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Abstract. We study the quadratic integral equation in the space of Orlicz space Eϕ in the
most important case when ϕ satisfies the ∆2-condition. Considered operators are not
compact and then we use the technique of measure of noncompactness associated with
the Darbo fixed point theorem to prove the existence of a monotonic, but discontinuous
solution. Our present work allows to generalize both previously proved results for
quadratic integral equations, as well as, that for classical equations. Due to different
continuity properties of considered operators in Orlicz spaces, we distinguish different
cases and we study the problem in the most important case – in such a way to cover all
Lebesgue spaces Lp (p ≥ 1).
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1 Introduction

This paper is devoted to study the following quadratic functional-integral equation

x(t) = g(t) + G(x)(t) ·
∫ t

0
K(t, s) f (s, x(η(s))) ds, t ∈ [0, d]. (1.1)

The quadratic integral equations are often applicable for instance in the theory of radiative
transfer, kinetic theory of gases, in the theory of neutron transport, in traffic theory and in
numerous branches of mathematical physics (cf. [8, 14, 20, 21]). Moreover, from the math-
ematical point of view, this is also an interesting problem because of lack of the possibility
to use the Schauder fixed point theorem. In an important case, when G is the superposition
operator we cannot expect its compactness and we will consider the compactness in measure.
This is sufficient to apply the Darbo fixed point theorem.

Usually, such integral equations are investigated in the space of continuous functions
C[0, 1] (in Banach algebras) or in the Lebesgue spaces Lp[0, 1] with p ≥ 1. In particular,
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this leads to many restrictions on the growth of considered functions. Another motivation
for solutions in Orlicz spaces is the result of some physical problems (see [22]) with expo-
nential nonlinearities or with rapidly growing kernels ([29], for instance). In such a case, we
cannot expect that the solutions are still continuous and it seems to be important from the
applications point of view (cf. [18, 19, 22, 38]). In such a case, it is worthwhile to consider
the Nemytskii superposition operator as acting on some Orlicz spaces [29], which makes this
equation more applicable.

Depending on conditions for G, K and f we can try to find solutions in arbitrary Orlicz
spaces. Unfortunately, this leads to several restrictions on the considered operators. When we
study not so general case, we are able to weaken the assumptions making our results more
applicable. Here we study the case of discontinuous solutions being regular in some sense.

Let us recall that if the space of solutions is smaller with respect to the inclusion, then we
obtain their additional properties, but usually it require stronger assumptions for existence
results. Both directions: as weak as possible assumptions and the “optimal” set of assump-
tions for a prescribed solution space seem to be interesting and worthwhile to be investigated.
In the first case we usually investigate L1-solutions, in the second Lp- or Lϕ-solutions are
expected. On the other hand, similar problems are investigated for non-quadratic integral
equations (for both types of results). We try to obtain some new results for quadratic integral
equations in such a way to extend all earlier results for these equations and simultaneously at
least to cover the special case of non-quadratic equations.

In our earlier papers, some special cases were investigated. In [23] the problem is solved in
the case of Banach–Orlicz algebras. It means that we have some extra properties of solutions,
but under conditions stronger that in this paper. The paper [24] is devoted to studying the case
of Lp-solutions, so it is not the case of algebras with respect to the pointwise multiplication.
If we fix a space of solutions, then it is possible to associate some intermediate spaces in such
a way to find a solution in Lp and they are either of the L∞ type [24, Theorem 3.1] or Lq type
([24, Theorem 3.3]). In this paper we extend both ideas – we fix a space of (possible) solutions
and then we indicate the intermediate spaces (cf. also Corollary 5.2).

Recall that in the non-quadratic case it was proved by Orlicz and Szufla in [35] then there
are three independent cases (i.e. ∆3, ∆′ and ∆2 conditions separately) when studying Lϕ-
solutions. We make efforts to extend the results for quadratic equations as well as simultane-
ously fully cover all the results for non-quadratic equations. The main goal of our paper is to
unify the study of both problems in the considered case.

In this paper we study a particularly interesting case – the most important and widely
studied in the context of classical (i.e. non-quadratic) case of Orlicz spaces Lϕ for ϕ satisfying
∆2-condition (cf. [2, 34, 35, 37, 39] for non-quadratic equations). In this case some additional
properties of solutions are also investigated (like constant-sign solutions of classical integral
equations, see [1, 2], for instance). We will discuss the monotonicity property of solutions. It is
an important property of solutions considered in recent papers (see [13, 15, 26], for example).
The considered class of Orlicz spaces allows us to cover the case of Lebesgue spaces Lp for
p > 1 as a particular case.

The theorems proved by us extend, in particular, that presented in [4, 7, 15, 16] considered
in the space C(I) or in Banach algebras (cf. [17]). However, such a class of solutions seems to
be inadequate for integral problems and leads to several restrictions on functions. We solve the
problem of the existence and monotonicity properties of solutions for some important classes
of functions. The key point is to control the acting and continuity conditions for considered
operators, but they are depending on the choice of Lϕ.
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2 Basic notations

Let R be the field of real numbers. In the paper we will denote by I a compact interval
[0, a] ⊂ R. Assume that (E, ‖ · ‖) is an arbitrary Banach space with zero element θ. Denote by
Br(x) the closed ball with center at the point x and with radius r. The symbol Br stands for
the ball B(θ, r). When necessary, we will also indicate the space by using the notation Br(E).
If X is a subset of E, then X̄ and conv X denote the closure and convex hull of X, respectively.

Let S = S(I) denote the set of measurable (in the Lebesgue sense) functions on I and let
meas stand for the Lebesgue measure on the real line R. Identifying the functions that are
equal almost everywhere, the set S furnished with the metric ρ(x, y) = infε>0[a + meas{s :
|x(s)− y(s)| ≥ ε}] becomes a complete space. Moreover, the space S with the topology con-
vergence in measure on ρ is a metric space, because the convergence in measure is equivalent
to convergence with respect to ρ (cf. Proposition 2.14 in [40]). It is well known (Lebesgue’s
theorem) that convergence a.e. implies convergence in measure; the converse is true only if the
measure is discrete. Nevertheless (by the Riesz theorem), each sequence which is convergent
in measure admits an a.e. convergent subsequence. The compactness in such a topology we
will call a “compactness in measure” and such sets have important properties when consid-
ered as subsets of some Orlicz spaces.

In order to make the paper self-contained we need to recall some basic notions and facts
in the theory of Orlicz spaces.

Let M and N be complementary N-functions, i.e. N(x) = supy≥0(xy − M(x)), where

N : [0,+∞)→ [0,+∞) is continuous, even and convex with limx→0
N(x)

x = 0, limx→∞
N(x)

x = ∞
and N(x) > 0 if x > 0 (N(x) = 0 ⇐⇒ x = 0). The Orlicz class, denoted by OP, consists of
measurable functions x : I → R for which ρ(x; M) =

∫
I M(x(t)) dt < ∞. We shall denote by

LM(I) the Orlicz space of all measurable functions x : I → R for which

‖x‖M = inf
λ>0

{∫
I

M
(

x(s)
λ

)
ds ≤ 1

}
.

Let EM(I) be the closure in LM(I) of the set of all bounded functions. Note that EM(I) ⊆
LM(I) ⊆ OM(I). The inclusion LM(I) ⊂ LP(I) holds if, and only if, there exist positive con-
stants u0 and a such that P(u) ≤ aM(u) for u ≥ u0.

An important property of EM(I) spaces lies in the fact that this is a class of functions from
LM(I) having absolutely continuous norms.
Moreover, we have EM(I) = LM(I) = OM(I) if M satisfies the ∆2-condition, i.e.

(∆2) there exist ω, t0 ≥ 0 such that for t ≥ t0, we have M(2t) ≤ ωM(t).

Let us observe, that the N-functions M1(u) = up

p and M2(u) = |u|α(| ln |u| + 1) for α ≥
3+
√

5
2 satisfy this condition, while the function M3(u) = exp |u| − |u| − 1 does not. Moreover,

the complement functions to M4(u) = exp u2 − 1 and M5(u) = exp |u| − |u| − 1 satisfy this
condition while the original functions M4 and M5 do not.

Sometimes, we will use a more general concept of function spaces, i.e. ideal spaces. A
normed space (X, ‖·‖) of (classes of) measurable functions x : I → U (U is a normed space) is
called pre-ideal if for each x ∈ X and each measurable y : I → U the relation |y(s)| ≤ |x(s)|
(for almost all s ∈ I) implies y ∈ X and ‖y‖ ≤ ‖x‖. If X is also complete, it is called an ideal
space (see [41]). The class of Orlicz spaces stands for an important example of ideal spaces.

By ME we denote the family of all nonempty and bounded subsets of E and by NE its
subfamily consisting of all relatively compact subsets.
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Definition 2.1 ([12]). A mapping µ : ME → [0, ∞) is said to be a measure of noncompactness
in E if it satisfies the following conditions:

(i) µ(X) = 0⇒ X ∈ NE.

(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y).

(iii) µ(X̄) = µ(conv X) = µ(X).

(iv) µ(λX) = |λ|µ(X), for λ ∈ R.

(v) µ(X + Y) ≤ µ(X) + µ(Y).

(vi) µ(X
⋃

Y) = max{µ(X), µ(Y)}.

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such that Xn+1 ⊂ Xn,
n = 1, 2, 3, . . . , and limn→∞ µ(Xn) = 0, then the set X∞ =

⋂∞
n=1 Xn is nonempty.

An important example of such a kind of mappings is the following.

Definition 2.2 ([12]). Let X be a nonempty and bounded subset of E. The Hausdorff measure
of noncompactness βH(X) is defined as

βH(X) = inf{r > 0 : there exists a finite subset Y of E such that x ⊂ Y + Br}.

For any ε > 0, let c(X) be a measure of equiintegrability of the set X in LM(I) (cf. Definition
3.9 in [40] or [27, 28]):

c(X) = lim
ε→0

sup
meas D≤ε

sup
x∈X
‖x · χD‖LM(I),

where χD denotes the characteristic function of D.
The following theorem clarifies the connections between different coefficients in Orlicz

spaces. Thus [28, Theorem 1] for the case of Orlicz spaces can be read as follows.

Proposition 2.3. Let X be a nonempty, bounded and compact in measure subset of an Orlicz space
Lϕ(I), where ϕ satisfies the ∆2-condition. Then

βH(X) = c(X).

As a consequence, we obtain that bounded sets which are additionally compact in mea-
sure are compact in LM(I) iff they are equiintegrable in this space (i.e. have equiabsolutely
continuous norms cf. [3], in particular X ⊂ EM(I)).

The importance of such a kind of functions can be clarified by using the contraction prop-
erty with respect to this measure instead of compactness in the Schauder fixed point theorem.
Namely, we have the Darbo theorem ([12]).

Theorem 2.4. Let Q be a nonempty, bounded, closed and convex subset of E and let V : Q → Q be a
continuous transformation which is a contraction with respect to the measure of noncompactness µ, i.e.
there exists k ∈ [0, 1) such that

µ(V(X)) ≤ kµ(X),

for any nonempty subset X of E. Then V has at least one fixed point in the set Q and the set Fix V of
all fixed points of V satisfies µ(Fix V) = 0.



Existence of monotonic solutions 5

3 Considered operators

In this paper we propose to reduce the considered problem to the operator form. This means
that the properties of operators on selected domains will form the main problem in our proofs.
In particular, we will investigate many properties of operators acting on different function
spaces. Let us recall some basic lemmas.

One of the most important operators studied in nonlinear functional analysis is the so-
called superposition (Nemytskii) operator [6]. Assume that a function f : I ×R→ R satisfies
Carathéodory conditions, i.e. it is measurable in t for any x ∈ R and continuous in x for almost
all t ∈ I. Then to every function x(t) being measurable on I we may assign the function

F(x)(t) = f (t, x(t)), t ∈ I.

The operator F in such a way is called the superposition operator generated by the function
f . We will be interested in the case when F acts between some Orlicz spaces.

A full discussion of necessary and sufficient conditions for continuity and boundedness
of such a type of operators can be found in [6]. The following property will be useful in our
proofs.

Lemma 3.1. Assume that a function f : I × R → R satisfies Carathéodory conditions. Then the
superposition operator F transforms measurable functions into measurable functions.

We will utilize the fact, that Carathéodory mappings transforming measurable functions
into the same space are (sequentially) continuous with respect to the topology of convergence
in measure.

Lemma 3.2 ([30, Lemma 17.5] in S and [36] in LM(I)). Assume that a function f : I×R → R sat-
isfies Carathéodory conditions. The superposition operator F maps a sequence of functions convergent
in measure into a sequence of functions convergent in measure.

In Orlicz spaces there is no automatic continuity of superposition operators like in Lp

spaces, but the following lemma can be helpful in our problem (remember, that the Orlicz
space LM is ideal and if M satisfies ∆2-condition it is also regular cf. [5, Theorem 1]):

Lemma 3.3 ([29, Theorem 17.6]). Suppose the function f : I ×R→ R satisfies Carathéodory condi-
tions and

| f (t, x)| ≤ b(t) + kM−1
2

[
M1

( x
r

)]
, t ∈ I and x ∈ R,

where b ∈ LM2 and r, k ≥ 0. If the N-function M2 satisfies ∆2-condition, then the superposition
operator F generated by f acts from Br(EM1(I)) into the space LM2(I) = EM2(I) and is continuous.

Let us note that in a special case of functions of the form f (t, x) = g(t)h(x), the superpo-
sition operator F is continuous from the space of continuous functions C(I) into LM(I) even
when M does not satisfies ∆2-condition [5]. Since EM(I) is a regular part of an Orlicz space
LM(I) (cf. [40, p. 72]), in the context of arbitrary Orlicz spaces, we will use the following (see
also Lemma 3.3).

Lemma 3.4. Let f be a Carathéodory function. If the superposition operator F acts from LM1(I) into
EM2(I), then it is continuous.
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Let us introduce two more operators playing an important role in this paper, namely the
linear integral operator

H(x) =
∫ t

0
K(t, s)x(s) ds

and the pointwise multiplication operator. The first one is well-known and all necessary
results concerning the properties of such a kind of operators in Orlicz spaces can be found in
[29, Lemma 16.3], so here we omit the details and important results will be pointed out in the
proofs of our main results.

Now, we need to describe the second one. By U(x)(t) we will denote the operator of the
form:

U(x)(t) = G(x)(t) · A(x)(t),

where A = H ◦ F is a Volterra–Hammerstein operator and F is a superposition operator.
Generally speaking, the product of two functions x, y ∈ LM(I) is not in LM(I). However, if

x and y belong to some particular Orlicz spaces, then the product x · y belongs to a third Orlicz
space. Let us note that one can find two functions belonging to Orlicz spaces: u ∈ LU(I) and
v ∈ LV(I) such that the product uv does not belong to any Orlicz space (this product is not
integrable). Nevertheless, to clarify the applicability of our results, we recall the following
lemma.

Lemma 3.5 ([29, Lemma 13.5], [33, Theorem 10.2]). Let ϕ1, ϕ2 and ϕ be arbitrary N-functions.
The following conditions are equivalent:

1. For every functions u ∈ Lϕ1(I), w ∈ Lϕ2 and u · w ∈ Lϕ(I).

2. There exists a constant k > 0 such that for all measurable u, w on I we have ‖uw‖ϕ ≤
k‖u‖ϕ1‖w‖ϕ2 .

3. There exists numbers C > 0, u0 ≥ 0 such that for all s, t ≥ u0, ϕ
( st

C

)
≤ ϕ1(s) + ϕ2(t).

4. lim supt→∞
ϕ−1

1 (t)ϕ−1
2 (t)

ϕ(t) < ∞.

We are able also to remind the following simple sufficient condition for the above state-
ments hold true.

Lemma 3.6 ([29, p. 223]). If there exist complementary N-functions Q1 and Q2 such that the inequal-
ities

Q1(αu) < ϕ−1[ϕ1(u)]

Q2(αu) < ϕ−1[ϕ2(u)]

hold, then for every functions u ∈ Lϕ1(I) and w ∈ Lϕ2 , u · w ∈ Lϕ(I). If, moreover, ϕ satisfies the
∆2-condition, then it is sufficient that the inequalities

Q1(αu) < ϕ1[ϕ
−1(u)]

Q2(αu) < ϕ2[ϕ
−1(u)]

hold.
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An interesting discussion about necessary and sufficient conditions for product operators
can be found in [29, 33]. A simplest case leads to well-known inequality ‖x · y‖1 ≤ ‖x‖p · ‖y‖q

for conjugated p and q, i.e. 1/p + 1/q = 1.
However it is known, that for arbitrary Orlicz space Lϕ we have: x ∈ Lϕ, y ∈ L∞ implies

that x · y ∈ Lϕ. This fact can be useful in our theory, but for quadratic problems this leads
to some restriction on an operator A (as claimed in [24]). If we try to preserve the property
of arbitrariness of Lϕ we are unable to formulate some natural assumptions guaranteeing the
continuity of considered operators. Thus, we propose to put some restriction for Orlicz spaces
covering the most applicable cases, but still allowing to prove some important properties of
operators (continuity, for instance). As claimed we will consider Orlicz spaces generated by ϕ

satisfying the ∆2-condition.
Since the superposition operator is not compact, in general, we will consider the case when

our operators are neither Lipschitz nor compact. Recall that the quadratic integral equations
stand for classical examples of problems when the Schauder fixed point theorem cannot be
applied. We will show that the Darbo fixed point theorem based on contraction property with
respect to a measure of noncompactness is still available.

We are interested in studying the functional-integral equations, so we need to check the
properties of the composition operators in Orlicz spaces Cτ(x(t)) = x(τ(t)). Although for the
case of continuous solutions it is a trivial problem, we would like to emphasize the differences
in the case of Orlicz spaces. The composition operator in Orlicz spaces was investigated by
many authors (see [31, 25], for instance). Let us present some basic results.

Lemma 3.7 ([25, Theorem 2.2], [31, Theorem 2.1]). Let τ : I → I be a measurable mapping. Then
it induces a composition operator Cτ on Lϕ(I) iff

(A) there is a constant K > 1 such that meas(τ−1(E)) ≤ K ·meas(E), for all measurable sets E ⊂ I.

It is also a bounded linear operator, i.e.

(B) there exists a constant M > 0 independent on x ∈ Lϕ(I) such that ‖Cτ(x)‖ϕ ≤ M‖x‖ϕ.

If, in addition, ϕ satisfies the ∆2-condition for all u > 0, then the two conditions (A) and (B) are
equivalent.

Some exact dependencies between K and M can be found in [25]. We are interested in
solving some problems on a compact interval I and then the condition (A) just means nonsin-
gularity of τ. As a consequence, we get the following

Lemma 3.8. Let τ : I → I be a measurable mapping such that there is a constant K > 1 with
meas(τ−1(E)) ≤ K ·meas(E), for all measurable E ⊂ I. Then Cτ : Eϕ(I)→ Eϕ(I).

Proof. The condition (A) is expressed in terms of τ, but the condition (B) is sufficient. Namely,
supx∈X ‖Cτx · χD‖LM(I) ≤ M · supx∈X ‖x · χD‖LM(I) and then c(Cτ(X)) ≤ M · c(X). For arbi-
trary bounded subset X ⊂ Eϕ(I) we have c(X) = 0 and then c(Cτ(X)) = 0. Thus Cτ(X) ⊂
Eϕ(I).

4 Monotonic functions

Let us recall that in metric spaces the set U0 is compact if and only if each sequence taken from
U0 has a subsequence that converges in U0 (i.e. sequentially compact). In particular, we need
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to use this simple fact in the space S. We will try to find some monotonic solutions for the
considered problem. However, in the case of discontinuous functions we define the concept of
monotonicity for equivalence classes of functions equal almost everywhere. We follow some
ideas from [30].

Let X be a bounded subset of measurable functions. Assume that there is a family of
subsets (Ωc)0≤c≤a of the interval I such that meas Ωc = c for every c ∈ I, and for every
x ∈ X, x(t1) ≥ x(t2), (t1 ∈ Ωc, t2 6∈ Ωc). It is clear that by putting Ωc = [0, c) ∪ Z or Ωc =

[0, c) \ Z, where Z is a set with measure zero, this family contains nonincreasing functions
(possibly except for a set Z). We will call the functions from this family “a.e. nonincreasing”
functions. This is the case when we choose a measurable and nonincreasing function y and
all functions equal a.e. to y satisfy the above condition. This means that such a notion can be
also considered in the space S. Thus we can write that elements from LM(I) belong to this
class of functions.

Further, let Qr (r > 0) stand for the subset of the ball Br consisting of all functions which
are a.e. nonincreasing on I. Functions a.e. nondecreasing are defined in a similar way. It is
known that such a family constitutes a set which is compact in measure in S (cf. [30, section
19.8]). We are interested if the set is still compact in measure as a subset of some subspaces of
S. In general, it is not true, but we are able to prove that for the case of Orlicz spaces, we have
the following.

Lemma 4.1 ([23]). Let X be a bounded subset of LM(I) consisting of functions which are a.e. nonde-
creasing (or a.e. nonincreasing) on the interval I. Then X is compact in measure in LM(I).

We are interested in studying if the operator G takes this set into itself. We need the
following useful lemma for superposition operators.

Lemma 4.2 ([11, Lemma 4.2]). Suppose the function t → f (t, x) is a.e. nondecreasing on a finite
interval I for each x ∈ R and the function x → f (t, x) is a.e. nondecreasing on R for any t ∈ I. Then
the superposition operator F generated by f transforms functions being a.e. nondecreasing on I into
functions having the same property.

For an abstract operator G we will need to assume the above property. Note that the
superposition operator takes the bounded sets compact in measure into the sets with the
same property. Namely, we have (see Lemma 3.3 for an acting condition below) the following
proposition.

Proposition 4.3. Let M be an N-function satisfying the ∆2-condition. Assume that a function
f : I × R → R satisfies Carathéodory conditions and the function t → f (t, x) is a.e. nondecreas-
ing on a finite interval I for each x ∈ R and the function x → f (t, x) is a.e. nondecreasing on R

for any t ∈ I. Assume moreover, that F : LM(I) → LM(I). Then F(V) is compact in measure for
arbitrary bounded and compact in measure subset V of LM(I).

Proof. Let V be a bounded and compact in measure subset of LM(I). By our assumption
LM(I) = EM(I) and then F(V) ⊂ LM(I) = EM(I). As a subset of S the set F(V) is compact in
measure (cf. [9]). The topology of convergence in measure is metrizable, so the compactness
of this set is equivalent with its sequential compactness.

Take an arbitrary sequence (yn) ⊂ F(V) ⊂ EM(I), then we get a sequence (xn) in V such
that yn = F(xn). Since (xn) ⊂ V (as follows from Lemma 3.2), the operator F transforms
this sequence into the sequence convergent in measure. Thus (yn) = (F(xn)) is compact in
measure, so is F(V). Recall that an important property of Orlicz spaces LM(I) is that of being
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continuously embedded into the space S. This means that every convergent sequence in LM(I)
is also convergent in S. Finally F(V) is compact in measure in LM(I).

5 Main results

Let J = [0, d] and let B denote the operator associated with the right-hand side of the equa-
tion (1.1) which takes the form x = Bx, where B(x) = g + U(x) and U(x)(t) = G(x)(t) ·∫ t

0 K(t, s) f (s, x(η(s))) ds.
Thus B = g + G · A = g + G · H ◦ F ◦ Cη and then equation (1.1) is of the form

x = g + G · H ◦ F ◦ Cη . (5.1)

We will try to choose the domains of operators defined above in such a way to obtain the
existence of solutions in a prescribed Orlicz space Lϕ(J). We formulate some conditions
allowing us to consider strongly nonlinear operators. Since we consider an abstract form
for the operator G we need to describe its properties. Related results for the superposition
operator are described in the first part of our paper.

Let us discuss the choice of domains and ranges for considered operators. Let G : Lϕ(J)→
Lϕ1(J) and F : Lϕ(J)→ LN(J). Recall that Cη does not change the target space for F. We need
also to describe some assumptions on “intermediate” spaces being the images of Lϕ(J) for G
and F and the range for H (i.e. Lϕ2(J)). This approach is based on a classical (non-quadratic)
case as in [35, 37, 39] and seems to be important in view of optimality of assumptions. Recall
that for quadratic problems all the spaces considered in previous papers were Banach algebras
(most of all C(I), some Banach–Orlicz algebras in [23]) or L∞(J) in place of Lϕ2(J) (cf. [24]).

Theorem 5.1. Assume that ϕ, ϕ1, ϕ2 are N-functions and that M and N are complementary N-
functions. Moreover, put the following set of assumptions:

(N1) (the choice of spaces) there exists a constant k1 > 0 such that for every u ∈ Lϕ1(J) and w ∈
Lϕ2(J) we have ‖uw‖ϕ ≤ k1‖u‖ϕ1‖w‖ϕ2 ,

(C1) g ∈ Eϕ(J) is nondecreasing a.e. on J,

(C2) f : J ×R → R satisfies Carathéodory conditions and f (t, x) is assumed to be nondecreasing
with respect to both variable t and x separately,

(C3) (the growth condition) | f (t, x)| ≤ b(t) + R(|x|) for t ∈ J and x ∈ R, where b ∈ EN(J) and R
is non-negative, nondecreasing, continuous function defined on R+,

(C4) (relationships between the choice of spaces and growth conditions) ϕ is an N-function and the
function N satisfies the ∆2-condition and suppose that there exist γ ≥ 0 such that

R(u) ≤ γN−1 (ϕ (u)) for u ≥ 0.

(G1) (the operator G) G : Lϕ(J) → Lϕ1(J) takes continuously Eϕ(J) into Eϕ1(J) and there exists a
positive function G0 ∈ Lϕ(J) such that for t ∈ J |G(x)(t)| ≤ G0(t)‖x‖ϕ and that G takes the
set of all a.e. nondecreasing functions into itself. Moreover, assume that for any x ∈ Eϕ(J) we
get G(x) ∈ Eϕ1(J).

(K1) (the kernel K) s → K(t, s) ∈ LM(J) for a.e. t ∈ J and p(t) = ‖K(t, ·)‖M ∈ Eϕ2(J). Moreover,
assume the linear operator H with the kernel K maps the set of all a.e. nondecreasing functions
into itself.
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(K2) (the functional dependence) η : J → J is an increasing absolutely continuous function and there
are positive constants Z such that η′ ≥ Z a.e. on (0, d).

Assume that for some q > 0 the following inequality holds true on an interval J0 = [0, a] ⊂ J =
[0, d] ∫

J0

ϕ
(
|g(t)|+ G0(t) · q · |p(t)| ·

[
‖b‖N +

(
γ +

γ

Z
(q− 1)

)])
dt ≤ q.

If moreover,
(
k1 · ‖G0‖ϕ1 · ‖p‖ϕ2 · [‖b‖N + γ + γ

Z (q− 1)]
)
< 1 for q satisfying the above inequality,

then there exists an a.e. nondecreasing solution x ∈ Eϕ(J0) of (1.1) on J0 ⊂ J.

Proof. We need to divide the proof into a few steps.
I. We need to prove that the operator B is well-defined from Lϕ(J) into itself and continu-

ous on a constructed domain. Note that the assumption (K2) allows us to use Lemma 3.7 and
x(η(·)) ∈ Lϕ(J). Since η is strictly increasing, it is nonsingular and for all measurable subsets
X ⊂ J with meas(η−1(X)) ≤ d meas(X).

First of all observe that the assumptions (C2)–(C4) and Lemma 3.3 implies that the super-
position operator F is continuous mappings from Eϕ(J) into EN(J). In this case we will prove
that U is a continuous mapping from the unit ball in Eϕ(J) into the space Eϕ(J).

Let us recall that x ∈ Eϕ(J) iff for arbitrary ε > 0 there exists δ > 0 such that ‖xχT‖ϕ < ε

for every measurable subset T of J with the Lebesgue measure smaller that δ (i.e. x has
absolutely continuous norm).

Assumption (K1) and Theorem 16.3 and Lemma 16.3 (with M1 = N, M2 = ϕ2 and N1 =

M) of [29] imply that the operator H maps EN(J) into Eϕ2(J) and is continuous. Then A is
a continuous mapping from B1(Eϕ(J)) into Eϕ2(J). By our assumption (G1) the operator G
is continuous from B1(Eϕ(J)) into Eϕ1(J) and then by (N1) and Proposition 3.5 the operator
U has the same property and then U is a continuous mapping from B1(Eϕ(J)) into the space
Eϕ(J). Finally, by the assumption (C1) B maps B1(Eϕ(J)) into Eϕ(J) continuously.

Since the composition operator Cη is linear and continuous, we are able to repeat the above
consideration for x(η(·)) instead of x(·) (cf. Lemma 3.8).

II. We will prove the boundedness of the operator B, namely we will construct an invariant
set V ⊂ B1(Eϕ(J)) for B in Lϕ(J).

Denote by Q the set of all positive numbers q for which∫
J0

ϕ
(
|g(t)|+ G0(t) · q · |p(t)| ·

[
‖b‖N +

(
γ +

γ

Z
(q− 1)

)])
dt ≤ q.

By r we will denote sup Q. Recall that J0 = [0, a] ⊂ J. Clearly, for a sufficiently small number
a this set is nonempty due to our assumption. It should be noted that the assumption (N1)
implies that p ∈ Lϕ2(J) implies p ∈ Lϕ(J) (by putting u = const. and w = p). The same holds
true for the function G0 with values in Lϕ1(J).

Let V denote the closure of the set {x ∈ Eϕ(J0) :
∫ a

0 ϕ(|x(s)|) ds ≤ r− 1}. Clearly V is not
a ball in Eϕ(J0), but V ⊂ Br(Eϕ(J0)) (cf. [29, p. 222]). Notice that V is a bounded closed and
convex subset of Eϕ(J0).

Take an arbitrary x ∈ V. By using [29, Theorem 10.5 with k = 1], we obtain that for any
t ∈ J0

‖R(|x(η)χ[0,t]|)‖N ≤ γ
∥∥∥N−1

(
ϕ
(
|x(η)χ[0,t]|

))∥∥∥
N

≤
(

γ + γ
∫ t

0
ϕ (|x(η(s))|) ds

)
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≤
(

γ + γ
∫ t

0
ϕ (|x(η(s))|) η′(s)

Z
ds
)

=

(
γ +

γ

Z

∫ η(t)

η(0)
ϕ (|x(u)|) du

)
≤
(

γ +
γ

Z

∫
J0

ϕ (|x(u)|) du
)

(5.2)

and then by the Hölder inequality and our assumptions we get

|A(x)(t)| ≤ |p(t)|
[
‖b‖N + ‖R(|xχ[0,t]|)‖N

]
.

Thus for any measurable subset T of J. For arbitrary x ∈ V and t ∈ J0

|B(x)(t)| ≤ |g(t)|+ |Ux(t)|
≤ |g(t)|+ |G(x)(t)| · |A(x)(t)|

≤ |g(t)|+ |G(x)(t)| ·
∫ t

0
|K(t, s)| · | f (s, x(η(s)))| ds

≤ |g(t)|+ |G(x)(t)| · |p(t)|
[
‖b‖N + ‖R(|xχ[0,t]|)‖N

]
≤ |g(t)|+ G0(t) · ‖x‖ϕ · |p(t)| ·

[
‖b‖N +

(
γ +

γ

Z

∫
J0

ϕ (|x(u)|) du
)]

≤ |g(t)|+ G0(t) ·
(

1 +
∫

J
ϕ(|x(t)|) dt

)
· |p(t)|

[
‖b‖N +

(
γ +

γ

Z

∫
J0

ϕ (|x(u)|) du
)]

≤ |g(t)|+ G0(t) · r · |p(t)| ·
[
‖b‖N +

(
γ +

γ

Z
(r− 1)

)]
.

Finally∫
J0

ϕ(B(x)(t)) dt ≤
∫

J0

ϕ
(
|g(t)|+ G0(t) · r · |p(t)| ·

[
‖b‖N +

(
γ +

γ

Z
(r− 1)

)])
dt.

By the definition of r we get
∫

J0
ϕ(B(x)(t)) dt ≤ r and then B(V) ⊂ V. Consequently B(V) ⊂

B(V) ⊂ V = V.
Then B : V → V. Moreover, B is continuous on V ⊂ Br(Eϕ(J0)) (see the part I of the proof).
III. Now, let a subset Qr of V consist of a.e. nondecreasing functions. We need to inves-

tigate the properties of this set. We follow the idea from [10]. As claimed in [10], this set is
nonempty, bounded (by r) and convex.

As a subset of Lϕ(J0) it is a (sequentially) closed set. Indeed, let (yn) be a sequence of ele-
ments in Qr convergent in Lϕ(J0) to y. Then the sequence is also convergent in measure and as
a consequence of the Vitali convergence theorem for Orlicz spaces and of the characterization
of convergence in measure (the Riesz theorem) we obtain the existence of a subsequence (ynk)

of (yn) which converges to y almost uniformly on J0 (cf. [35]). Moreover, y is still nondecreas-
ing a.e. on J0 which means that y ∈ Qr and so the set Qr is closed. Now, in view of Lemma
4.1 the set Qr is compact in measure.

IV. We check the continuity and monotonicity properties of B in Qr, so U : Qr → Qr. The
first property is essentially depending on the choice of ϕ and we need to use its properties.

We begin by demonstrating that B preserve the monotonicity of functions. Take x ∈ Qr,
then x and x(η) are a.e. nondecreasing on J and consequently F(x(η)) is also of the same
type in virtue of the assumption (C2) and Lemma 4.2. Further, A(x) = H ◦ F(x(η)) is a.e.
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nondecreasing on J0 thanks for the assumption (K1). Since the pointwise product of a.e.
monotonic functions is still of the same type and by (G1), the operator U is a.e. nondecreasing
on J0.

Moreover, the assumption (C1) permits us to deduce that Bx(t) = g(t) + U(x)(t) is also
a.e. nondecreasing on J0. This fact, together with the assertion that B : V → V gives us that
B is also a self-mapping of the set Qr. From the above considerations it follows that B maps
continuously Qr into Qr.

V. Now we will prove that B is a contraction with respect to a Hausdorff measure of
noncompactness and we use the Darbo fixed point theorem to find a solution in Qr.

Assume that X is a nonempty subset of Qr and let the fixed constant ε > 0 be arbitrary.
Since Lϕ1(J) is an ideal space, our assumption (G1) implies that ‖G(x)‖ϕ1 ≤ ‖G0‖ϕ1‖x‖ϕ.
Then for an arbitrary x ∈ X and for a set D ⊂ J0, meas D ≤ ε we obtain

‖B(x) · χD‖ϕ ≤ ‖gχD‖ϕ + ‖U(x) · χD‖ϕ

= ‖gχD‖ϕ + ‖G(x) · A(x)χD‖ϕ

≤ ‖gχD‖ϕ + k1‖G(x)χD‖ϕ1 · ‖A(x)‖ϕ2

= ‖gχD‖ϕ + k1‖G(x)χD‖ϕ1

∥∥∥∥∫J0

K(·, s) f (s, x(η(s))) ds
∥∥∥∥

ϕ2

≤ ‖gχD‖ϕ + k1‖G0‖ϕ1‖xχD‖ϕ

∥∥∥∥∫J0

|K(·, s)|(b(s) + R(|x(η(s))|)) ds
∥∥∥∥

ϕ2

≤ ‖gχD‖ϕ + k1‖G0‖ϕ1‖xχD‖ϕ‖p‖ϕ2

[
‖b‖N + ‖R(|x(η)|)‖N

]
≤ ‖gχD‖ϕ + k1‖G0‖ϕ1‖xχD‖ϕ‖p‖ϕ2

[
‖b‖N + γ‖N−1 (ϕ(|x(η)|)) ‖N

]
≤ ‖gχD‖ϕ + k1‖G0‖ϕ1‖xχD‖ϕ‖p‖ϕ2

[
‖b‖N + γ

(
1 +

∫
J0

ϕ(|x(η(s))|) dt
)]

≤ ‖gχD‖ϕ + k1‖G0‖ϕ1‖xχD‖ϕ‖p‖ϕ2

[
‖b‖N + γ +

γ

Z
(r− 1)

]
.

Hence, taking into account that g ∈ Eϕ

lim
ε→0

{
sup

meas D≤ε

[{‖gχD‖ϕ}]
}

= 0.

Thus by definition of c(x) and by taking the supremum over all x ∈ X and all measurable
subsets D with meas D ≤ ε we get

c(B(X)) ≤ k1 · ‖G0‖ϕ1 · ‖p‖ϕ2 ·
[
‖b‖N + γ +

γ

Z
(r− 1)

]
· c(X).

Since X ⊂ Qr is a nonempty, bounded and compact in measure subset of a regular part Eϕ of
Lϕ, we can use Proposition 2.3 and get

βH(B(X)) ≤ k1 · ‖G0‖ϕ1 · ‖p‖ϕ2 ·
[
‖b‖N + γ +

γ

Z
(r− 1)

]
· βH(X).

The inequality obtained above together with the properties of the operator B and the set
Qr established before and the inequality

k1 · ‖G0‖ϕ · ‖p‖ϕ2 ·
[
‖b‖N + γ +

γ

Z
(r− 1)

]
< 1

allow us to apply the Darbo fixed point theorem 2.4, which completes the proof.
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The Lebesgue spaces Lp can be treated as Orlicz spaces LMp for Mp(x) = xp

p , p > 1. It
is clear that in this space Mp satisfies ∆2-condition and, therefore, the case of Lp-solutions is
covered by our result. Thus, let us present a special case for this class of solutions, which will
form still more general result than the earlier ones. To simplify the set of assumptions let us
restrict to the case of the superposition operator G.

Assume that p > 1 and 1
p1
+ 1

p2
= 1

p . Denote by q the value min(p1, p2) and by y the value
max(p1, p2). This implies, in particular, that q ≤ 2p.

Let us consider an interesting case, when the operator G(x)(t) = h(t, x(t)). Then equation
(1.1) takes the form

x(t) = g(t) + h(t, x(t)) ·
∫ t

0
K(t, s) f (s, x(η(s))) ds, t ∈ [0, d]. (5.3)

We shall treat equation (5.3) under the following (less abstract) set of assumptions pre-
sented below.

(i) g ∈ Lp(J) is nondecreasing a.e. on J.

(ii) Assume that functions f , h : J ×R → R satisfy Carathéodory conditions and there are
positive constants bi (i = 1, 2) and positive functions ai ∈ Lq (i = 1, 2) such that

|h(t, x)| ≤ a1(t) + b1|x|
p
q and | f (t, x)| ≤ a2(t) + b2|x|

p
q

for all t ∈ J and x ∈ R. Moreover, the functions f , h are assumed to be nondecreasing
with respect to both variables t and x separately.

(iii) Let the function K be measurable in (t, s). Moreover, assume that the function t →
‖K(t, ·)‖q′ ∈ Ly(J), where 1

q +
1
q′ = 1 and that the linear integral operator with the kernel

K maps the set of all a.e. nondecreasing functions into itself.

(iv) η : J → J is increasing absolutely continuous function and there is a positive constant Z
such that η′ ≥ Z a.e. on (0, d).

In addition, let r be a positive number such that

‖g‖p +
[
‖a1‖q + b1 · r

p
q
]
· ‖K0‖ ·

[
‖a2‖q +

b2

Z
1
q
· r

p
q

]
≤ r,

where ‖K0‖ = ‖t→ ‖K(t, ·)‖q′‖y.

Corollary 5.2. Let the assumptions (i)–(iv) be satisfied. If b1b2‖K0‖r
2p
q −1 < Z

1
q , then equation (5.3)

has at least one Lp(J)-solution a.e nondecreasing on some subinterval [0, a] ⊂ J.

For the case of classical Volterra equations (non-quadratic) in Lp treated as a special case
of Orlicz spaces see also [1], but in the case of completely continuous integral operator (not
applicable in the case of quadratic equations).

Remark 5.3. Let us note that if the operator G takes the simple form G(x)(t) = q(t) · x(t),
then our assumptions referred to quadratic integral equations

x(t) = g(t) + q(t) · x(t) ·
∫ t

0
K(t, s) f (s, x(s)) ds, t ∈ [0, d]. (5.4)

Since we are motivated by some study on quadratic integral equations, this is of our particular
interest. Note, that a full description for acting and continuity conditions for G(x) = a(t)x(t)
can be found in [29, Theorem 18.2] (cf. assumption (G1)).
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As a particular case we solve the following form of the equation (1.1):

x(t) = 1 + x(t)
∫ 1

0

t
t + s

ψ(s)(log (1 + |x(
√

s)|)) ds. (5.5)

The equation (5.5) is the quadratic integral equation of generalized Chandrasekhar type (cf.
[7, 14, 21] for the classical case of this equation and its applications). It arose in connection
with scattering through a homogeneous semi-infinite plane atmosphere (see [20, 21]) and dis-
continuous solutions for this equation can be used as good description of non-homogeneous
atmosphere (cf. [4]).

In this case we have K(t, s) = t
t + s ψ(s) and then for some sufficiently well-chosen functions

ψ our result applies (ψ(s) = (1/2) · e−s, for instance).
More examples of interesting equations can be found in recent papers of Banaś and co-

authors [14, 16], in the book [29, Chapter III, sec. 16] or in [32, 34].
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[17] J. Banaś, K. Sadarangani, Solutions of some functional-integral equations in Banach
algebras, Math. Comput. Model. 38(2003), 245–250. MR2004993

[18] A. Benkirane, A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem
in Orlicz spaces, Nonlinear Anal. 36(1999), 11–24. MR1670307

[19] J. Berger, J. Robert, Strongly nonlinear equations of Hammerstein type, J. London Math.
Soc. 15 (1977), 277–287. MR0435940

[20] J. Caballero, A. B. Mingarelli, K. Sadarangani, Existence of solutions of an integral
equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differential
Equations 2006, No. 57, 1–11. MR2226930

[21] S. Chandrasekhar, Radiative transfer, Dover Publ., New York, 1960. MR0111583

[22] I.-Y. S. Cheng, J. J. Kozak, Application of the theory of Orlicz spaces to statistical me-
chanics. I. Integral equations, J. Math. Phys. 13(1972), 51–58. MR0299149
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