliary result in the case f (u) = uα, α > p− 1. More precisely, we prove the existence and
asymptotic behaviour of a positive solution for the following problem

∆pu = b(x)uα, x ∈ Ω, α > p− 1 > 0

u > 0 in Ω

limδ(x)→0 u(x) = ∞,

(1.3)

where b(x) satisfies the following hypothesis

(B1) b : Ω → (0, ∞) belongs to C0,γ
loc (Ω), 0 < γ < 1 and there exists C > 1 such that for each

x ∈ Ω,
1
C

δ(x)−λ L(δ(x)) ≤ b(x) ≤ C δ(x)−λ L(δ(x)) ,

where λ ≤ p, L is defined on (0, η] for some η > diam (Ω) with
∫ η

0
L(t)1/(p−1)

t
λ−1
p−1

dt < ∞ and

L belongs to the set of Karamata functions K defined on (0, η] by

L(t) := c exp
(∫ η

t

z(s)
s

ds
)

with c > 0 and z ∈ C([0, η]) such that z(0) = 0.

Under this hypothesis, we state our first main result.

Theorem 1.1. Let p > 1, α > max{p− 1, 1} and assume that b satisfies (B1). Then problem (1.3)
has a positive weak solution u ∈ C1,β

loc (Ω), for some 0 < β < 1, satisfying for each x ∈ Ω,

1
C

δ(x)
p−λ

p−1−α θL,λ,p,α(δ(x)) ≤ u(x) ≤ C δ(x)
p−λ

p−1−α θL,λ,p,α(δ(x)) , (1.4)

where C > 1 is a constant and θL,λ,p,α is the function defined on (0, η] by

θL,λ,p,α(t) :=


L(t)1/(p−1−α), if λ < p,(∫ t

0

L(s)1/(p−1)

s
ds

) p−1
p−1−α

, if λ = p.
(1.5)

In order to establish our main result for problem (1.1), we assume that the functions f and
a satisfy the following conditions:

(H1) The function a is positive, belongs to C0,γ
loc (Ω), 0 < γ < 1 and there exist two γ-Hölder

continuous functions a1 and a2 such that for each x ∈ Ω,

a1(δ(x)) ≤ a(x) ≤ a2(δ(x)) ,

where ai(t) = t−λi Li(t), with λi ≤ p and Li ∈ K defined on (0, η], (η > diam (Ω)) such

that
∫ η

0
(Li(t))

1
p−1

t
λi−1
p−1

dt < ∞.
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(H2) The function f : (0, ∞)→ (0, ∞) is of class C1 and there exist constants k1, k2, α1, α2 with
0 < k1 ≤ k2, 0 < p− 1 < α1 ≤ α2 such that

f (t) ≤ k2 tα2 for t > 0 and f (t) ≥ k1 tα1 for t ≥ 1.

We now give an example of weight a(x) that satisfies hypothesis (H1). Consider the
simplest case corresponding to Ω = B(0, 1) ⊂ Rn and assume that p > 1, λ < p, and
µ > p− 1. Then the function

a(x) = (1− |x|)−λ log
(

2
1− |x|

)
+ (1− |x|)−p

[
log
(

2
1− |x|

)]−µ

, x ∈ Ω

satisfies hypothesis (H1) with

a1(x) = (1− |x|)−λ log
(

2
1− |x|

)
and a2(x) = c (1− |x|)−p

[
log
(

2
1− |x|

)]−µ

for some positive constant c > 0. We refer to [7] for more examples of functions belonging to
the Karamata class.

We now state the second main result in this paper.

Theorem 1.2. Under hypotheses (H1)–(H2), problem (1.1) has a weak solution u ∈ C1,β(Ω), for some
0 < β < 1, satisfying

1
C

δ(x)
p−λ2

p−1−α2 θL2,λ2,p,α2(δ(x)) ≤ u(x) ≤ C δ(x)
p−λ1

p−1−α1 θL1,λ1,p,α1(δ(x)) , (1.6)

where

θLi ,λi ,p,αi(t) :=


(Li(t))

1
p−1−αi , if λi < p,(∫ t

0

(Li(s))
1

p−1

s
ds

) p−1
p−1−αi

, if λi = p
(1.7)

for i ∈ {1, 2} and C > 1.

Throughout this paper, we need the following notations.
For two nonnegative functions f and g defined on a set S, the notation f (x) ≈ g(x), x ∈ S,

means that there exists c > 0 such that

1
c

f (x) ≤ g(x) ≤ c f (x), for all x ∈ S.

We denote by ϕ1 the positive normalized (i.e., maxx∈Ω ϕ1(x) = 1) eigenfunction corresponding
to the first positive eigenvalue λ1 of the p-Laplace operator (−∆p) in W1,p

0 (Ω). By definition,
ϕ1 is the unique normalized function satisfying the following eigenvalue problem{

−∆p ϕ1 = λ1 ϕ
p−1
1 , x ∈ Ω,

ϕ1 ≥ 0 in Ω and limδ(x)→0 ϕ1(x) = 0.

We recall that, from Moser iterations [33] and [24, Theorem 1], ϕ1 ∈ C1,β(Ω), for some 0 <

β < 1, and from strong maximum principle for quasilinear operators (see [42, Theorem 10]),
ϕ1 satisfies

ϕ1(x) ≈ δ(x) in Ω (1.8)
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and
ϕ

p
1(x) + |∇ϕ1(x)|p ≈ 1 in Ω. (1.9)

Our paper is organized as follows. In Section 2, we collect some useful properties of Karamata
functions. Section 3 deals with the proof of our main results. The last section is reserved to
some applications.

2 The Karamata class K

To make the paper self-contained, we begin this section by recapitulating some properties of
Karamata regular variation theory established by Karamata in 1930. This theory has been
applied to study the asymptotic behaviour of solutions to differential equations. We refer to
[7, 8, 26, 37, 43, 46] for more details.

Lemma 2.1. The following hold.

(i) Let L ∈ K and ε > 0, then we have

lim
t→0+

tεL(t) = 0.

(ii) Let L1, L2 ∈ K and p ∈ R. Then we have L1 + L2 ∈ K, L1L2 ∈ K and Lp
1 ∈ K.

Example 2.2. Let m be a positive integer. Let c > 0, (µ1, µ2, . . . , µm) ∈ Rm and d be a suffi-
ciently large positive real number such that the function

L(t) = c
m

∏
k=1

(
logk

(
d
t

))µk

is defined and positive on (0, η] , for some η > 1, where logk x = log ◦ log ◦ · · · ◦ log x (k times).
Then L ∈ K.

Lemma 2.3. A function L is in K if and only if L is a positive function in C1((0, η]) satisfying

lim
t→0+

t L′(t)
L(t)

= 0. (2.1)

Proof. Let L ∈ K. Since L(t) := c exp
( ∫ η

t
z(s)

s ds
)
, then for t ∈ (0, η], we have

t L′(t)
L(t)

= −z(t) .

So, using the fact that z(0) = 0, we deduce (2.1).
Conversely, let L be a positive function in C2((0, η]) satisfying (2.1). For t ∈ (0, η], put

z(t) = − t L′(t)
L(t)

, (2.2)

then z ∈ C((0, η]) and limt→0+ z(t) = 0. Moreover, we have

L(t) = L(η) exp
(∫ η

t

z(s)
s

ds
)

.

This proves that L ∈ K.
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Applying Karamata’s theorem (see [29, 38]), we get the following.

Lemma 2.4. Let µ ∈ R and L be a function in K defined on (0, η]. We have

(i) If µ < −1, then
∫ η

0
sµL(s) ds diverges and

∫ η

t
sµL(s) ds ∼t→0+ −

t1+µL(t)
µ + 1

.

(ii) If µ > −1, then
∫ η

0
sµL(s) ds converges and

∫ t

0
sµL(s) ds ∼t→0+

t1+µL(t)
µ + 1

.

Lemma 2.5 ([28]). Let L ∈ K be defined on (0, η]. Then we have

lim
t→0+

L (t)∫ η
t

L(s)
s ds

= 0. (2.3)

If further
∫ η

0

L(s)
s

ds converges, then we have

lim
t→0+

L (t)∫ t
0

L(s)
s ds

= 0. (2.4)

Remark 2.6. Let L ∈ K be defined on (0, η], then using (2.1) and (2.3), we deduce that

t→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η

0
L(s)

s ds converges, we have by (2.4) that

t→
∫ t

0

L(s)
s

ds ∈ K.

Lemma 2.7. Let L ∈ K, 0 < ε < η and ϕ1 be the first eigenfunction of (−∆p) in Ω. Then we have

L(ε ϕ1(x)) ≈ L(δ(x)), x ∈ Ω. (2.5)

Proof. Let L ∈ K. Then there exist c > 0 and z ∈ C([0, η]) such that z(0) = 0 and for t ∈ (0, η],
η > diam (Ω),

L(t) := c exp
(∫ η

t

z(s)
s

ds
)

.

Let M = maxs∈[0,η] |z(s)|. By using (1.8), there exists c1 > 0 such that

1
c1

δ(x) ≤ ε ϕ1(x) ≤ c1 δ(x).

Using this fact we deduce that ∣∣∣∣∫ ε ϕ1(x)

δ(x)

z(s)
s

ds
∣∣∣∣ ≤ M log c1.

Hence,
c−M

1 L(δ(x)) ≤ L(ε ϕ1(x)) ≤ cM
1 L(δ(x)), x ∈ Ω.

This ends the proof.

We point out that the constants in asymptotic relation (2.5) depend on ε (the first one goes
to zero but the second one goes to infinity as ε→ 0+).
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3 Proof of main results

First, we recall some classical results about the sub- and super-solution method.

Definition 3.1. A function v ∈W1,p
loc (Ω) ∩ C1,β

loc (Ω), 0 < β < 1, is called a weak sub-solution of
(1.1) if v = ∞ on ∂Ω and

−
∫

Ω
|∇v|p−2∇v∇ϕ dx ≥

∫
Ω

a(x) f (v)ϕ dx ∀ϕ ∈ C∞
c (Ω) with ϕ ≥ 0.

If the above inequality is reversed, v is called a weak super-solution of (1.1).

We point out that this definition agrees with the sub- and super-solutions used in the
proofs of Theorem 1.1 and Theorem 1.2, since the corresponding relations in those proofs are
viewed in the weak sense.

The following property is an adaptation of Lemma 2.1 in [13]. In the statement of the next
result, we can assume without loss of generality that the Hölder exponent is the same for all
functions u, u, and u. Indeed, if the corresponding exponents are β1, β2 and β3, it is enough
to consider β = min{β1, β2, β3}.

Lemma 3.2. Let a(x) be a locally γ-Hölder continuous function in Ω, 0 < γ < 1 and f be
continuously differentiable on [0, ∞). Assume that there exist a weak sub-solution u and a weak
super-solution u to the problem (1.1) such that u ≤ u. Then there exists at least one weak solution
u ∈W1,p

loc (Ω) ∩ C1,β
loc (Ω), for some 0 < β < 1, such that u ≤ u ≤ u.

Proof. For n ∈N, we set

Ωn :=
{

x ∈ Ω : δ(x) <
1
n

}
.

Consider the boundary value problem{
∆pu = a(x) f (u), x ∈ Ωn,

u|∂Ωn = u.
(3.1)

Since u is a sub-solution and u is a super-solution, this problem has at least one positive weak
solution un such that u ≤ un ≤ u, see Rădulescu [37]. This in particular gives bounds on
any compact set K ⊂ Ω for the sequence un which in turn leads to bounds in C1,γ

loc (Ω). Since
the embedding of C1,γ(Ω′) into C1(Ω′) is compact for every Ω′ ⊂ Ω, then for every k ∈ N,
we can select a subsequence of un which converges in C1(Ωk). A diagonal procedure gives a
subsequence (denoted again by un) which converges to a function u ∈ C1

loc(Ω). Passing to the
limit in (3.1) we see that u is a weak solution of the equation in (1.1), verifying u ≤ u ≤ u. In
particular, we deduce that u = ∞ on ∂Ω. This proves the lemma.

Next, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ϕ1 be the positive normalized eigenfunction associated to the first
eigenvalue λ1 of −∆p in W1,p

0 (Ω) and let 0 < ε < η. In order to construct a sub-solution u and
a super-solution u of (1.1), we define the function

v(x) =
(∫ ε ϕ1(x)

0
t

1−λ
p−1 (L(t))

1
p−1 dt

) p−1
p−1−α

if x ∈ Ω
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and we will prove that ∆pv(x) ≈ b(x) v(x)α.
A straightforward computation shows that

∇v = ε
p−λ
p−1 (v(x))

α
p−1 (ϕ1(x))

1−λ
p−1 (L(εϕ1(x)))

1
p−1 ∇ϕ1

and

∆pv = εp−λ ϕ−λ
1 (x)L(εϕ1(x))(v(x))α

[
λ1ϕ

p
1 + |∇ϕ1|

p

(
α
(εϕ1(x))

p−λ
p−1 (L(εϕ1(x)))

1
p−1

(v(x))
p−1−α

p−1

+ (λ− 1)− εϕ1(x)
L′(εϕ1(x))
L(εϕ1(x))

)]
.

Since L ∈ K and
∫ η

0
(L(t))

1
p−1

t
λ−1
p−1

dt < ∞, then we deduce from Lemmas 2.3, 2.4 (ii) and 2.5 that

lim
ε→0

sup
x∈Ω

(εϕ1(x))
p−λ
p−1 (L(εϕ1(x)))

1
p−1∫ εϕ1(x)

0
t

1−λ
p−1 (L(t))

1
p−1 dt

=
p− λ

p− 1

and

lim
ε→0

sup
x∈Ω

(εϕ1(x))L′(εϕ1(x))
L(εϕ1(x))

= 0.

Hence, there exists ε > 0 such that for each x ∈ Ω,

− (p− λ)(α− p + 1) + (p− 1)2

4(p− 1)
≤ −εϕ1(x)

L′(εϕ1(x))
L(εϕ1(x))

≤ (p− λ)(α− p + 1) + (p− 1)2

4(p− 1)

and

(p− λ)(3α + p− 1)− (p− 1)2

4(p− 1)
≤ α

(εϕ1(x))
p−λ
p−1 (L(εϕ1(x)))

1
p−1∫ εϕ1(x)

0
t

1−λ
p−1 (L(t))

1
p−1 dt

≤ (p− λ)(5α− p + 1) + (p− 1)2

4(p− 1)
.

This gives

(p− λ)(α− p + 1) + (p− 1)2

2(p− 1)
≤ α

(εϕ1(x))
p−λ
p−1 (L(εϕ1(x)))

1
p−1∫ εϕ1(x)

0
t

1−λ
p−1 (L(t))

1
p−1 dt

− εϕ1(x)
L′(εϕ1(x))
L(εϕ1(x))

+ (λ− 1)

≤ (p− λ)(3α− p + 1) + 3(p− 1)2

2(p− 1)
.

Therefore using these inequalities and (1.9) we obtain ∆pv(x) ≈ (ϕ1(x))−λ L(εϕ1(x))(v(x))α.
Now, using (1.8), Lemma 2.7 and hypothesis (B1) we obtain

∆pv(x) ≈ (ϕ1(x))−λ L(εϕ1(x)) (v(x))α

≈ δ(x)−λ L(δ(x))(v(x))α

≈ b(x)(v(x))α.
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This proves that for every λ ≤ p, there exists M > 0 such that for every x ∈ Ω, we have

1
M

b(x)vα(x) ≤ ∆pv(x) ≤ Mb(x)vα(x). (3.2)

By putting c = M
1

α−p+1 , it follows from (3.2) that u = 1
c v and u = c v are respectively sub-

solution and super-solution of problem (1.3). Thus, we conclude by Lemma (3.2) that problem
(1.3) has a positive solution u such that u ≤ u ≤ u. Applying Lemma 2.7, Remark 2.6, and
Lemma 2.4, we deduce that

u(x) ≈ δ(x)
p−λ

p−1−α θL,λ,p,α(δ(x)).

The following proposition plays a key role in the proof of Theorem 1.2.

Proposition 3.3. Let a1, a2 be the functions defined in hypothesis (H1) and let α1, α2 be such that
0 < p− 1 < α1 ≤ α2. Let ui be the solution, given in Theorem 1.1, of the following problem

∆pui = ai(δ(x)) uαi , x ∈ Ω,

ui > 0 in Ω

limδ(x)→0 ui(x) = ∞.

(3.3)

Then there exists a constant c0 > 0 such that

u2 ≤ c0 u1 in Ω. (3.4)

Proof. By Theorem 1.1, problem (3.3) has a solution ui and there exist two constants c1 > 0,
c2 > 0 such that for each x ∈ Ω, we have,

1
ci

ψLi ,λi ,p,αi(δ(x)) ≤ ui(x) ≤ ci ψLi ,λi ,p,αi(δ(x)) , (3.5)

where for i ∈ {1, 2}, ψLi ,λi ,p,αi is the function defined on (0, η], by

ψLi ,λi ,p,αi(t) = t
p−λi

p−1−αi θLi ,λi ,p,αi(t) (3.6)

and θLi ,λi ,p,αi is given by (1.7). To prove Proposition (3.3), it is enough to show that
ψL2,λ2,p,α2
ψL1,λ1,p,α1

is bounded in (0, η]. Now, using Lemma 2.1 (i) and hypothesis (H1), we deduce that λ1 ≤
λ2 ≤ p. On the other hand, since p− 1 < α1 ≤ α2, then we deduce that

0 ≤ p− λ2

α2 − (p− 1)
≤ p− λ1

α1 − (p− 1)
.

Put σ = (α2−α1)(p−λ1)+(λ2−λ1)(α1−(p−1))
(α1−(p−1))(α2−(p−1)) . Then σ ≥ 0 and for each t ∈ (0, η] we have

ψL2,λ2,p,α2(t)
ψL1,λ1,p,α1(t)

= tσ θL2,λ2,p,α2(t)
θL1,λ1,p,α1(t)

.

Now, using Lemma 2.1 and the definition of θLi ,λi ,p,αi , we deduce that

θL2,λ2,p,α2

θL1,λ1,p,α1

∈ K.



10 R. Alsaedi, H. Mâagli, V. D. Rădulescu and N. Zeddini

So, we distinguish the following two cases.
Case 1. σ > 0. In this case, we conclude by Lemma 2.1 that

lim
t→0

ψL2,λ2,p,α2(t)
ψL1,λ1,p,α1(t)

= 0.

Hence
ψL2,λ2,p,α2
ψL1,λ1,p,α1

is bounded in (0, η].
Case 2. σ = 0. This is equivalent to λ1 = λ2 = p or λ1 = λ2 < p and α1 = α2. In this case, we
have L1 ≤ L2 in (0, η]. So we will discuss two subcases:
• If λ1 = λ2 = p, then for each t ∈ (0, η] we have

ψL2,λ2,p,α2(t)
ψL1,λ1,p,α1(t)

=

(∫ t

0

(L1(s))
1

p−1

s
ds

) p−1
α1−(p−1)

(∫ t

0

(L2(s))
1

p−1

s
ds

) 1−p
α2−(p−1)

≤
(∫ t

0

(L2(s))
1

p−1

s
ds

) p−1
α1−(p−1)

(∫ t

0

(L2(s))
1

p−1

s
ds

) 1−p
α2−(p−1)

≤
(∫ t

0

(L2(s))
1

p−1

s
ds

) (p−1)(α2−α1)
(α1−(p−1))(α2−(p−1))

.

Since p− 1 < α1 ≤ α2 and 0 <
∫ η

0
(L2(s))

1
p−1

s ds < ∞, then we deduce that
ψL2,λ2,p,α2
ψL1,λ1,p,α1

is bounded

in (0, η].
• If λ1 = λ2 < p and α1 = α2, then for each t ∈ (0, η] we have

ψL2,λ2,p,α2(t)
ψL1,λ1,p,α1(t)

=
θL2,λ2,p,α2(t)
θL1,λ1,p,α1(t)

=
(L2(t))

1
p−1−α2

(L1(t))
1

p−1−α1

=

(
L1(t)
L2(t)

) 1
α1−(p−1)

≤ 1.

This completes the proof of Proposition 3.3.

Proof of Theorem 1.2. Let ui be a solution of the problem (3.3) and let c0 be a positive constant
such that u2 ≤ c0 u1. Since limδ(x)→0 u1(x) = ∞, then infx∈Ω u1(x) > 0. Let µ1, µ2 be two
positive constants chosen so that

µ1 ≥ max

 1

k
1

α1−(p−1)

1

,
1

inf
x∈Ω

u1(x)

 and µ2 ≤ min

µ1

c0
,

1

k
1

α2−(p−1)

2

 ,

where k1, k2 are given in hypothesis (H2). Put

u = µ1 u1 and u = µ2 u2. (3.7)

Then using hypotheses (H1) and (H2), we obtain∆pu = 1
µ

α1−(p−1)
1

a1(δ(x)) uα1 ≤ a(x) f (u), x ∈ Ω,

u > 0 in Ω; limδ(x)→0 u(x) = ∞

and 
∆p u =

1

k2 µ
α2−(p−1)
2

a2(δ(x)) k2 uα2 ≥ a(x) f (u), x ∈ Ω,

u > 0 in Ω; limδ(x)→0 u(x) = ∞.
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So u and u are respectively a sub-solution and a super-solution of problem (1.1). Moreover,
for each x ∈ Ω we have

u(x) = µ2 u2(x) ≤ µ2 c0 u1(x) ≤ µ1 u1(x) = u.

Since a ∈ C0,γ
loc (Ω) and f ∈ C1([0, ∞)), we deduce from Lemma 3.2 that (1.1) has a weak

solution u ∈W1,p
loc (Ω) ∩ C1,β

loc (Ω), for some 0 < β < 1, satisfying

u ≤ u ≤ u.

This together with (3.5) and (3.7) implies that u satisfies (1.6).

4 Application to the singular logistic problem with convection

Let a be a function satisfying (H1) and let f be a function satisfying (H2) and β ∈ R with
β < 1. In this paragraph, we are interested in the following problem

∆pu− β(p− 1)
u

|∇u|p = a(x) f (u), x ∈ Ω,

u > 0 in Ω

lim
δ(x)→0

u(x) = ∞.

(4.1)

By putting v = u1−β, we obtain by a simple calculus that v satisfies
∆pv = (1− β)p−1a(x)v−

β(p−1)
1−β f (v

1
1−β ), x ∈ Ω,

v > 0 in Ω

lim
δ(x)→0

v(x) = ∞.
(4.2)

Let g be the function defined on (0, ∞) by g(v) = (1 − β)v−
β(p−1)

1−β f
(
v

1
1−β
)

and put α∗1 =
α1−β(p−1)

1−β and α∗2 = α2−β(p−1)
1−β . Clearly 0 < p− 1 < α∗1 ≤ α∗2 and the function g satisfies

(1− β)k1 rα∗1 ≤ g(r) for r ≥ 1 and g(r) ≤ (1− β)k2 rα∗2 for r > 0.

Therefore, it follows from Theorem 1.2 that problem (4.2) has a positive weak solution
v ∈W1,p

loc (Ω) ∩ C1,ν
loc(Ω), for some 0 < ν < 1, such that

1
C
(δ(x))

(p−λ2)(1−β)
p−1−α2 θL2,λ2,p,α∗2 (δ(x)) ≤ v(x) ≤ C (δ(x))

(p−λ1)(1−β)
p−1−α1 θL1,λ1,p,α∗1 (δ(x))

for some constant C > 1. Consequently, we deduce that problem (4.1) has a solution
u ∈W1,p

loc (Ω) ∩ C1,ν
loc(Ω) satisfying

1
C
(δ(x))

p−λ2
p−1−α2 θL2,λ2,p,α2(δ(x)) ≤ u(x) ≤ C (δ(x))

p−λ1
p−1−α1 θL1,λ1,p,α1(δ(x))

for some constant C > 1.
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Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz Uni-
versity, Jeddah, under Grant No. 39-130-35-HiCi. The authors acknowledge with thanks DSR
technical and financial support. The authors are indebted to the anonymous referee for useful
comments.

References
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