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Kotlářská 2, CZ-611 37 Brno, Czech Republic

Received 7 November 2014, appeared 25 March 2015

Communicated by Michal Fečkan
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1 Introduction

In this paper we deal with the even order half-linear differential equation

n

∑
k=0

(−1)k
(

rk(t)Φ
(
y(k)
))(k)

= 0 (1.1)

where Φ(y) = |y|p−2y, p > 1, is the odd power function, rj are continuous functions,
j = 0, . . . , n, and rn(t) > 0 in the interval under consideration. The terminology half-linear
equation was introduced by I. Bihari [3] and reflects the fact that the solution space of (1.1)
is homogeneous, but not additive, i.e., it has just one half of the properties characterizing
linearity. In the case n = 1, equation (1.1) reduces to the classical second order half-linear
differential equation

−
(
r1(t)Φ(x′)

)′
+ r0(t)Φ(x) = 0 (1.2)

whose oscillation theory is relatively deeply developed, see [1, 16] and e.g. the recent papers
[11, 13, 17, 19, 24, 27, 28].

The theory of (1.1) is much less developed and as far as we known only [16, Sec. 9.4] and
the paper [25] deal with this problem. The reason is that we miss the so-called Reid’s round-
about theorem in the higher order case, in particular, the Riccati technique is not available for
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(1.1), in contrast to (1.2). Actually, necessary and sufficient conditions for (non)oscillation of
(1.1) with p = 2, i.e., in the linear case, follow from the fact that this equation can be writ-
ten as a linear Hamiltonian system (for which the Reid’s roundabout theorem is well known,
[26, Chap. V., Theorem 6.3]) and this enables to present oscillation and spectral theory of (1.1)
with p = 2 as it is exhibited e.g. in the book [22], see also [20] and the references given therein.

The energy functional associated with (1.1) considered on the interval [T, ∞) is

Fn(y) =
∫ ∞

T

[
n

∑
k=0

rk(t)|y(k)|p
]

dt (1.3)

(equation (1.1) is the Euler–Lagrange equation of (1.3)). If there exists a nontrivial solution ỹ
of (1.1) with two zeros of multiplicity n in [T, ∞), i.e.,

ỹ(i)(t1) = 0 = ỹ(i)(t2), i = 0, . . . , n− 1, (1.4)

for some T ≤ t1 < t2, then we define the function

y(t) =

{
ỹ(t), t ∈ [t1, t2]

0 t ∈ [T, ∞) \ [t1, t2],

and obviously y ∈ Wn,p
0 [T, ∞) (the definition of this Sobolev space will be recalled later).

Multiplying (1.1) by y and integrating by parts over [T, ∞) gives Fn(y) = 0. Hence, if we
show that Fn(y) > 0 for all nontrivial functions y ∈ Wn,p

0 [T, ∞), we eliminate the existence of
a solution of (1.1) satisfying (1.4) for some t1, t2 ∈ [T, ∞).

The paper is organized as follows. In the next section we concentrate our attention on
basic properties of the higher order half-linear Euler differential equation and on the so-called
Wirtinger inequality which is the principal tool in our investigation. Section 3 is devoted to
nonoscillation criteria for Euler type even order differential equation. Section 4 deals with
nonoscillation criteria for general two-term 2nth order half-linear differential equations and
in the last section we present some remarks and comments concerning possible further inves-
tigation.

2 Preliminaries and Euler equation

The higher order Euler type half-linear differential equation is the equation

(−1)n(tαΦ(y(n))
)(n)

+ (−1)n−1βn−1
(
tα−pΦ(y(n−1))

)(n−1)
+ · · ·+ β0tα−npΦ(y) = 0, (2.1)

where α, βi, i = 0, . . . , n − 1, are real constants. Moreover, it is supposed that α 6∈ {p − 1,
2p− 1, . . . , np− 1} (this restriction will be explained later).

The “classical” Euler second order half-linear differential equation is the equation

−
(
Φ(x′)

)′
+

γ

tp Φ(x) = 0. (2.2)

This equation and its various perturbations were studied in detail in [18] and also in
[11, 13, 14, 17, 24, 27]. It is known that the classical linear Sturmian oscillation theory extends
almost verbatim to (1.2). Elbert [18] showed that (2.2) is oscillatory if and only if γ < −γp,
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γp :=
( p−1

p

)p. In the critical case γ = −γp, equation (1.2) has a solution x(t) = t
p−1

p as can be
verified by a direct computation.

Concerning equation (2.1), similarly to the linear case, we look for a solution in the form
x(t) = tλ. Consider first the two-term equation

(−1)n(tαΦ(x(n))
)(n)

+ γtα−npΦ(x) = 0, (2.3)

with α 6∈ {p− 1, . . . , np− 1} and γ ∈ R. Substituting into (2.3) we find that λ must be a root
of the algebraic equation G(λ) + γ = 0 with

G(λ) = (−1)nΦ
(
λ(λ− 1) · · · (λ− n+ 1)

)[
(p− 1)(λ− n) + α

]
· · ·
[
(p− 1)(λ− n) + α− n+ 1

]
.

Next we show that the function G has a stationary point λ∗ = np−1−α
p . We have the equality

Φ′(x) = (p − 1)Φ(x)
x , therefore, by a direct calculation we obtain that for λ 6= j, n − α−j

p−1 ,
j = 0, . . . , n− 1,

G′(λ) = (−1)n(p− 1)G(λ)

[
1
λ
+

1
λ− 1

+ · · ·+ 1
λ− (n− 1)

+
1

(p− 1)(λ− n) + α

+
1

(p− 1)(λ− n) + α− 1
+ · · ·+ 1

(p− 1)(λ− n) + α− (n− 1)

]
.

Because
1

λ∗ − k
= − 1

(p− 1)(λ∗ − n) + α− (n− 1− k)

for each k ∈ {0, . . . , n− 1}, we have
G′(λ∗) = 0.

Substituting the value λ∗ into G gives the value of the so-called critical constant in the 2nth
order Euler half-linear differential equation (2.3). We denote

γn,p,α := G(λ∗) =
n

∏
j=1

(
|jp− 1− α|

p

)p

.

The previous computation shows that the equation G(λ)− γn,p,α = 0 has a double root λ∗ =
np−1−α

p .
The terminology critical constant is used by analogy with the linear case where its value is

a “borderline” between oscillation and nonoscillation of equation (2.3) with p = 2. In the half-
linear case, we are able to prove only “one half” of conditions for an oscillation constant yet,
namely that (2.3) is nonoscillatory for γ > −γn,p,α. The proof of an “oscillation counterpart”
resists our effort till now, nevertheless, it is a subject of the present investigation. More details
about this problem are given in the last section.

Therefore, (2.3) with γ = −γn,p,α has a solution x(t) = tλ∗ . Note that linearly independent
solutions cannot be computed explicitly even in the case n = 1 and α = 0 (i.e., for second
order equation (2.2) with γ = −γp, because γp = γ1,p,0). Nevertheless, as shown in [18], any

solution of (2.2) with γ = −γp, which is linearly independent of x(t) = t
p−1

p is asymptotically

equivalent to the function x̃(t) = Ct
p−1

p log
2
p t, 0 6= C ∈ R. It is an open problem whether the

function x̃(t) = t
np−1−α

p log
2
p t is also an “approximate” solution of the equation

(−1)n(tαΦ(x(n))
)(n) − γn,p,αtα−npΦ(x) = 0, (2.4)



4 O. Došlý and V. Růžička

since if p = 2 in (2.4) then x̃(t) = t
2n−1−α

2 log t is a solution of this equation.
Now we recall the definition of the Sobolev space, consisting of functions with a compact

support. We denote for T ∈ R

Wn,p
0 [T, ∞) =

{
y : [T, ∞)→ R | y(n−1) ∈ AC[T, ∞), y(n) ∈ Lp(T, ∞),

y(i)(T) = 0 for i = 0, 1, . . . , n− 1 and there exists T1 > T

such that y(t) = 0 for t ≥ T1

}
,

where AC[T, ∞) is the set of absolutely continuous functions with the domain [T, ∞).
We finish this section with a half-linear version of the classical Wirtinger inequality, which

we use in the next sections. Its proof in the formulation presented here can be found in [7].

Lemma 2.1. Let M be a positive continuously differentiable function for which M′(t) 6= 0 in [T, ∞)

and let y ∈W1,p
0 [T, ∞). Then∫ ∞

T
|M′(t)||y|p dt ≤ pp

∫ ∞

T

Mp

|M′(t)|p−1 |y
′|p dt. (2.5)

3 Euler equation

Following the linear terminology, we say that (1.1) is nonoscillatory if there exists T ∈ R such
that no solution of this equation has two or more zeros of multiplicity n in [T, ∞). In the
opposite case, i.e., when for every T ∈ R there exists a nontrivial solution of (1.1) with at least
two zeros of multiplicity n in [T, ∞), then (1.1) is said to be oscillatory.

We start this section with a variational lemma which plays the fundamental role in our
treatment, for its proof (whose outline we have already presented below (1.3)) see [16, Sec. 9.4].

Lemma 3.1. Equation (1.1) is nonoscillatory if there exists T ∈ R such that

Fn(y) > 0

for every 0 6≡ y ∈Wn,p
0 [T, ∞).

The first statement of this section is a nonoscillation criterion which is essentially proved
in [16, Theorem 9.4.5]. This criterion is formulated in [16] for the equation

(−1)n(Φ(x(n))
)(n)

+
γ

tnp Φ(x) = 0, (3.1)

but a small modification of the proof (via Wirtinger inequality) shows that it can be extended
to a more general equation (2.3).

Theorem 3.2. Suppose that α 6∈ {p− 1, . . . , np− 1}. If

γn,p,α + γ > 0, γn,p,α =
n

∏
j=1

(
|jp− 1− α|

p

)p

,

then (2.3) is nonoscillatory.
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Proof. The proof is based on the application of the inequality∫ ∞

T
tα|y(n)|p dt ≥ γn,p,α

∫ ∞

T
tα−np|y|p dt (3.2)

for y ∈ Wn,p
0 [T, ∞), which is obtained by repeated application of the following Wirtinger

inequality ∫ ∞

T
tβ|x′|p dt ≥

(
|p− 1− β|

p

)p ∫ ∞

T
tβ−p|x|p dt, x ∈W1,p

0 [T, ∞) (3.3)

for β = α, α− p, α− 2p, . . . , α− (n− 1)p and for x′ = y(n), y(n−1), . . . , y′ respectively. Inequality
(3.3) follows from inequality (2.5) in Lemma 2.1 by taking M(t) = (|p− 1− β|)p−1tβ−p+1 for
β 6= p− 1. Then for any y ∈Wn,p

0 [T, ∞) such that y 6≡ 0 we have

Fn(y) =
∫ ∞

T
tα|y(n)|p dt + γ

∫ ∞

T
tα−np|y|p dt

≥ (γn,p,α + γ)
∫ ∞

T
tα−np|y|p dt > 0,

what we needed to prove, due to Lemma 3.1.

Note that the same statement (for α = 0) is proved via the weighted Hardy inequality in
[25], we will mention this result later in our paper.

Now we turn our attention to the “full term” 2nth order Euler differential equation.

(−1)n(tαΦ(y(n))
)(n)

+ (−1)n−1βn−1
(
tα−pΦ(y(n−1))

)(n−1)
+ · · ·+ β0tα−npΦ(y) = 0, (3.4)

with α 6∈ {p− 1, 2p− 1, . . . , np− 1}.

Theorem 3.3. Suppose that α 6∈ {p− 1, . . . , np− 1} and

n−1

∑
k=0

n−k

∏
j=1

(
|(k + j)p− 1− α|

p

)p

βn−k + β0 > 0, βn := 1,

then equation (3.4) is nonoscillatory.

Proof. We apply the Wirtinger inequality to each term (except that one for k = n) in the energy
functional

Fn(y) =
∫ ∞

T

(
n

∑
k=0

tα−kp|y(n−k)|p
)

dt.

We obtain for any y ∈Wn,p
0 [T, ∞) and for k = 0, . . . , n− 1

∫ ∞

T
tα−pk|y(n−k)|p dt ≥

n−k

∏
j=1

(
|(k + j)p− 1− α|

p

)p ∫ ∞

T
tα−np|y|p dt.

Then we have

Fn(y) ≥
[

n−1

∑
k=0

n−k

∏
j=1

(
|(k + j)p− 1− α|

p

)p

βn−k + β0

] ∫ ∞

T
tα−np|y|p dt > 0

for any nontrivial y ∈Wn,p
0 [T, ∞).
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Remark 3.4. The reason why the case α ∈ {p− 1, . . . , np− 1} we needed to exclude from the
previous considerations is the following. For α = p − 1 the Wirtinger inequality takes the
form ∫ ∞

T
tp−1|y′|p dt ≥

(
p− 1

p

)p ∫ ∞

T

1
t logp t

|y|p dt, (3.5)

so, a logarithmic term appears. This more difficult case is treated in the next part of this
section.

We start with an auxiliary statement.

Lemma 3.5. Let α = jp− 1 for some j ∈ {1, . . . , n}. Then, we have for any y ∈Wn,p
0 [T, ∞)∫ ∞

T
tα|y(n)|p dt ≥ [(n− j)!(j− 1)!]p

γ
n−j−1
p

∫ ∞

T

1 + O(log−1 t)
t(n−j)p+1 logp t

|y|p dt.

Proof. First we make some auxiliary computations. Integration by parts gives for l ∈N and q
the conjugate exponent of p, i.e., 1

p +
1
q = 1,

∫
tlq−1 logq t dt =

tlq

lq
logq t− 1

l

∫
tlq−1 logq−1 t dt

=
tlq

lq
logq t

[
1 + O(log−1 t)

]
as t→ ∞. This integral we use in establishing the inequality for z ∈W1,p

0 [T, ∞)∫ ∞

T

|z′|p
tlp+1 logp t

dt ≥ (l + 1)p

γp

∫ ∞

T

1 + O(log−1 t)
t(l+1)p+1 logp t

|z|p dt. (3.6)

We prove (3.6) as follows. Let r(t) > 0 be a continuous function with
∫ ∞ r1−q(t) dt = ∞, then

we have the inequality

∫ ∞

T
r(t)|y′|p dt ≥ γp

∫ ∞

T

r1−q(t)(∫ t
T0

r1−q(s) ds
)p |y|p dt, T0 < T, (3.7)

which follows from (3.3) with β = 0. Indeed, let s =
∫ t

T0
r1−q(τ)dτ, i.e., d

dt = r1−q(t) d
ds , then

(3.7) is the same as∫ ∞

S
|ẏ|p ds ≥ γp

∫ ∞

S

|y|p
sp ds, ˙=

d
ds

, S =
∫ T

T0

r1−q(τ)dτ.

For r(t) = t−lp−1 log−p t we have r1−q(t) = t(l+1)q−1 logq t, hence∫ t
r1−q(s) ds =

t(l+1)q

(l + 1)q
logq t

(
1 + O(log−1 t)

)
as t→ ∞. Therefore

r1−q(t)(∫ t r1−q(s) ds
)p = t(l+1)q−1 logq t

(
t(l+1)q

(l + 1)q
logq t

)−p (
1 + O(log−1 t)

)−p

=
(l + 1)p

γp

1
t(l+1)p+1 logp t

(
1 + O(log−1 t)

)
.
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Substituting these computations into (3.7) we obtain (3.6).
Let y ∈Wn,p

0 [T, ∞). Applying inequalities (3.5) and (3.6), we obtain

∫ ∞

T
tα|y(n)|p dt =

∫ ∞

T
tjp−1|y(n)|p dt ≥ [(j− 1)!]p

∫ ∞

T
tp−1|y(n−j+1)|p dt

≥ [(j− 1)!]pγp

∫ ∞

T

1
t logp t

|y(n−j)|p dt

≥ [(n− j)!(j− 1)!]p

γ
n−j−1
p

∫ ∞

T

1 + O(log−1 t)
t(n−j)p+1 logp t

|y|p dt.

The proof is complete.

Now we are ready to deal with the case α ∈ {p− 1, 2p− 1, . . . , np− 1}.

Theorem 3.6. Let α = jp− 1 for some j ∈ {1, . . . , n} and consider the equation

(−1)n(tjp−1Φ(y(n))
)(n)

+
j−1

∑
i=1

(−1)n−iβn−i

(
t(j−i)p−1Φ(y(n−i)

)(n−i)

+
n−j−1

∑
i=0

(−1)n−j−iβn−j−i

(
Φ(y(n−j−i)

tip+1 logp t

)(n−j−i)

+ β0
Φ(y)

t(n−j)p+1 logp t
= 0.

(3.8)

If

L :=
[(j− 1)!(n− j)!]p

γ
n−j−1
p

+
j−1

∑
i=1

βn−i
[(j− i− 1)!(n− j)!]p

γ
n−j−1
p

+
n−j−1

∑
i=0

βn−j−i
[(i + 1) · · · (n− j)]p

γ
n−j−i
p

+ β0 > 0

(3.9)

then equation (3.8) is nonoscillatory.

Proof. The energy functional corresponding to (3.8) is

Fn(y) =
∫ ∞

T

[
tjp−1|y(n)|p +

j−1

∑
i=1

βn−it(j−i)p−1|y(n−i)|p

+
n−j−1

∑
i=0

βn−j−i
|y(n−j−i)|p
tip+1 logp t

+ β0
|y|p

t(n−j)p+1 logp t

]
dt

The first term in the integral is estimated in Lemma 3.5. Concerning the terms under summa-
tion signs, for i = 0, . . . , j− 1

∫ ∞

T
t(j−i)p−1|y(n−i)|p dt ≥ [(j− i− 1)!(n− j)!]p

γ
n−j−1
p

∫ ∞

T

1 + O(log−1 t)
t(n−j)p+1 logp t

|y|p dt

and for i = 0, . . . , n− j− 1

∫ ∞

T

|y(n−j−i)|p
tip+1 logp t

dt ≥ [(i + 1) . . . (n− j)]p

γ
n−j−i
p

∫ ∞

T

1 + O(log−1 t)
t(n−j)p+1 logp t

|y|p dt.
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Substituting these computations into Fn(y), we have

Fn(y) =
∫ ∞

T

|y|p

t(n−j)p+1 logp t
dt

×
[

L +

(∫ ∞

T

O(log−1 t)
t(n−j)p+1 logp t

|y|p dt

)(∫ ∞

T

|y|p

t(n−j)p+1 logp t
dt
)−1

]
.

Since the second term in the bracket tends to zero as T → ∞, we have Fn(y; T, ∞) > 0
for T sufficiently large if (3.9) holds, which means that equation (3.8) is nonocillatory by
Lemma 3.1.

4 General nonoscillation criteria

We start with two nonoscillation criteria from [25] (proved in [25] via the weighted Hardy in-
equality) which we later compare with our results. Both criteria are contained in the following
theorem.

Theorem 4.1. Suppose that c(t) ≤ 0 for large t and q is the conjugate exponent of p, i.e., 1
p +

1
q = 1.

If one of the following conditions

lim
T→∞

inf
t>T

(∫ t

T
r1−q(s) ds

)p−1 ∫ ∞

t
c(s)(s− T)(n−1)p ds > − [(n− 1)!]p

p− 1
γp (4.1)

or

lim
T→∞

inf
t>T

(∫ t

T
r1−q(s) ds

)−1 ∫ t

T
c(s)(s− T)(n−1)p

(∫ s

T
r1−q(u) du

)p

ds > −γp[(n− 1)!]p, (4.2)

holds, then the two-term differential equation

(−1)n(r(t)Φ(y(n))
)(n)

+ c(t)Φ(y) = 0 (4.3)

is nonoscillatory.

In the next theorem we present a Hille–Nehari type nonoscillation criterion for (4.3) with
r(t) = tα. This criterion extends the linear result given in [10]. We will need the following
auxiliary statement, its proof can be found e.g. in [6].

Lemma 4.2. Let m ∈ {0, . . . , n− 1}, then we have

y(n) =

{
1
t

[
tm+1

( y
tm

)′](m)
}(n−m−1)

.

Theorem 4.3. Suppose that α 6∈ {p − 1, . . . , np − 1},
∫ ∞ c−(t)t(n−j)p dt > −∞, where c−(t) =

min{0, c(t)} is the negative part of c, and

lim inf
t→∞

tjp−1−α
∫ ∞

t
c−(s)s(n−j)p ds > −

γn,p,α

|jp− 1− α| (4.4)

for some j ∈ {1, . . . , n}. Then the equation

(−1)n(tαΦ(x(n))
)(n)

+ c(t)Φ(x) = 0, (4.5)

is nonoscillatory.
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Proof. Let T ∈ R be so large, that the limited expression in (4.4) is greater than

−
γn,p,α

|jp− 1− α| + ε =: K,

where ε > 0 is sufficiently small. Then for any 0 6≡ y ∈ Wn,p
0 [T, ∞) we have with z =

y/tn−j (using the inequality ∫ b
a f g ≤

(
∫ b

a | f |p
)1/p( ∫ b

a |g|q
)1/q between the fourth and fifth line

and (3.3) (with β = α − (j − 1)p and x′ = z′) between the fifth and sixth line in the next
computation)∫ ∞

T
c(t)|y|p dt ≥

∫ ∞

T
c−(t)t(n−j)p

∣∣∣( y
tn−j

)∣∣∣p dt = p
∫ ∞

T
c−(t)t(n−j)p

(∫ t

T
Φ(z)z′ ds

)
dt

= p
∫ ∞

T
Φ(z)z′

1
tjp−1−α

tjp−1−α

(∫ ∞

t
c−(s)s(n−j)p ds

)
dt

≥ p
∫ ∞

T

|Φ(z)| |z′|
tjp−1−α

tjp−1−α

(∫ ∞

t
c−(s)s(n−j)p ds

)
dt

> pK
∫ ∞

T

|Φ(z)|

t
jp−α

q

· |z′|

t−
jp−α

q +jp−1−α
dt = pK

∫ ∞

T

|Φ(z)|

t
jp−α

q

· |z
′|

t
(j−1)p−α

q

dt

≥ pK
(∫ ∞

T

|z|p
tjp−α

dt
) 1

q
(∫ ∞

T

|z′|p

t(j−1)p−α
dt
) 1

p

≥ pK
(

p
|jp− 1− α|

) p
q
(∫ ∞

T

|z′|p

t(j−1)p−α
dt
) 1

q
(∫ ∞

T

|z′|p

t(j−1)p−α
dt
) 1

p

= pK
(

p
|jp− 1− α|

)p−1 ∫ ∞

T

|z′|p

t(j−1)p−α
dt.

In the previous computation, we have used the equality |z(t)|p = p
∫ t

T Φ(z(s))z′(s) ds, which
follows from the formula

(
|z|p
)′

= pΦ(z)z′ and from the definition of z (z(T) = 0). We have
also used the relation |Φ(z)|q = |z|p.

Now, we apply Lemma 4.2 with m = n− j, i.e., n−m− 1 = j− 1, and we denote

v =
1
t

[
tn−j+1

( y
tn−j

)′](n−j)

, u = tn−j+1
( y

tn−j

)′
.

Then, using Wirtinger inequality (3.2) (in a slightly modified form), we get for y ∈Wn,p
0 [T, ∞)

∫ ∞

T
tα|y(n)|p =

∫ ∞

T
tα

∣∣∣∣∣∣
{

1
t

[
tn−j+1

( y
tn−j

)′](n−j)
}(j−1)

∣∣∣∣∣∣
p

dt

=
∫ ∞

T
tα|v(j−1)|p dt ≥

j−1

∏
i=1

(
|ip− 1− α|

p

)p ∫ ∞

T
tα−(j−1)p|v|p dt

=
j−1

∏
i=1

(
|ip− 1− α|

p

)p ∫ ∞

T
tα−(j−1)p

∣∣∣∣1t u(n−j)
∣∣∣∣p dt

≥
j−1

∏
i=1

(
|ip− 1− α|

p

)p n

∏
i=j+1

(
|ip− 1− α|

p

)p ∫ ∞

T
tα−np

∣∣∣∣tn−j+1
( y

tn−j

)′∣∣∣∣p dt

=
j−1

∏
i=1

(
|ip− 1− α|

p

)p n

∏
i=j+1

(
|ip− 1− α|

p

)p ∫ ∞

T
tα−(j−1)p|z′|p dt.
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Summarizing the previous computations

∫ ∞

T
tα|y(n)|p dt +

∫ ∞

T
c(t)|y|p dt

≥
[

n

∏
i=1,i 6=j

(
|ip− 1− α|

p

)p

+ pK
(

p
|jp− 1− α|

)p−1
] ∫ ∞

T
tα−(j−1)p

∣∣∣∣( y
tn−j

)′∣∣∣∣p dt

= p
(

p
|jp− 1− α|

)p−1
[

1
|jp− 1− α|

n

∏
i=1

(
|ip− 1− α|

p

)p

+ K

]

×
∫ ∞

T
tα−(j−1)p

∣∣∣∣( y
tn−j

)′∣∣∣∣p dt

= p
(

p
|jp− 1− α|

)p−1 [ γn,p,α

|jp− 1− α| + K
] ∫ ∞

T
tα−(j−1)p

∣∣∣∣( y
tn−j

)′∣∣∣∣p dt.

Now, according to the definition of the constant K we see that the energy functional corre-
sponding to (4.5) is positive for large T and hence (4.5) is nonoscillatory.

Next we prove a statement which relates nonoscillatory behavior of a two-term 2nth order
half-linear differential equation to nonoscillation of a certain second order half-linear equation.
It also presents a simpler proof of the previous theorem with j = n.

Theorem 4.4. Consider equation (4.5) with α 6∈ {p− 1, . . . , np− 1}. If the second order differential
equation

−
(
tα−(n−1)pΦ(x′)

)′
+

c−(t)
γn−1,p,α

Φ(x) = 0 (4.6)

is nonoscillatory, γn−1,p,α = ∏n−1
j=1

(
|jp−1−α|

p

)p
, c−(t) = min{0, c(t)}, then (4.5) is also nonoscilla-

tory. In particular, if α < np− 1 and
∫ ∞ c−(t) dt > −∞, equation (4.5) is nonoscillatory provided

lim inf
t→∞

tnp−1−α
∫ ∞

t
c−(s) ds > −

γn,p,α

np− 1− α
. (4.7)

Proof. Using the Wirtinger inequality (as in (3.2)) we can estimate the energy functional in
(4.5) as follows∫ ∞

T
tα|y(n)|p dt +

∫ ∞

T
c(t)|y|p dt ≥ γn−1,p,α

∫ ∞

T
tα−(n−1)p|y′|p dt +

∫ ∞

T
c−(t)|y|p dt

= γn−1,p,α

[∫ ∞

T
tα−(n−1)p|y′|p dt +

1
γn−1,p,α

∫ ∞

T
c−(t)|y|p dt

]
.

The expression in brackets on the second line of the previous computation is the energy
functional of (4.6) and it is positive if this equation is nonoscillatory and T is sufficiently large
by [16, Theorem 2.1.1]. To prove the second statement of theorem, we apply the Hille–Nehari
type nonoscillation criterion to (4.6). This criterion says (see, e.g., [16, Theorem 2.1.2]) that
equation (1.2) with r1 satisfying

∫ ∞ r1−q
1 (t) dt = ∞ and

∫ ∞
0 (r0)−(t) > −∞ (where (r0)−(t) =

min{0, r0(t)}) is nonoscillatory provided

lim inf
t→∞

(∫ t
r1−q

1 (s) ds
)p−1 ∫ ∞

t
(r0)−(s) ds > − 1

p

(
p− 1

p

)p−1

. (4.8)



Half-linear differential equations 11

Hence, for r1(t) = tα−(n−1)p, we have

(∫ t

0
r1−q

1 (s) ds
)p−1

=

(
tα(1−q)+q(n−1)+1

α(1− q) + q(n− 1) + 1

)p−1

=
tnp−1−α(

np−1−α
p−1

)p−1 .

and
∫ ∞ r1−q

1 (t) dt = ∞, since α < np− 1. Then (4.8) reads

lim inf
t→∞

tnp−1−α(
np−1−α

p−1

)p−1

∫ ∞

t
(r0)−(s) ds > − 1

p

(
p− 1

p

)p−1

which is just (4.7) with c−(t)
γn−1,p,α

instead of (r0)−(t).

Remark 4.5. Obviously, Theorem 4.4 applied to Euler type equation (2.3) gives Theorem 3.2.

Remark 4.6. Let us have a look at Theorem 4.1 with r(t) = tα, α 6∈ {p− 1, 2p− 1, . . . , np− 1}
and c(t) ≤ 0 for large t. Then r1−q(t) = tα(1−q) and for α < p− 1 (the case α > p− 1 is more
complicated) we have

∫ t

0
r1−q(s) ds =

tα(1−q)+1

α(1− q) + 1
,

(∫ t

0
r1−q(s) ds

)p−1

=
tp−1−α(

p−1−α
p−1

)p−1 ,

(∫ t

0
r1−q(s) ds

)p

=
tp−qα(

p−1−α
p−1

)p ,
(∫ t

0
r1−q(s) ds

)−1

= [1− (q− 1)α]tα(q−1)−1.

Hence, (4.1) takes the form

lim inf
t→∞

tp−1−α
∫ ∞

t
c(s)(s− T)(n−1)p ds > −

(
p− 1− α

p− 1

)p−1

·
(

p− 1
p

)p

· [(n− 1)!]p

p− 1

= − 1
p− 1− α

(
p− 1− α

p

)p

[(n− 1)!]p .
(4.9)

This condition is more restrictive than (4.4) with j = 1. Indeed, for α < p− 1 we have

−
γn,p,α

p− 1− α
= − 1

p− 1− α

(
p− 1− α

p

)p (
2− α + 1

p

)p

· · ·
(

n− α + 1
p

)p

< − 1
p− 1− α

(
p− 1− α

p

)p

[(n− 1)!]p

since α+1
p < 1. The difference in terms

∫ ∞
t c(s)s(n−1)p ds and

∫ ∞
t c(s)(s − T)(n−1)p ds in (4.4)

(with j = 1) and (4.9), respectively, is not important since lims→∞ s−(n−1)p · (s− T)(n−1)p = 1.
Concerning (4.2), similarly as for (4.1) we obtain

lim inf
t→∞

tα(q−1)−1
∫ t

0
c(s)snp−qα ds > − [(n− 1)!]p

(
p− 1− α

p

)p p− 1
p− 1− α

.

This condition is not covered by results presented in this paper and a subject of the present
investigation is to “insert” this criterion into a general framework of even-order half-linear
oscillation theory.
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5 Remarks and comments

(i) In the previous parts of the paper, we have presented nonoscillation criteria for the investi-
gated differential equations. The problem of oscillation of these equations is more complicated.
In the linear case p = 2, we have the equivalence in Lemma 3.1, i.e., the differential equation

(−1)n(rn(t)y(n)
)(n)

+ · · · −
(
r1(t)y′

)′
+ r0(t)y = 0

is oscillatory if and only if for every T ∈ R there exists 0 6≡ y ∈Wn,p
0 [T, ∞) such that∫ ∞

T

[
rn(t)(y(n))2 + · · ·+ r1(t)y′2 + r0(t)y2

]
dt ≤ 0.

Such an equivalence is missing in the half-linear case and to find a general framework for the
investigation of oscillation of (1.1) is a subject of the present investigation. In particular, we
hope to prove that (2.3) is oscillatory if γ < −γn,p,α, so the constant −γn,p,α really separates
oscillation and nonoscillation in (2.3).

(ii) In the spectral theory of self-adjoint even order differential operators, an important
role is played by the so-called reciprocity principle which claims that the two-term differential
equation

(−1)n(r(t)y(n))(n) + c(t)y = 0 (5.1)

with r(t) > 0 and c(t) 6= 0 for large t, is nonoscillatory if and only if its reciprocal equations
(related to (5.1) by the substitution u = ry(n))

(−1)n
(

1
c(t)

u(n)
)(n)

+
1

r(t)
u = 0 (5.2)

is also nonoscillatory, see [2]. The proof of this statement is based on the Riccati technique
for Hamiltonian differential systems associated with (5.1) and (5.2) (which we miss for higher
order half-linear equations as we have already mentioned in a previous part of the paper). It
would be interesting to know whether a similar principle holds for the half-linear equation

(−1)n(r(t)Φ(y(n))
)(n)

+ c(t)Φ(y) = 0 (5.3)

and its reciprocal equation (related to (5.3) by the substitution u = rΦ(y(n)))

(−1)n

(
Φ−1(u(n))

Φ−1(c(t))

)(n)

+
Φ−1(u)

Φ−1(r(t))
= 0, (5.4)

where Φ−1(u) = |u|q−2u is the inverse function of Φ.
A positive answer to this conjecture is partially supported by considering the pair of mu-

tually reciprocal Euler type differential equations.

Theorem 5.1. The reciprocal equation to Euler differential equation (2.3), which is the equation

(−1)n
(

t(np−α)(q−1)Φ−1(u(n))
)(n)

+ Φ−1(γ)t−α(q−1)Φ−1(u) = 0, (5.5)

is again an Euler equation. Moreover, the reciprocal equation to a critical equation is again the critical
equation. In particular, if γ > −γn,p,α, then the reciprocal equation (5.5) is also nonoscillatory.
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Proof. An equation

(−1)n
(

tα1 Φ(y(n))
)(n)

+ γtα2 Φ(y) = 0

is the Euler type equation if and only if α1 − α2 = np. Consequently, since (5.4) contains the
power nonlinearity Φ−1(u) = |u|q−2u, we compute the difference

(np− α)(q− 1) + α(q− 1) = (q− 1)np = nq,

hence (5.5) is really an Euler equation. To show that the reciprocal equation to the critical
equation is again a critical equation we need to show that if γ = −γn,p,α in (2.3), then the
constant −Φ−1(γn,p,α) is the critical constant for (5.5), i.e., it is

Φ−1(γn,p,α) = γn,q,β =
n

∏
j=1

(
|jq− β− 1|

q

)q

with β = (np− α)(q− 1) = nq− α(q− 1). We have

Φ−1(γn,p,α) =

[
n

∏
j=1

(
|jp− 1− α|

p

)p
]q−1

On the other hand, for j = 1, . . . , n

|jq− β− 1|
q

=

∣∣∣∣j− nq− α(q− 1) + 1
q

∣∣∣∣ = ∣∣∣∣j− n +
α

p
− p− 1

p

∣∣∣∣
=
|(j− n− 1)p + α + 1|

p
=
|(n− j + 1)p− α− 1|

p
,

hence

γn,q,β =
n

∏
j=1

(
|jq− β− 1|

q

)q

=
n

∏
j=1

(
|(n− j + 1)p− α− 1|

p

)q

=

[
n

∏
j=1

(
|jp− 1− α|

p

)p
]q−1

,

so really Φ−1(γn,p,α) = γn,q,β.

Note that for n = 1, i.e., for second order half-linear equation (1.2), the reciprocity principle
holds as a simple consequence of the Rolle mean value theorem.
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[16] O. Došlý, P. Řehák, Half-linear differential equations, North Holland Mathematics Studies,
Vol. 202, Elsevier, Amsterdam 2005. MR2158903

[17] O. Došlý, N. Yamaoka, Oscillation constants for second-order ordinary differential equa-
tions related to elliptic equations with p-Laplacian, Nonlinear Anal. 113(2015), 115–136.
MR3281849; url

[18] Á. Elbert, Asymptotic behaviour of autonomous half-linear differential systems on the
plane, Studia Sci. Math. Hungar. 19(1984), No. 2–4, 447–464. MR0874513

[19] Á. Elbert, A. Schneider, Perturbations of the half-linear Euler differential equation,
Result. Math. 37(2000), 56–83. MR1742294; url

[20] W. D. Evans, M. K. Kwong, A. Zettl, Lower bounds for spectrum of ordinary differential
operators, J. Differential Equations 48(1983), 123–155. MR0692847; url

http://www.ams.org/mathscinet-getitem?mr=1135970
http://dx.doi.org/10.1017/S0308210500014797
http://www.ams.org/mathscinet-getitem?mr=1273329
http://dx.doi.org/10.1002/mana.19941660112
http://www.ams.org/mathscinet-getitem?mr=1484668
http://dx.doi.org/10.1002/mana.19971880105
http://www.ams.org/mathscinet-getitem?mr=1657543
http://dx.doi.org/http://projecteuclid.org/euclid.hmj/1206126680
http://www.ams.org/mathscinet-getitem?mr=1764346
http://www.ams.org/mathscinet-getitem?mr=1907710
http://www.ams.org/mathscinet-getitem?mr=2170475
http://www.ams.org/mathscinet-getitem?mr=2262216
http://dx.doi.org/10.1016/j.jmaa.2005.10.051
http://www.ams.org/mathscinet-getitem?mr=1769240
http://dx.doi.org/http://dx.doi.org/10.1017/S0308210500000287
http://www.ams.org/mathscinet-getitem?mr=2728552
http://dx.doi.org/10.1016/j.na.2010.07.049
http://www.ams.org/mathscinet-getitem?mr=2991019
http://dx.doi.org/doi:10.1155/2012/738472
http://www.ams.org/mathscinet-getitem?mr=1940063
http://dx.doi.org/10.1023/B:CMAJ.0000027237.34494.49
http://www.ams.org/mathscinet-getitem?mr=2158903
http://www.ams.org/mathscinet-getitem?mr=3281849
http://dx.doi.org/10.1016/j.na.2014.09.025
http://www.ams.org/mathscinet-getitem?mr=0874513
http://www.ams.org/mathscinet-getitem?mr=1742294
http://dx.doi.org/10.1007/BF03322512
http://www.ams.org/mathscinet-getitem?mr=0692847
http://dx.doi.org/10.1016/0022-0396(83)90062-1


Half-linear differential equations 15

[21] F. Gesztesy, Z. Zhao, Critical and subcritical Jacobi operators defined as Friedrichs ex-
tensions, J. Differential Equations 103(1993), 68–93. MR1218739; url

[22] I. M. Glazman, Direct methods of qualitative analysis of singular differential operators, Davey,
Jerusalem, 1965. MR0190800

[23] D. B. Hinton, R. T. Lewis, Singular differential operators with spectra discrete and
bounded below, Proc. Roy. Soc. Edinburgh Sect. A 84(1979), 117–134. MR0549875; url
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