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Abstract. It is shown that a continuous, absolutely integrable function satisfies the
initial value problem

Dqx(t) = f (t, x(t)), lim
t→0+

t1−qx(t) = x0 (0 < q < 1)

on an interval (0, T] if and only if it satisfies the Volterra integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds

on this same interval. In contradistinction to established existence theorems for these
equations, no Lipschitz condition is imposed on f (t, x). Examples with closed-form
solutions illustrate this result.

Keywords: fractional differential equations, Riemann–Liouville operators, singular ker-
nels, Volterra integral equations.
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1 Introduction

This is the first in a series of papers that will deal with the interplay between the scalar
fractional differential equation

Dqx(t) = f (t, x(t)) (1.1)

and the scalar Volterra integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds (1.2)

where q ∈ (0, 1), Dq is the Riemann–Liouville fractional differential operator of order
q, x0 ∈ R with x0 6= 0, and for an unbounded interval I ⊆ R the function f : (0, T]× I → R is
continuous.
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The purpose of this paper is to relate continuous solutions of the fractional equation (1.1)
when it is subject to the initial condition

lim
t→0+

t1−qx(t) = x0 (1.3)

to those of the integral equation (1.2). In short, the relationship is this: the initial value
problem

Dqx(t) = f (t, x(t)), lim
t→0+

t1−qx(t) = x0 (1.4)

and the integral equation (1.2) are equivalent in the sense that a continuous, absolutely inte-
grable function x(t) satisfying one of them also satisfies the other provided that f (t, x(t)) is
absolutely integrable. The precise statement is the content of the following theorem, which
is the main result in this paper. Its proof will be the culmination of three theorems in
Sections 4–6.

Theorem. Let q ∈ (0, 1) and x0 6= 0. Let f (t, x) be a function that is continuous on the set

B :=
{
(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I

}
where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T] → I is continuous
and that both x(t) and f (t, x(t)) are absolutely integrable on (0, T]. Then x(t) satisfies the
initial value problem (1.4) on the interval (0, T] if and only if it satisfies the Volterra integral
equation (1.2) on this same interval.

The significance of this theorem can be seen relative to an existence theorem: imagine a
theorem stating that a continuous, absolutely integrable function x(t) exists satisfying (1.2) on
an interval (0, T] if f (t, x) belongs to a set of functions with certain desired properties and that
f (t, x(t)) is itself continuous and absolutely integrable on (0, T]. Then, according to the above
theorem, the function x(t) will also satisfy the initial value problem (1.4). In fact, this paper
lays the groundwork for such an existence theorem, which will be introduced and discussed
in future papers.

An important aspect of the theorem, especially in light of the existence theorem just de-
scribed, is that unlike other results of this kind, such as in [4, 6, 8], no Lipschitz condition is
imposed on the function f (t, x). It was the study of typical inversion theorems (e.g., such as
in [4, p. 78]) for transforming (1.4) into (1.2) that prompted this paper. Such results impose
not only a Lipschitz condition on f (t, x) but also ask that it be bounded in a certain region, a
condition which is troubling in view of the obvious unboundedness of x in (1.2).

The condition asking that f be bounded for unbounded x has a history which is detailed
in part in [5, pp. 136–7]. For a long time that boundedness condition was required in exis-
tence theory both with and without a Lipschitz condition. (See Lemma 5.3 of Diethelm [4,
p. 80], Theorems 2.4.1 and 2.5.1 of Lakshmikantham et al. [6, pp. 30, 34], and Theorem 3.4 of
Podlubny [8, p. 127].)

Kilbas et al. prove an existence result in [5, Thm. 3.11, p. 165] requiring a Lipschitz condi-
tion but without asking that f be bounded for x unbounded. The main theorem of this paper
and the existence theorem of which we spoke earlier will extend such a result by dropping
both the Lipschitz condition and the boundedness of f requirement.
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2 Notation

First some words about notation and terminology: R+ denotes the set of all strictly positive
real numbers. For T > 0, C[0, T] denotes the set of all continuous functions on [0, T]. L1[0, T]
denotes the set of all measurable functions f on [0, T] for which | f | is Lebesgue integrable on
[0, T]. However, generally speaking, we use Riemann integrals (both proper and improper)
since most of the functions dealt with in this paper are either continuous on the closed interval
[0, T] or on the half-open interval (0, T]. Consequently,

∫ T
0 f (t) dt usually refers to a proper

or improper Riemann integral. We use the phrase “ f is absolutely integrable on the interval
(0, T]” to convey that

∫ T
0 | f (t)| dt is an improper Riemann integral (unless f is defined and

bounded on [0, T]) and that it converges. That is, f is absolutely integrable on (0, T] if f is
Riemann integrable on every closed interval [η, T], where η ∈ (0, T], and limη→0+

∫ T
η | f (t)| dt

exists and is finite, in which case
∫ T

0 | f (t)| dt is defined to be∫ T

0
| f (t)| dt := lim

η→0+

∫ T

η
| f (t)| dt.

The following proposition relating improper Riemann integrals and their Lebesgue coun-
terparts will aid in completing the proofs of some of the results in subsequent sections.

Proposition 2.1. Let f be a function that is defined on the half-open interval (0, T], and let f have a
singularity at t = 0.

(i) If f is absolutely integrable on (0, T], then f ∈ L1[0, T].

(ii) If f ∈ L1[0, T] is continuous on (0, T], then f is absolutely integrable on (0, T].

In both (i) and (ii), the improper Riemann integral of f on (0, T] is equal to the Lebesgue integral of f
on (0, T]. Also, the Lebesgue and improper Riemann integrals of | f | are equal.

Part (i) follows from an adaptation of Theorem 10.33 in [2, p. 276] for integrals on un-
bounded intervals to integrals of unbounded functions on a finite interval. Part (ii) follows
from a similar adaptation of Theorem 10.31 in [2, p. 274]. Details are left to the reader.

3 Initial conditions

In such works as [4, p. 77] and [5, p. 137], we find the initial condition

lim
t→0+

1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = b

associated with the fractional equation (1.1). But in place of b ∈ R, we prefer to write x0Γ(q).
Then the initial condition becomes

lim
t→0+

1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = x0Γ(q). (3.1)

In point of fact, for continuous, absolutely integrable functions x, it is equivalent to the initial
condition (1.3) (cf. Thm. 6.1). This type of initial condition is not only of mathematical interest
but is also important in physical applications. For example, the classical tautochrone problem
can be modeled by a fractional differential equation of the form

Dqx(t) = g(t)

with q = 1/2 and subject to an initial condition of the form (3.1).
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4 Inversion of the fractional differential equation

The main result in this section is Theorem 4.10. It states that a continuous function x : (0, T]→
I, where I represents some interval, that satisfies the fractional differential equation (1.1) on
(0, T] and the initial condition (3.1) will also satisfy the integral equation (1.2), provided some
conditions of absolute integrability are met. What is noteworthy is that we ask f to be neither
Lipschitz nor bounded; this result is to be compared with [4, p. 78], which in part motivated
this paper. Theorem 4.10 is preceded by Lemmas 4.1, 4.3, 4.5, 4.6, 4.8, 4.9 upon which its proof
rests. Lemma 4.8 states an important property of the fractional integral operator Jn, which is
defined next.

For n ∈ R+, let Jn denote the Riemann–Liouville fractional integral operator of order n, which
for h ∈ L1[0, T] is defined by (cf. [4, p. 13])

Jnh(t) :=
1

Γ(n)

∫ t

0
(t− s)n−1h(s) ds. (4.1)

Let J := J1.
Let Dq denote the Riemann–Liouville fractional differential operator of order q. For q ∈ (0, 1)

and h ∈ L1[0, T], it is defined by (cf. [4, p. 27])

Dqh := DJ1−qh, (4.2)

where D := d/dt. Thus, if (4.2) exists at a given t ∈ [0, T], its value is given by

Dqh(t) =
1

Γ(1− q)
d
dt

∫ t

0
(t− s)−qh(s) ds

where Γ : (0, ∞)→ R is Euler’s Gamma function, namely,

Γ(x) :=
∫ ∞

0
tx−1e−t dt.

It readily follows from this that Dq is a linear operator. That is, if for a pair of functions
h1, h2, the fractional derivatives Dqh1(t) and Dqh2(t) exist at a given t, then

Dq(c1h1 + c2h2)(t) = c1Dqh1(t) + c2Dqh2(t) (4.3)

for c1, c2 ∈ R.

Lemma 4.1. Let k ∈ R and q ∈ (0, 1). For t ≥ 0,

Jqk =
1

Γ(q)

∫ t

0
(t− s)q−1k ds =

k
Γ(q + 1)

tq.

For t > 0,

J1−qtq−1 =
1

Γ(1− q)

∫ t

0
(t− s)−qsq−1 ds = Γ(q).

Proof. Since ∫ t

0
(t− s)q−1 ds =

tq

q
,

we have
Jqk =

k
Γ(q)

· tq

q
=

k
Γ(q + 1)

tq,
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which is the first result of this lemma.
The second result can be derived from the Beta function, namely, the function B(p, q) that

is defined by

B(p, q) :=
∫ 1

0
vp−1(1− v)q−1 dv.

B(p, q) converges if and only if both p and q are positive. Using the change of variable s = tv,
where t > 0, and the well-known formula

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

,

we obtain ∫ t

0
(t− s)−qsq−1 ds =

∫ 1

0
(t− tv)−q(tv)q−1t dv =

∫ 1

0
(1− v)−qvq−1 dv

=
∫ 1

0
vq−1(1− v)(1−q)−1 dv = B(q, 1− q)

=
Γ(q)Γ(1− q)
Γ(q + 1− q)

= Γ(q)Γ(1− q).

The second result follows from this equation.

Remark 4.2. Let p, q > 0. With the same change of variable, i.e. s = tv, the integration formula∫ t

0
(t− s)p−1sq−1 ds = tp+q−1 Γ(p)Γ(q)

Γ(p + q)
(t > 0) (4.4)

can also be derived from the Beta function.

Lemma 4.3. Let ϕ be a continuous function on the compact interval [a, b] and n ∈ R+. Then, for each
t ∈ [a, b], the Riemann integral

Ha(t) :=
∫ t

a
(t− s)n−1ϕ(s) ds (4.5)

converges absolutely. Furthermore, Ha is continuous on [a, b].

Remark 4.4. Note that the integral in (4.5) is improper when 0 < n < 1. It is convenient here
to say Ha is absolutely convergent when n ≥ 1 even though the integral is not improper.

Proof. It suffices to show that

H(t) :=
∫ t

0
(t− s)n−1ϕ(s) ds (4.6)

is continuous on an interval [0, T] for any given ϕ ∈ C[0, T] since with an appropriate change
of variable we can translate [a, b] to [0, T], where T = b− a, and at the same time change the
form of (4.5) to (4.6). Thus we begin with (4.6) but rewritten as

H(t) =
∫ t

0
sn−1ϕ(t− s) ds, (4.7)

where ϕ ∈ C[0, T].
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First let us view H as a Lebesgue integral. Define the function h : [0, T]× [0, T]→ R by

h(t, s) :=

{
sn−1ϕ(t− s), if (t, s) ∈ ΩT

0, if (t, s) /∈ ΩT

where ΩT := {(t, s) | 0 < s ≤ t ≤ T}. Then, for each fixed t ∈ [0, T], define the function
ht : [0, T]→ R by

ht(s) := h(t, s).

Observe that
ht(s) = f (s)gt(s),

where

f (s) :=

{
sn−1, if 0 < s ≤ T

0, if s = 0

and

gt(s) :=

{
ϕ(t− s), if 0 ≤ s ≤ t

0, if t < s ≤ T.

If n ∈ (0, 1), the improper Riemann integral
∫ T

0 sn−1 ds converges; so, by Proposition 2.1,
sn−1 ∈ L1[0, T]. Apart from s = 0, the functions f (s) and sn−1 are equal. Thus, f ∈ L1[0, T].
Clearly f ∈ L1[0, T] if n = 1. If n > 1, observe that f (s) = sn−1 for 0 ≤ s ≤ T, a proper
Riemann integrable function. So once again f ∈ L1[0, T]. In sum, for all n > 0, f ∈ L1[0, T]
and, a fortiori, measurable on [0, T].

As for the function gt, it is defined and bounded on [0, T] and continuous everywhere
except at s = t unless ϕ(0) = 0. Thus, by Lebesgue’s criterion for integrability, gt is Riemann
integrable on [0, T]. Hence, gt ∈ L1[0, T]. So it too is measurable on [0, T].

Note the function h(t, s) has the following properties:

(a) For each fixed t ∈ [0, T], the function ht(s), being the product of the measurable functions
f (s) and gt(s), is measurable on [0, T].

(b) Since ϕ(s) is continuous on [0, T], there is a constant M > 0 such that |gt(s)| ≤ M for
0 ≤ s ≤ T. Thus, for each t ∈ [0, T],

|h(t, s)| = |ht(s)| = | f (s)||gt(s)| ≤ M f (s)

on [0, T], where M f ∈ L1[0, T].

(c) For each fixed t ∈ [0, T], it is clear that

lim
u→t

h(u, s) = h(t, s)

for almost all s ∈ [0, T]. That is, depending on how ϕ is defined, this may or may not be
the case at s = t.

Then, because h has these properties, we can invoke a theorem for integrals whose inte-
grands depend on a parameter, such as the theorem in [2, p. 281]. For this situation, it states
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that the Lebesgue integral
∫ T

0 h(t, s) ds exists for each t ∈ [0, T] and is a continuous function
of t on [0, T]. Since h(t, s) = 0 for t < s ≤ T, it is equal to H(t) as∫ T

0
h(t, s) ds =

∫ t

0
h(t, s) ds +

∫ T

t
h(t, s) ds =

∫ t

0
sn−1ϕ(t− s) ds.

Hence H is continuous on [0, T].
Finally, for 0 < n < 1, let us show for each t ∈ (0, T] that the value of the Lebesgue integral

H(t) is equal to the improper Riemann integral of sn−1ϕ(t− s) on (0, t]. For such a fixed t, we
see from the definition of h(t, s) that

ht(s) = sn−1ϕ(t− s) for 0 < s ≤ t.

Since ∫ t

0
ht(s) ds =

∫ t

0
sn−1ϕ(t− s) ds = H(t) < ∞,

ht(s) is Lebesgue integrable on [0, t]. Consequently, so is |ht(s)|. From (a) we see that ht(s)
is measurable on [0, t]. Hence, ht ∈ L1[0, t]. Thus, as ht(s) is continuous on (0, t], it follows
from Proposition 2.1 that it is absolutely integrable on (0, t] and that the improper Riemann
integral of ht(s) on (0, t] is equal to the Lebesgue integral of ht(s).

If we replace (t− s)n−1 in (4.5) with ψ(t− s) where ψ ∈ L1[0, T], we obtain the following
generalization of Lemma 4.3.

Lemma 4.5. Let ϕ ∈ C[a, b] and ψ ∈ L1[a, b]. Then the Lebesgue integral

Ha(t) :=
∫ t

a
ψ(t− s)ϕ(s) ds (4.8)

defines a function that is continuous on [a, b].

Proof. The proof is the same as that of Lemma 4.3, aside from some minor details, if in that
proof sn−1 is replaced with ψ(t− s).

In Lemma 4.3 the integrand of the integral (4.6) has a singularity at the upper limit of
integration if n ∈ (0, 1). In the next lemma, we add to that a singularity at the lower limit of
integration by supposing that the function ϕ(s) has a singularity at s = 0.

Lemma 4.6. Let n ∈ R+. If a function ϕ is continuous and absolutely integrable on (0, T], then the
improper Riemann integral

H(t) =
∫ t

0
(t− s)n−1ϕ(s) ds (4.9)

defines a function that is also continuous and absolutely integrable on (0, T].

Remark 4.7. Whether or not H is continuous at t = 0 depends on the particular function ϕ.
For example, let ϕ(s) = sm−1 with m > 0. Then from (4.4) we have

H(t) = tm+n−1 Γ(m)Γ(n)
Γ(m + n)

for t > 0. Thus, as H(0) = 0, H is continuous at t = 0 if m + n > 1 but discontinuous if
m + n ≤ 1.
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Proof. Choose an arbitrary a ∈ (0, T). Then, for each fixed t ∈ (a, T], we can rewrite H(t) as

H(t) = I(t) + Ha(t),

where Ha is defined by (4.5) and

I(t) :=
∫ a

0
(t− s)n−1ϕ(s) ds.

According to Lemma 4.3, the integral Ha(t) converges absolutely. Since t > a, (t − s)n−1 is
continuous for 0 ≤ s ≤ a, hence, bounded. Thus, as ϕ(s) is absolutely integrable on (0, a], so
is (t− s)n−1ϕ(s). In other words, the integral I(t) also converges absolutely. Consequently,
H(t) converges absolutely. Therefore, H defines a function on (a, T].

As to continuity, we have already established in Lemma 4.3 that Ha(t) is continuous on
[a, T]. So let us now show that I(t) is continuous on (a, T]. To that end, choose any t1 ∈ (a, T].
Then for t ∈ (a, T], we have

|I(t)− I(t1)| =
∣∣∣∣∫ a

0
(t− s)n−1ϕ(s) ds−

∫ a

0
(t1 − s)n−1ϕ(s) ds

∣∣∣∣
≤
∫ a

0

∣∣(t− s)n−1 − (t1 − s)n−1∣∣∣∣ϕ(s)∣∣ ds

≤ max
0≤s≤a

∣∣(t− s)n−1 − (t1 − s)n−1∣∣ ∫ a

0

∣∣ϕ(s)∣∣ ds.

Consider the three cases: (i) n ∈ (0, 1), (ii) n = 1, and (iii) n > 1.
If 0 < n < 1, then

max
0≤s≤a

∣∣(t− s)n−1 − (t1 − s)n−1∣∣ = ∣∣(t− a)n−1 − (t1 − a)n−1∣∣.
Consequently,

|I(t)− I(t1)| ≤ M
∣∣(t− a)n−1 − (t1 − a)n−1∣∣,

where M :=
∫ a

0

∣∣ϕ(s)∣∣ ds < ∞. Since (t− a)n−1 ∈ C(a, T], for each ε > 0 there is a δ > 0 such
that |t− t1| < δ implies that ∣∣(t− a)n−1 − (t1 − a)n−1∣∣ < ε

M
.

As a result,
|I(t)− I(t1)| < M · ε

M
= ε,

which shows that I(t) is continuous at t1. Since t1 is an arbitrary point in (a, T], we conclude
I(t) is continuous on this interval. Consequently, H is continuous on (a, T]. In point of fact, H
is continuous on the entire interval (0, T] since at the outset of this proof we chose an arbitrary
a ∈ (0, T].

For n > 1, a similar analysis again leads to the conclusion that H is continuous on (a, T]—
and so on (0, T].

If n = 1, then H(t) =
∫ t

0 ϕ(s) ds. By hypothesis, ϕ is absolutely integrable on (0, T]; so
ϕ ∈ L1[0, T]. Therefore, H is (absolutely) continuous on the closed interval [0, T] (cf. [10,
p. 319]).

To prove H is absolutely integrable on (0, T], define the set

ΩT := {(t, s) | 0 ≤ s < t ≤ T}
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and rewrite H as

H(t) =
∫ T

0
sn−1 ϕ̃(t− s) ds

where

ϕ̃(t− s) :=

{
ϕ(t− s), if (t, s) ∈ ΩT

0, if (t, s) /∈ ΩT.

With the aid of results in [3, p. 121] and [10, (6.126), p. 355], one can show that the integrand
sn−1 ϕ̃(t− s) is a measurable function on the rectangle [0, T]× [0, T].

Now consider the following iterated integral of |sn−1 ϕ̃(t− s)|:

∫ T

0

∫ T

0
|sn−1 ϕ̃(t− s)| dt ds =

∫ T

0
sn−1

(∫ T

0
|ϕ̃(t− s)| dt

)
ds

=
∫ T

0
sn−1

(∫ s

0
|ϕ̃(t− s)| dt +

∫ T

s
|ϕ̃(t− s)| dt

)
ds

=
∫ T

0
sn−1

(∫ T

s
|ϕ(t− s)| dt

)
ds.

As ϕ is absolutely integrable on (0, T],

∫ T

0

∫ T

0
|sn−1 ϕ̃(t− s)| dt ds =

∫ T

0
sn−1

(∫ T−s

0
|ϕ(u)| du

)
ds

≤
∫ T

0
sn−1

(∫ T

0
|ϕ(u)| du

)
ds =

Tn

n

∫ T

0
|ϕ(u)| du < ∞.

The finiteness of this iterated integral implies sn−1 ϕ̃(t− s) is Lebesgue integrable on [0, T]×
[0, T] and that ∫ T

0

∫ T

0
sn−1 ϕ̃(t− s) dt ds =

∫ T

0

∫ T

0
sn−1 ϕ̃(t− s) ds dt.

(Cf. the Tonelli–Hobson test in [2, p. 415] or [9, p. 93].) As a result, H is Lebesgue integrable
on [0, T] as ∫ T

0
H(t) dt =

∫ T

0

∫ T

0
sn−1 ϕ̃(t− s) ds dt < ∞.

Thus, H is measurable on [0, T] and |H| is Lebesgue integrable on [0, T]; so H ∈ L1[0, T].
Therefore, as H is continuous on (0, T] and H ∈ L1[0, T], it follows from Proposition 2.1

that H is absolutely integrable on (0, T].

Lemma 4.8. Let ϕ be continuous and absolutely integrable on (0, T]. Let m, n ∈ R+. If m + n ≥ 1,
then

Jm+n ϕ(t) =
1

Γ(m + n)

∫ t

0
(t− s)m+n−1ϕ(s) ds (4.10)

is continuous on the closed interval [0, T]. Moreover,

Jm+n ϕ(t) = JmJn ϕ(t) (4.11)

at each t ∈ [0, T].
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Proof. It follows from Lemma 4.6 that

Jn ϕ(t) =
1

Γ(n)

∫ t

0
(t− s)n−1ϕ(s) ds

and Jm+n ϕ are continuous and absolutely integrable on (0, T]. By that same lemma,

JmJn ϕ(t) =
1

Γ(m)

∫ t

0
(t− s)m−1Jn ϕ(s) ds (4.12)

is also continuous and absolutely integrable on (0, T].
Now suppose m + n ≥ 1. Then, as sm+n−1 ∈ C[0, T] and ϕ ∈ L1[0, T], we see from

Lemma 4.5 that Jm+n ϕ is continuous not only on (0, T] but at t = 0 as well. This concludes
the proof of the first statement.

Observe that (4.11) holds at t = 0 since both (4.10) and (4.12) are equal to 0. To prove
(4.11) holds on the entire interval, select an arbitrary t ∈ (0, T]. Then, because of (4.4), we can
rewrite (4.10) as

Jm+n ϕ(t) =
1

Γ(m)Γ(n)

∫ t

0
(t− u)m+n−1 Γ(m)Γ(n)

Γ(m + n)
ϕ(u) du

=
1

Γ(m)Γ(n)

∫ t

0

[∫ t−u

0
(t− u− v)m−1vn−1 dv

]
ϕ(u) du.

With the change of variable s = u + v, this becomes

Jm+n ϕ(t) =
1

Γ(m)Γ(n)

∫ t

0

[∫ t

u
(t− s)m−1(s− u)n−1 ds

]
ϕ(u) du

=
1

Γ(m)Γ(n)

∫ t

0

∫ t

u
ft(s, u) ds du,

where ft(s, u) := (t− s)m−1(s− u)n−1ϕ(u).
With the intent of justifying interchanging the order of integration, let us first rewrite this

as

Jm+n ϕ(t) =
1

Γ(m)Γ(n)

∫ t

0

∫ t

0
Ft(s, u) ds du,

where Ft : [0, t]× [0, t]→ R is the function defined by

Ft(s, u) :=

{
ft(s, u), if (s, u) ∈ Ωt

0, if (s, u) /∈ Ωt

and Ωt ⊂ [0, t]× [0, t] is defined by

Ωt := {(s, u) : 0 < u < s < t}.

It can be shown that Ft is measurable on [0, t] × [0, t] using results from [3, p. 121] and
[10, (6.126), p. 355].

It once again follows from Lemma 4.5 that∫ t

0
(t− u)m+n−1|ϕ(u)| du < ∞
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since um+n−1 ∈ C[0, T] and |ϕ| ∈ L1[0, T]. From the previous work, we see that this can also
be written as ∫ t

0

∫ t

0
|Ft(s, u)| ds du < ∞.

As a result, the Tonelli–Hobson test justifies the following interchange in the order of integra-
tion:

Jm+n ϕ(t) =
1

Γ(m)Γ(n)

∫ t

0

∫ t

0
Ft(s, u) ds du

=
1

Γ(m)Γ(n)

∫ t

0

∫ t

0
Ft(s, u) du ds =

1
Γ(m)Γ(n)

∫ t

0

∫ s

0
ft(s, u) du ds

=
1

Γ(m)Γ(n)

∫ t

0

∫ s

0
(t− s)m−1(s− u)n−1ϕ(u) du ds

=
1

Γ(m)

∫ t

0
(t− s)m−1

(
1

Γ(n)

∫ s

0
(s− u)n−1ϕ(u) du

)
ds

=
1

Γ(m)

∫ t

0
(t− s)m−1Jn ϕ(s) ds = JmJn ϕ(t).

Since t denotes an arbitrary point in (0, T], Jm+n ϕ(t) = JmJm ϕ(t) holds at every t ∈ (0, T].
And, as was pointed out earlier, it holds at t = 0 as well. This concludes the proof of the
second statement.

Lemma 4.9. Let ϕ ∈ L1[0, T] and m, n ∈ R+. If m + n ≥ 1, then the Lebesgue integral

Jm+n ϕ(t) =
1

Γ(m + n)

∫ t

0
(t− s)m+n−1ϕ(s) ds (4.13)

is continuous on [0, T] and (4.11) holds at each t ∈ [0, T].

Proof. With (4.13) rewritten as

Jm+n ϕ(t) =
1

Γ(m + n)

∫ t

0
ϕ(t− s)sm+n−1 ds,

we see that the integral is the convolution of sm+n−1 ∈ C[0, T] and ϕ ∈ L1[0, T]. It then follows
from Lemma 4.5 that Jm+n ϕ ∈ C[0, T].

Because the proof of (4.11) is based on |ϕ| ∈ L1[0, T], which by hypothesis is the case here,
it is also valid here.

With these lemmas we can at last prove the main result of this section.

Theorem 4.10. Let q ∈ (0, 1). Let f (t, x) be a function that is continuous on the set

B =
{
(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I

}
,

where I denotes an unbounded interval in R. Suppose there is a continuous function x : (0, T] → I
such that both x(t) and f (t, x(t)) are absolutely integrable on (0, T]. Suppose further that x(t) satisfies
the fractional differential equation

Dqx(t) = f (t, x(t)) (1.1)

on (0, T] and the initial condition

lim
t→0+

1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = x0Γ(q), (3.1)
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where x0 6= 0. Then x(t) also satisfies the integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds (1.2)

on (0, T].

Remark 4.11. The interval I must be unbounded. It can be left-unbounded, right-unbounded,
or it can be R (cf. Cor. 6.3 in Sec. 6). For instance, we will see in Example 4.12 that I = [0, ∞)

while I = R in Example 7.1.

Proof. Suppose a continuous function x : (0, T] → I exists satisfying the fractional equation
(1.1) on (0, T] and the initial condition (3.1) and that it is absolutely integrable on (0, T]. Then,
as f is continuous on the set B, the function ϕ defined by

ϕ(t) := f (t, x(t)) (4.14)

is continuous on (0, T]. From (1.1) and (4.2), we have

ϕ(t) = Dqx(t) = DJ1−qx(t). (4.15)

Consequently,

J1−qx(t) =
1

Γ(1− q)

∫ t

0
(t− s)−qx(s) ds (4.16)

is continuously differentiable on (0, T]. An integration of (4.15) yields∫ t

η
ϕ(s) ds = J1−qx(t)− J1−qx(η)

for 0 < η < t ≤ T. Taking the right-hand limit

lim
η→0+

∫ t

η
ϕ(s) ds = J1−qx(t)− lim

η→0+
J1−qx(η)

and using (3.1), we obtain ∫ t

0
ϕ(s) ds = J1−qx(t)− x0Γ(q).

Therefore,
J1−qx(t) = x0Γ(q) + Jϕ(t) (4.17)

for 0 < t ≤ T.
Now apply Jq to both sides of (4.17). Since ϕ(t) is continuous and absolutely integrable on

(0, T], Lemma 4.8 allows us to simplify the right-hand side to

JqJ1−qx(t) = Jq[x0Γ(q)
]
+ JqJϕ(t)

=
x0Γ(q)

Γ(q + 1)
tq + Jq+1ϕ(t) =

x0

q
tq + J1Jq ϕ(t),

where we have also used Lemma 4.1. And as JqJ1−qx(t) = J1x(t), this further simplifies to∫ t

0
x(s) ds =

x0

q
tq +

∫ t

0
Jq ϕ(s) ds. (4.18)
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Moreover from Lemma 4.6 we see that the integrand

Jq ϕ(s) =
1

Γ(q)

∫ s

0
(s− u)q−1ϕ(u) du

is continuous on (0, T]. Differentiating (4.18), we obtain

x(t) = x0tq−1 + Jq ϕ(t) = x0tq−1 + Jq f (t, x(t))

for 0 < t ≤ T, which is (1.2).

It is challenging to come up with an example of a nonlinear fractional differential equation
or a nonlinear Volterra integral equation with a closed-form solution to illustrate the previous
theorem. However, here is an example.

Example 4.12. A continuous, absolutely integrable function x(t) that satisfies the fractional
differential equation

D1/2x(t) = −
√

π

2
(√

tx(t)
)3/2 (4.19)

on (0, ∞) and the initial condition

lim
t→0+

1√
π

∫ t

0
(t− s)−1/2x(s) ds =

√
π (4.20)

is

x(t) =
1√

t(1 + t)
. (4.21)

Furthermore, it also satisfies the integral equation

x(t) =
1√

t
− 1

2

∫ t

0
(t− s)−1/2(√sx(s)

)3/2 ds (4.22)

on (0, ∞).

Proof. Comparing (4.19) with (1.1), we see that q = 1/2 and

f (t, x) = −
√

π

2
(√

t x
)3/2. (4.23)

And comparing (4.20) with (3.1), we see that x0 = 1 as Γ(1/2) =
√

π. Choose any T > 0.
Note that f (t, x) is continuous on the set

B =
{
(t, x) ∈ R2 : 0 < t ≤ T, 0 ≤ x < ∞

}
.

The function x : (0, T] → (0, ∞) defined by (4.21) has a singularity at t = 0, but it is
continuous on (0, T]. Integrating, with the change of variable u =

√
t, we obtain

∫ T

0
|x(t)| dt = lim

η→0+

∫ T

η

dt√
t(1 + t)

= 2 lim
η→0+

∫ √T

√
η

du
1 + u2

= 2 tan−1
√

T < ∞,



14 L. C. Becker, T. A. Burton and I. K. Purnaras

showing that x is absolutely integrable on (0, T]. Likewise the same is true of f (t, x(t)) as∫ T

0
| f (t, x(t))| dt =

√
π

2

∫ T

0

(√
tx(t)

)3/2 dt =
√

π

2

∫ T

0

1
(1 + t)3/2 dt

=
√

π

(
1− 1√

1 + T

)
< ∞.

Let us now directly verify that (4.21) satisfies (4.19). Substituting it into the left-hand side
of (4.19), we get

D1/2x(t) =
1

Γ(1/2)
d
dt

∫ t

0
(t− s)−1/2x(s) ds (4.24)

=
1√
π

d
dt

∫ t

0
(t− s)−1/2 · 1√

s(1 + s)
ds =

1√
π

d
dt
I(t)

where

I(t) :=
∫ t

0

1√
t− s

· 1√
s(1 + s)

ds.

With the change of variable u =
√

s, this integral becomes

I(t) = 2
∫ √t

0

du
(1 + u2)

√
t− u2

.

Using an integration formula from [1, (3.3.49), p. 13], we find that for η <
√

t:∫ η

0

du
(1 + u2)

√
t− u2

=
1√

t + 1
tan−1 η(t + 1)√

t− η2
.

Hence, ∫ √t

0

du
(1 + u2)

√
t− u2

= lim
η→
√

t
−

1√
t + 1

tan−1 η(t + 1)√
t− η2

=
1√

t + 1

(π

2

)
.

And so
I(t) =

π√
t + 1

for t > 0. Then, for 0 < t ≤ T, we see from (4.24) and (4.21) that

D1/2x(t) =
1√
π

d
dt

π√
t + 1

= −
√

π

2
1

(1 + t)3/2 = −
√

π

2

(
1

1 + t

)3/2

= −
√

π

2

(√
t · 1√

t(1 + t)

)3/2

= −
√

π

2
(√

tx(t)
)3/2,

which verifies that (4.21) satisfies (4.19) on (0, T].
The initial condition (4.20) is also satisfied because

lim
t→0+

1√
π

∫ t

0
(t− s)−1/2x(s) ds = lim

t→0+

1√
π

∫ t

0
(t− s)−1/2 1√

s(1 + s)
ds

= lim
t→0+

1√
π
I(t) = lim

t→0+

1√
π

π√
t + 1

=
√

π.

Since all of the conditions of Theorem 4.10 are met, we conclude (4.21) satisfies not only
the differential equation (4.19) on (0, T] but also the integral equation (4.22). Since this is true
for every T > 0, (4.21) satisfies (4.19) and (4.22) for all t > 0.
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5 Complementary integral equation

We now show that the converse of Theorem 4.10 is also true.

Theorem 5.1. Let f (t, x) be a function that is continuous on the set

B =
{
(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I

}
,

where I denotes an unbounded interval in R. If there is a continuous function x : (0, T]→ I such that
both x(t) and f (t, x(t)) are absolutely integrable on (0, T] and if x(t) satisfies the integral equation
(1.2), namely

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds,

on (0, T], where q ∈ (0, 1) and x0 6= 0, then it also satisfies the fractional differential equation (1.1) on
(0, T] and the initial condition (3.1).

We remark that condition (3.1) is shown to be equivalent to condition (1.3) in Section 6.

Proof. By hypothesis, a function x(t) satisfies the integral equation (1.2). In other words, this
function satisfies the equation

x(t) = x0tq−1 + Jq f (t, x(t)) (5.1)

for 0 < t ≤ T. To show that it also satisfies (1.1), apply the operator Dq to both of the terms
on the right-hand side of (5.1).

Beginning with the first term, we have

Dq(x0tq−1) = DJ1−q(x0tq−1),
where, from Lemma 4.1,

J1−q(x0tq−1) = x0J1−qtq−1 = x0Γ(q).

Therefore,

Dq(x0tq−1) = d
dt
(
x0Γ(q)

)
= 0 (5.2)

for t ∈ (0, T].
Now consider the second term of (5.1):

Jq f (t, x(t)) =
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds.

Since f (t, x(t)) is continuous and absolutely integrable on (0, T], we see from Lemma 4.8 that

J1−qJq f (t, x(t)) = J(1−q)+q f (t, x(t)) = J1 f (t, x(t))

for each t ∈ [0, T]. Consequently,

DqJq f (t, x(t)) = DJ1−qJq f (t, x(t)) = DJ1 f (t, x(t)) (5.3)

=
d
dt

∫ t

0
f (s, x(s)) ds = f (t, x(t))
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for t ∈ (0, T]. It then follows from (5.2), (5.3), and the linearity property (4.3) that

Dq(x0tq−1 + Jq f (t, x(t))
)
= Dq(x0tq−1)+ DqJq f (t, x(t)) = f (t, x(t)).

This, together with (5.1), yields
Dqx(t) = f (t, x(t))

for 0 < t ≤ T.
Finally we prove that x satisfies the initial condition (3.1). Applying the integral operator

J1−q to both sides of (5.1), we obtain

J1−qx(t) = J1−q(x0tq−1)+ J1−qJq f (t, x(t))

= x0Γ(q) + J1 f (t, x(t)).

Consequently,
1

Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = x0Γ(q) +

∫ t

0
f (s, x(s)) ds.

Therefore,

lim
t→0+

1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = x0Γ(q) + lim

t→0+

∫ t

0
f (s, x(s)) ds = x0Γ(q).

The next example has already been dealt with in Example 4.12. However, let us consider
it from the point of view of Theorem 5.1.

Example 5.2. A function that satisfies the integral equation

x(t) = t−1/2 +
1

Γ( 1
2 )

∫ t

0
(t− s)−1/2

[
−
√

π

2
(√

sx(s)
)3/2

]
ds (5.4)

=
1√

t
− 1

2

∫ t

0
(t− s)−1/2(√sx(s)

)3/2 ds

on (0, ∞) is

x(t) =
1√

t(1 + t)
. (5.5)

Furthermore, it also satisfies the differential equation

D1/2x(t) = −
√

π

2
(√

tx(t)
)3/2 (5.6)

on (0, ∞) and the initial condition

lim
t→0+

1√
π

∫ t

0
(t− s)−1/2x(s) ds =

√
π. (5.7)

Proof. For an arbitrary T > 0, we have already shown in Example 4.12 that x(t) and

f (t, x(t)) = −
√

π

2
(√

t x(t)
)3/2

are absolutely integrable on (0, T]. What remains to be shown is that (5.5) satisfies (5.4). Then
we can simply invoke Theorem 5.1 to assert that (5.5) also satisfies (5.6) and (5.7).



Complementary equations 17

From (5.5) we have

(√
tx(t)

)3/2
=

(
1

1 + t

)3/2

=
1

(1 + t)3/2 .

Consequently, the integral term in (5.4) is

I(t) :=
1
2

∫ t

0
(t− s)−1/2(√sx(s)

)3/2 ds =
1
2

∫ t

0

1√
t− s

· 1
(1 + s)

√
1 + s

ds.

With the change of variable u =
√

1 + s, the function I(t) becomes

I(t) =
∫ √1+t

1

1
u2
√

1 + t− u2
du.

Then, letting a =
√

1 + t and using the trig substitution u = a sin θ, we obtain

I(t) = −
[√

a2 − u2

a2u

]√1+t

1

= − 1
1 + t

[√
1 + t− u2

u

]√1+t

1

= − 1
1 + t

(√
1 + t− (1 + t)√

1 + t
−
√

t

)
=

√
t

1 + t
.

Therefore, for t > 0 the right-hand of (5.4) is

1√
t
− I(t) =

1√
t
−
√

t
1 + t

=
1√

t(1 + t)
= x(t),

which verifies that (5.5) satisfies (5.4) on (0, T].
Since all of the conditions of Theorem 5.1 are fulfilled, it then follows that (5.5) also satisfies

the differential equation (5.6) on (0, T] and the initial condition (5.7). Moreover, as T > 0 is
arbitrary, (5.5) satisfies both (5.4) and (5.6) on (0, ∞). Recall that a direct verification of this is
given in Example 4.12.

6 Equivalent initial conditions and equations

We now prove, under the hypotheses of Theorems 4.10 and 5.1, that the two initial conditions
(1.3) and (3.1) are equivalent.

Theorem 6.1. Let x0 ∈ R and q ∈ (0, 1). Suppose a function x is continuous and absolutely integrable
on (0, T]. Then

lim
t→0+

t1−qx(t) = x0 (1.3)

if and only if
lim

t→0+
J1−qx(t) = x0Γ(q),

to wit:

lim
t→0+

1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds = x0Γ(q). (3.1)
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Proof. Assume (1.3). Then for each ε > 0 there is a δ ∈ (0, T] such that 0 < t < δ implies∣∣t1−qx(t)− x0∣∣ < ε

2Γ(q)

or (
x0 − ε

2Γ(q)

)
tq−1 < x(t) <

(
x0 +

ε

2Γ(q)

)
tq−1. (6.1)

Then this implies that

|x(t)| <
(
|x0|+ ε

2Γ(q)

)
tq−1

for 0 < t < δ. Consequently,

(t− s)−q|x(s)| <
(
|x0|+ ε

2Γ(q)

)
sq−1(t− s)−q (6.2)

for 0 < s < t < δ. From Lemma 4.1, we have∫ t

0
sq−1(t− s)−q ds = Γ(q)Γ(1− q).

Thus the improper integral of the right-hand side of (6.2) over [0, t] converges. It then follows
from the comparison test that the integral∫ t

0
(t− s)−qx(s) ds

converges absolutely for each t ∈ (0, δ). As a result, we see from (6.1) that(
x0 − ε

2Γ(q)

) ∫ t

0
(t− s)−qsq−1 ds ≤

∫ t

0
(t− s)−qx(s) ds

≤
(

x0 +
ε

2Γ(q)

) ∫ t

0
(t− s)−qsq−1 ds.

Using Lemma 4.1 again, we obtain(
x0 − ε

2Γ(q)

)
Γ(q)Γ(1− q) ≤

∫ t

0
(t− s)−qx(s) ds

≤
(

x0 +
ε

2Γ(q)

)
Γ(q)Γ(1− q)

or

x0Γ(q)− ε

2
≤ 1

Γ(1− q)

∫ t

0
(t− s)−qx(s) ds ≤ x0Γ(q) +

ε

2
.

Therefore, ∣∣∣∣ 1
Γ(1− q)

∫ t

0
(t− s)−qx(s) ds− x0Γ(q)

∣∣∣∣ < ε

if 0 < t < δ. This concludes the “only if” part of the proof.
Now consider the “if” part of the proof. By hypothesis, x is continuous and absolutely

integrable on (0, T]. As −q > −1, it follows from Lemma 4.6 that

J1−qx(t) =
1

Γ(1− q)

∫ t

0
(t− s)−qx(s) ds
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exists at each t ∈ [0, T]. With that established, let us assume (3.1) holds. Then for each ε > 0
there exists a δ > 0 such that ∣∣J1−qx(t)− x0Γ(q)

∣∣ < ε

2
Γ(q)

or (
x0 − ε

2

)
Γ(q) < J1−qx(t) <

(
x0 +

ε

2

)
Γ(q) (6.3)

for 0 < t < δ. Applying the operator Jq, we have

Jq
[(

x0 − ε

2

)
Γ(q)

]
≤ JqJ1−qx(t) ≤ Jq

[(
x0 +

ε

2

)
Γ(q)

]
for 0 < t < δ. By Lemma 4.8,

JqJ1−qx(t) = J1x(t) =
∫ t

0
x(s) ds

at every t ∈ [0, T]. Therefore, due to this and Lemma 4.1, the previous pair of inequalities
simplify to (

x0 − ε

2

) tq

q
≤
∫ t

0
x(s) ds ≤

(
x0 +

ε

2

) tq

q

for 0 < t < δ. In sum, we have shown that for each ε > 0 there is a δ > 0 such that∣∣∣∣qt−q
∫ t

0
x(s) ds− x0

∣∣∣∣ < ε

for 0 < t < δ. In other words,

lim
t→0+

q
∫ t

0 x(s) ds
tq = x0. (6.4)

Since x is improperly integrable on (0, T],
∫ t

0 x(s) ds → 0 as t → 0+. And, as q ∈ (0, 1),
tq → 0 as t→ 0+. Applying L’Hôpital’s rule, we have

lim
t→0+

q
∫ t

0 x(s) ds
tq = lim

t→0+

x(t)
tq−1 .

Combining this with (6.4), we obtain (1.3). This concludes the “if” part of the proof.

By virtue of Theorems 4.10 and 5.1, we see under the conditions of Theorem 6.1 that the
initial value problem (1.4) and the Volterra integral equation (1.2) are equivalent in the sense
that they share the same set of solutions from the space of continuous, absolutely integrable
functions. Consequently we have the following theorem, which is the main result of this paper
that was previewed in Section 1.

Theorem 6.2. Let q ∈ (0, 1) and x0 6= 0. Let f (t, x) be a function that is continuous on the set

B =
{
(t, x) ∈ R2 : 0 < t ≤ T, x ∈ I

}
where I ⊆ R denotes an unbounded interval. Suppose a function x : (0, T] → I is continuous and
that both x(t) and f (t, x(t)) are absolutely integrable on (0, T]. Then x(t) satisfies the initial value
problem

Dqx(t) = f (t, x(t)), lim
t→0+

t1−qx(t) = x0 (1.4)
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on (0, T] if and only if it satisfies the Volterra integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s, x(s)) ds (1.2)

on (0, T].

Corollary 6.3. Let x : (0, T] → I and f : B → R represent functions that satisfy the continuity and
integrability conditions of Theorem 6.2. If x satisfies either the initial value problem (1.4) or the integral
equation (1.2), then it has the following properties:

(i) limt→0+ t1−qx(t) = x0.

(ii) The sign of x(t) is the same as that of x0 for each t ∈ (0, δ) if δ is sufficiently small.

(iii) If x0 > 0, then
lim

t→0+
trx(t) = ∞

for r < 1− q. In particular, limt→0+ x(t) = ∞.

(iv) If x0 < 0, then
lim

t→0+
trx(t) = −∞

for r < 1− q. In particular, limt→0+ x(t) = −∞.

(v) limt→0+ t1−q
∫ t

0 (t− s)q−1 f (s, x(s)) ds = 0.

(vi) If limt→0+ f (t, x(t)) exists and is finite, then

lim
t→0+

∫ t

0
(t− s)n−1 f (s, x(s)) ds = 0

for n > 0. In particular, this is true for n = q.

Proof. Item (i) is an immediate consequence of the function x satisfying either the initial value
problem (1.4) or the integral equation (1.2). This in turn implies (ii)–(iv). In order to see this,
let ε = 1

2 |x0|. Then there is a δ > 0 such that

|t1−qx(t)− x0| < ε

if 0 < t < δ. Consequently,

(x0 − ε)tq−1 < x(t) < (x0 + ε)tq−1

for all t ∈ (0, δ).
If x0 > 0, then ε = 1

2 x0 and

trx(t) > tr(x0 − ε)tq−1 =
x0

2t1−q−r > 0

for t ∈ (0, δ). Thus trx(t) → ∞ as t → 0+ if r < 1− q. On the other hand, if x0 < 0, then
ε = − 1

2 x0 and

trx(t) < tr(x0 + ε)tq−1 =
x0

2t1−q−r < 0



Complementary equations 21

for t ∈ (0, δ). So for this case, trx(t)→ −∞ as t→ 0+. This concludes the proof of (ii)–(iv).
Item (i) and (1.2) imply that

lim
t→0+

t1−q
∫ t

0
(t− s)q−1 f (s, x(s)) ds = Γ(q) lim

t→0+

[
t1−qx(t)− x0] = 0,

which proves (v).
As for (vi), the hypotheses of Theorem 6.2 imply f (t, x(t)) is continuous on (0, T]. By the

hypothesis of (vi),

lim
t→0+

f (t, x(t)) = l

for some l ∈ R. Thus we can extend the domain of f (t, x(t)) to the closed interval [0, T] by
defining its value at t = 0 to be l. Now that the extension of f is continuous on [0, T], it follows
from Lemma 4.3 that the integral in (vi) defines a continuous function on [0, T]. Consequently
(vi) obtains.

Example 6.4. The function

x(t) =
1√

t(1 + t)

in Examples 4.12 and 5.2 satisfies the relevant items in Corollary 6.3.

Proof. First observe that

lim
t→0+

x(t) = lim
t→0+

1√
t(1 + t)

= ∞

and, as q = 1/2,

lim
t→0+

t1−qx(t) = lim
t→0+

√
tx(t) = lim

t→0+

1
1 + t

= 1.

Recall that x0 = 1, so this illustrates (i) and (iii) when r = 0.
Since

lim
t→0+

f (t, x(t)) = −
√

π

2
lim

t→0+

(√
t x(t)

)3/2

= −
√

π

2
lim

t→0+

1
(1 + t)3/2 = −

√
π

2
,

the premise of (vi) is met. As a result, the limit of the integral in (vi) is equal to zero, which
implies the limit in (v) is also zero. A direct confirmation of (vi) when n = q is easy to obtain
from the calculations in Example 5.2:

lim
t→0+

∫ t

0
(t− s)q−1 f (s, x(s)) ds = −

√
π

2
lim

t→0+

∫ t

0
(t− s)−1/2(√s x(s)

)3/2 ds

= −
√

π lim
t→0+

I(t) = −
√

π lim
t→0+

√
t

1 + t
= 0.
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7 Concluding example

Example 7.1. The function

x(t) =
cos(
√

t )√
t

(7.1)

is a solution of the initial value problem

D1/2x(t) = −
√

π J1(
√

t)
2 cos(

√
t )

x(t), lim
t→0+

√
t x(t) = 1 (7.2)

on the interval (0, π2/4), where J1(t) denotes the Bessel function of the first kind of order 1.
It is also a solution of the integral equation

x(t) =
1√

t
− 1

2

∫ t

0

1√
t− s

· J1(
√

s)
cos(
√

s )
x(s) ds (7.3)

on (0, π2/4).

Proof. An important equation of mathematical physics is Bessel’s equation of order ν:

t2x′′ + tx′ + (t2 − ν2)x = 0, (7.4)

where ν is a constant. If ν = 1, the function J1(t) is a solution of (7.4) for t > 0 ([7, p. 487]).
Thus, J1(t) is continuously differentiable on (0, ∞). Hence, for any fixed T ∈ (0, π2/4), the
function f defined by

f (t, x) := −
√

π J1(
√

t)
2 cos(

√
t )

x

is continuous on (0, T]×R.
Since |J1(

√
t)| ≤ 1 ([1, (9.1.60), p. 362]),

| f (t, x(t))| =
∣∣∣∣∣−
√

π J1(
√

t)
2 cos(

√
t )
· cos(

√
t )√

t

∣∣∣∣∣ =
√

π |J1(
√

t)|
2
√

t
≤
√

π

2
√

t

for t ∈ (0, T]. Thus, as
√

π/(2
√

t) dominates | f (t, x(t))| and the improper integral of
√

π/(2
√

t)
exists on (0, T], it follows from the comparison test that f (t, x(t)) is absolutely integrable on
(0, T]. Likewise, the same is true of x(t).

The function x in (7.1) clearly satisfies the initial condition in (7.2). Let us verify that it
also satisfies the fractional equation on the interval (0, T]. Applying the fractional differential
operator (4.2) with q = 1/2 to the alleged solution x, we obtain

D1/2x(t) = DJ1/2x(t) =
d
dt

[
1

Γ
( 1

2

) ∫ t

0
(t− s)−1/2x(s) ds

]

=
d
dt

[
1√
π

∫ t

0

1√
t− s

· cos(
√

s )√
s

ds
]

.

With the change of variable u :=
√

s/t, the function J1/2x(t) can be rewritten as

J1/2x(t) =
1√
π

∫ t

0

cos(
√

s )√
s
√

t− s
ds =

2√
π

∫ 1

0

cos(u
√

t )√
1− u2

du

=
√

π

[
2
π

∫ 1

0

cos(u
√

t )√
1− u2

du

]
.
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From formula (9.1.20) in [1, p. 360], we see that the bracketed quantity is an integral represen-
tation of J0(

√
t), where J0(t) denotes the Bessel function of the first kind of order 0, which is

a solution of (7.4) when ν = 0. Thus,

J1/2x(t) =
√

π J0(
√

t ). (7.5)

Since J′0(t) = −J1(t) ([1, (9.1.28), p. 361]),

D1/2x(t) =
d
dt
(√

π J0(
√

t )
)
= −
√

π J1(
√

t)
d
dt

√
t = −

√
π

2
√

t
J1(
√

t ).

Therefore,

D1/2x(t) = −
√

π

2
√

t
J1(
√

t ) = −
√

π J1(
√

t )
2 cos (

√
t)
· cos (

√
t)√

t
= −
√

π J1(
√

t )
2 cos (

√
t)

x(t),

which confirms that the function x defined by (7.1) is a solution of the fractional differential
equation on (0, T].

We have established that the function x defined by (7.1) is continuous and absolutely
integrable on (0, T] and that it satisfies the initial problem (7.2) on this interval. Now observe
that all of the conditions of Theorem 6.2 are met. Consequently, x also satisfies the integral
equation (7.3) on (0, T]. Finally, the arbitrary choice of T shows that it is a solution of both
(7.2) and (7.3) on (0, π2/4).
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