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Abstract 18 

Questions: What is the relative importance of our methodological decisions concerning 19 

sampling (plot size) and data analysis (data transformation, resemblance coefficient, 20 

hierarchical clustering strategy and the number of clusters) in vegetation classification? Are 21 

there differences between the conclusions when the full range or only a more practical 22 

narrow range of methodological choices is tested? What is the difference between results for 23 

actual and random data? 24 

Location: Rock grassland in Hungary. 25 

Methods: The full procedure of vegetation classification was simulated using actual and 26 

random data. Variation in classification results was partitioned using distance-based 27 

redundancy analysis. The RDA models were subjected to variation partitioning to determine 28 

the relative importance of methodological decisions. 29 
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Results: RDA models explained more variation in classifications of random than in real data. 30 

Classification algorithm, cluster level, data transformation and mean plot size were always 31 

included among the most significant variables, however, the other variables also had 32 

considerable effect in certain situations. 33 

Conclusions: As adjusted R-squared values suggest, the overall effect of methodological 34 

decisions on classifications is larger for randomly structured than actual data, due possibly to 35 

stronger clustering tendency in the latter. The clustering algorithm, cluster level, data 36 

transformation and plot size should be chosen most carefully before classification analyses, 37 

but any of the examined decisions can significantly affect the result. In addition to the mean, 38 

the range of plot sizes should also be carefully delimited during relevé selection for 39 

classification studies. The main decision about the classification algorithm is whether a 40 

chain-forming or group-forming method is used. The data transformation had more significant 41 

effect on real data than on simulations with random variation, thus supporting the ability of 42 

the application of different abundance scales in revealing different facets of biologically 43 

relevant patterns in community composition. The resemblance measure had relatively weak 44 

effect suggesting that it is not as influential as previously thought. 45 
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 55 

Introduction 56 

Classification of vegetation has long been the primary research objective in phytosociology 57 

and still represents an integral part of vegetation science in general (Whittaker 1973; Mucina 58 

1997; Peet & Roberts 2013). It provides a firm reference basis for syntaxonomy, similarly to 59 

the classification of living organisms in biological systematics (or taxonomy). Scientific 60 



communication would be impossible without a common basis for recognizing, separating, 61 

describing, naming and mapping plant communities, that is, without classification of 62 

vegetation units. In addition to the fact that syntaxonomy is conditioned upon taxonomy, 63 

there is a fundamental difference between these two fields of biology. Whereas the basic 64 

observational units of classification in conventional systematics are natural entities 65 

(individuals), community classification requires the use of – more or less – arbitrarily 66 

delineated tracts from the vegetation continuum. Therefore, one is faced with a multitude of 67 

methodological choices that have to be made in the real topographical space (Podani 1984), 68 

that is, in the field. These include the appropriate selection of sampling criteria, that is, plot 69 

size, shape, number and arrangement (Kenkel et al. 1989). Syntaxonomy and taxonomy 70 

share only the problem of conceptual and methodological decisions which concern the 71 

variables to describe the study objects, measurement scale, resemblance coefficient and 72 

clustering algorithm to be used during data processing (Podani 1989). Tradition, fashion, 73 

practicability, comparability with others’ results, availability of software and similar, more or 74 

less subjective considerations may guide the user in this methodological jungle. 75 

Nevertheless, since no absolute and universally valid criteria are available, all decisions 76 

remain unavoidably arbitrary in every step of the study. An important philosophical 77 

conclusion is that any attempt to find and define unique classifications in vegetation science 78 

will be illusory – which does not mean that the effect of sampling and analysis upon the 79 

results should be disregarded in community analysis. 80 

The importance of such methodological choices in multivariate analysis has long been 81 

recognized by several authors (plot size: Kenkel & Podani 1991; Otýpková & Chytrý 2006; 82 

Dengler et al. 2009; measurement scale: Jensen 1978; van der Maarel 1979; Wilson 2012; 83 

resemblance measure: Green 1980; Hajdu 1981; Wolda 1981; Hubálek 1982; clustering 84 

method: Milligan & Cooper 1987; Belbin & McDonald 1993; Dale 1995; Lötter et al. 2013; 85 

cluster number: Milligan 1996; Aho et al. 2008; Tichý et al. 2010). It is fair to say, however, 86 

that vegetation classifications are not equally influenced by the above-mentioned factors, and 87 

that differences are always case-dependent. In this regard, the evaluation of the relative 88 

importance of decisions influencing the classifications may be extremely helpful. Ecological 89 

interpretation of results is greatly enhanced, for example, if we learn that switching from 90 

abundances to presence-absence data is more critical than either changing the plot size or 91 

selecting among various clustering algorithms. In order to draw such conclusions, we need 92 

comparative studies that allow quantifying the amount of variance in the results attributable 93 

to a particular factor changed. One such approach was suggested earlier by Podani (1989) in 94 

which classification results of the same objects, each obtained by a given combination of 95 

choices related to sampling and data analysis, were mapped into an ordination. Then, each 96 



ordination axis was identified by a given factor and the order of importance of these factors 97 

was determined based on the percentages of variance explained by the associated 98 

ordination dimensions. However, this method has limited applicability, because there is no 99 

guarantee that axes can be unambiguously identified with any of the factors modified. 100 

Furthermore, that approach required the use of all possible combinations of factors, which is 101 

a strong methodological limitation. A more general procedure is necessary which is able to 102 

partition total variation in the results into components which have one to one correspondence 103 

with the modified factors. 104 

In this paper, we use an actual data set from dolomite grasslands and randomly simulated 105 

data to partition variation in the results attributable to plot size, data transformation, 106 

resemblance coefficient, hierarchical clustering strategy and, finally, to the cluster level (i.e. 107 

the number of clusters) obtained from the resulting dendrograms. The method involves 108 

random parametrization of these factors, followed by variation partitioning by distance-based 109 

redundancy analysis of classifications. Our expectation was that methodological decisions 110 

are more influential on classifications of random data than grassland data assuming that 111 

biological pattern involves some robustness thereby diminishing the effect of the changes in 112 

methods upon results. However, we had no a priori expectation about the order of 113 

importance of methodological decisions. 114 

  115 

Materials and Methods 116 

Data sets 117 

Actual community data 118 

This data set comes from an extensive study of rock grasslands on the dolomite bedrock of 119 

Sas Hill, lying within the city limits of Budapest, Hungary (Podani 1998). Eighty sample units 120 

were located in the grasslands, representing open rock grassland, closed grassland and 121 

slope steppe. Each sample unit consisted of a series of 8 nested quadrats with a common 122 

corner, the smallest being 0.5 m × 0.5 m, and the largest 4 m × 4 m, with 0.5 m side 123 

increments in between. Percentage cover of vascular plants was recorded within each plot 124 

for each size. The total number of species ranged from 79 (smallest quadrats) to 123 (largest 125 

quadrats). The eight data matrices can be ordered according to plot size, representing a 126 

logical order in the real topographical space, i.e., a spatial series.  127 

Simulated spatial series data 128 



Artificial data matrices were generated for 80 virtual quadrats containing up to 100 species. 129 

For each quadrat, a probability of occurrence for each species was generated based on the 130 

lognormal distribution (mean = 2, SD = 2 on the ln scale). A predefined number of plant 131 

individuals were distributed over the species based on these probabilities. The total number 132 

of individuals in the sample unit was used as a proxy for plot size, assuming that these two 133 

are proportional to each other. Applied virtual ‘plot sizes’ were 25, 100, 225, 400, 625, 900, 134 

1225, 1600 individuals. Individuals were assigned to species such that those occurring in the 135 

smallest ‘quadrat’ were retained in all larger quadrats, thus providing a nested species 136 

composition similarly to the actual grassland data. In summary, simulated spatial series data 137 

were stored in a three-dimensional matrix with 80 locations, 100 species and 8 plot sizes.   138 

Methodological decisions 139 

The basic idea is that both actual and randomized data series serve as input for resampling, 140 

in order to generate 200 new matrices for the 80 quadrats. In each of these matrices, 141 

quadrats have various sizes determined as described below, and each matrix is subjected to 142 

classification based on a random combination of data transformation, resemblance 143 

coefficient, hierarchical clustering algorithm and number of clusters to be derived from the 144 

resulting dendrogram. It means that 200 classifications are obtained for the actual and for the 145 

random data as well. Then, in each case the 200 classifications are compared in every 146 

possible pair to yield a distance matrix which serves as the input for distance-based RDA 147 

(Legendre & Anderson 1999). In this, constraining variables were those reflecting our 148 

decisions on plot size, data transformation etc. The resulting RDA models were subjected to 149 

variation partitioning to determine the relative importance of plot size, data transformation, 150 

resemblance coefficient, hierarchical clustering algorithm and number of clusters upon the 151 

classifications.  152 

Resampling and the matter of plot sizes 153 

The size of each quadrat in each of the sample data matrices was chosen randomly 154 

according to the following design. An 8-point scale corresponding to the sampled plot sizes 155 

was used for random number generation. First, M, a mid-point of the interval from which the 156 

plot sizes would be selected was drawn. Then, it is supplied with a half-range value, d, in 157 

order to control the spread of the plot sizes within the sample. d could take values from 1 to 4 158 

randomly. The actual range from which the plot sizes are selected for each location is the 159 

interval [min(M-d, 1); max(M+d, 8)], 1 referring to the first (smallest) and 8 to the eighth 160 

(largest) plot size. For the ‘full-range’ analysis, M could take values on the range [1; 8], while 161 

it was limited to [1; 4] for the ‘narrow-range’ scenarios. The narrow-range design simulates 162 

the situation when only a limited range of plot sizes is useful only for classification. In the 163 



modelling experiments, the mean and the standard deviation of quadrat sizes are used as 164 

explanatory variables. 165 

Data transformation and resemblance measures 166 

After obtaining a data matrix comprising 80 plots of different sizes, abundance values were 167 

transformed by Clymo’s function (van der Maarel 1979, Podani 2000) given by 168 

�′�� = �1 − 	
��
��/�1 − 	
�� 

in which xij is the relative percentage cover value for species i in quadrat j ranging from 0 to 169 

1, and c is a parameter falling in the range [-∞, ∞] such that c=0 is not allowed. This 170 

procedure allows for weighting abundances differently by adjusting the c parameter. In cases 171 

with high positive c, transformed data approximate the presence/absence situation, thus 172 

giving more weight to less abundant species. Large negative values of c lead to 173 

overweighting the dominant species. If c is very close to 0, the relative abundance 174 

differences of species remain practically unaffected. However, in real situations data 175 

transformation is rather used for downweighting dominant species, therefore, we made 176 

separate ’full-range’ analyses and ’narrow-range’ analyses by changing the value of c within  177 

[-16; +16] or (0; +16]. Note that c must not equal 0. 178 

From the transformed data, dissimilarity matrices were calculated. The resemblance 179 

measure was randomly chosen from four indices commonly applied in community ecology: 180 

Euclidean, Manhattan, Bray-Curtis and Marczewski-Steinhaus indices (Podani 2000), all of 181 

them selected with equal frequency, i.e. 50 times out of 200 trials. The Bray-Curtis and 182 

Marczewski-Steinhaus indices are the abundance versions of the dissimilarity forms of the 183 

Sørensen and Jaccard coefficients for presence-absence data, respectively. All but one 184 

measures, the exception being the Bray-Curtis index, satisfy the metric axioms. 185 

Classification algorithm 186 

A hierarchical classification was obtained from the dissimilarity matrix by agglomerative 187 

clustering. The fusion algorithm was the beta-flexible method because it allows for 188 

reproducing classifications of different grouping mechanisms by adjusting its β parameter 189 

within the interval [-1; 1] (Lance & Williams 1967; see also Podani 2000). Values of β close to 190 

1 tend to emphasise a chained group structure (similarly to the single link or nearest 191 

neighbour method), while negative β values lead to increased grouping tendency (as 192 

observed for complete link or farthest neighbour algorithms). In each trial, the value of β was 193 

chosen randomly from -1 to 1 (’full range’). However, in practice ’group-forming’ methods are 194 

preferred, therefore β values were drawn from [-1; 0] for ’narrow-range’ analyses. The cluster 195 



level (simulating the case of an ’optimal non-hierarchical classification’) was randomly 196 

chosen between 2 and 8. The hierarchical classification was ’cut’ at this level and hereafter 197 

only this non-hierarchical clustering was used. 198 

Data analysis 199 

The 200 trials of the randomization resulted in 200 classifications of the same spatial series. 200 

From each classification, an incidence matrix, C, was calculated in which cij is 1 if objects i 201 

and j in the same cluster and 0 otherwise. Euclidean distances were calculated between all 202 

pairs of incidence matrices. This method is also called ‘PAIRBONDS’ (Arabie & Boorman 203 

1973; Podani 2000). These distances were then summarized into another distance matrix 204 

based on which principal coordinates analysis was computed. In the resulting ordination all 205 

points correspond to a non-hierarchical classification. Then, the following explanatory 206 

variables were fitted to the ordination diagram: mean and standard deviation of plot sizes, 207 

resemblance measure, c of Clymo’s transformation, β of the flexible classification and the 208 

number of clusters. Trend surfaces of numerical variables were fitted onto the scatter plots 209 

by generalized additive models, while average scores were calculated for the resemblance 210 

measures. The relative importance of the explanatory variables was tested by constrained 211 

ordination: the Euclidean distances obtained earlier were subjected to a distance-based 212 

redundancy analysis (db-RDA, Legendre & Anderson 1999). When mean plot size, Clymo’s c 213 

and β were scaled on full-range, their squared terms were also included in the model as 214 

explanatory variables. Low (<2) values of generalized variance inflation factors (GVIF, Fox & 215 

Monette 1992) indicated negligible collinearity between model terms. The models were 216 

evaluated by comparing F ratios of the model terms vs. residual variation, by calculating 217 

adjusted R-squared measures and by visual observation of fitted explanatory variables on 218 

the PCoA diagrams. During the evaluation of db-RDA models, predictors with F ratios with a 219 

type I error rate of P<0.01 were considered significant. 220 

Our variation partitioning approach relies on the basic assumption that db-RDA models can 221 

properly explain the variation among classifications attributed to the different methodological 222 

decisions. In order to validate our modelling technique, we applied a simulation test. The 223 

above described simulation analysis with narrow-range variables, starting from the sample 224 

selection and ending at calculation of explained variances was repeated many times. 225 

However, instead of the fully random parametrization of the six variables representing 226 

methodological decisions, some of them were ‘fixed’, i.e. they were given zero variance. For 227 

example, if plot size was fixed, only plots of the same size were selected from each location 228 

in all of the 200 classifications that were entered in each db-RDA. Of course, in such cases, 229 

the fixed variable was not included as an explanatory variable of the db-RDA, since it had no 230 

variation. The number of fixed variables was increased from zero to five in six steps and for 231 



each number of fixed variables, 100 trials were performed. Then, average explained 232 

variation, unexplained and total variation were plotted against the number of fixed variables. 233 

We expected that explained variation would decrease with increases in the number of fixed 234 

variables because reducing the possible outcomes of methodological decisions should also 235 

reduce the variation among classification they account for. If unexplained variation also 236 

decreased with the increased number of fixed variables, we could conclude that variation 237 

caused by methodological decisions was not properly explained by the db-RDA model. On 238 

the contrary, approximately constant unexplained variation obtained for different numbers of 239 

fixed variables would mean that independently from the methodological decisions and the 240 

explanatory variables, there is a certain amount of inherent variation in the compositional 241 

data.  242 

All analyses were performed by the R software environment (version 2.14.1, R Development 243 

Core Team, www.r-project.org) using the packages vegan (Oksanen et al., http://CRAN.R-244 

project.org/package=vegan, vegdist(), cmdscale(), capscale(), vif.cca(), ordistep(), 245 

anova.cca() and RsquareAdj() functions) and cluster (Maechler et al., http://cran.r-246 

project.org/web/packages/cluster/, agnes() function).  247 

 248 

Results 249 

Distance-based RDA models of simulated and grassland data sets explained different 250 

proportions of the total variation among classifications. The adjusted R2 values were higher 251 

for the simulated data sets (full-range: 0.466, narrow-range: 0.258) than the grassland data 252 

(full-range: 0.260, narrow-range: 0.157). In the model of the simulated data set with full-range 253 

variables flexible β (F=121.388), cluster level (F=26.437), mean plot size (F=6.592), Clymo’s 254 

c (F=5.827) and SD of plot sizes (F=3.455) proved to have a significant effect at p<0.01 255 

(Table 1). Mean plot size, Clymo’s c, flexible β and cluster number showed a good fit on the 256 

first two dimensions of the PCoA ordination  (P=4.1e-11, P=9.2e-7, P=3.4e-88 and P=1.19e-257 

14, respectively; Fig. 1).  Values of flexible β changed gradually along the first PCoA axis 258 

with increasing β values in the positive direction, while mean plot size and Clymo’s c showed 259 

a gradient along the second axis. A non-linear pattern was found for cluster number. 260 

Centroids of classifications with different resemblance measures fell close to each other. 261 

In the narrow-range analyses on the simulated data set, five predictors had significant effect 262 

(Table 2). The flexible β and the cluster level again explained the largest variation (F=36.524 263 

and F=24.538, respectively), followed by mean and SD of plot sizes (F=2.984 and F=2.564) 264 

and, finally, Clymo’s c (F=2.300). The four most important variables fitted relatively well to the 265 

first two PCoA axes (P=1.23e-31, P=1.71e-15, P=2.7e-6, P=7.2e-4; Fig. 2). Flexible β 266 



increased along the first dimension, while mean plot size correlated positively with the 267 

second axis. 268 

Five predictors had a significant effect on the variation between partitions in the model of the 269 

grassland data set with full-range variables (Table 3). Flexible β obtained by far the highest 270 

F-value (F=43.651), while the other model terms showed lower and gradually decreasing 271 

explanatory power, like cluster level (F=9.865), Clymo’s c (F=7.793), Clymo’s c squared 272 

(F=3.678) and mean plot size (F=2.206). The resemblance measure, the SD of plot sizes 273 

and the squared form of the flexible beta showed no significant effect at the pre-set level of 274 

α, but were significant at α=0.05.  The β parameter, Clymo’s c and cluster number were fitted 275 

well onto the ordination diagram (P=4e-75, P=3.8e-33, P=5.1e-17, respectively; Fig. 3). The 276 

values of the first correlated positively with Axis 1, while those of Clymo’s c with Axis 2. The 277 

pattern of cluster number on these two dimensions was non-linear again. Different 278 

resemblance measures seemed more separated than in the simulations. The fits of the other 279 

model terms were weak. 280 

After narrowing the range of explanatory variables, five terms had significant effect (Table 4). 281 

Cluster level proved by far the most influential variable (F=28.336). Clymo’s c (F=3.847), 282 

flexible β (F=2.841), mean plot size (F=2.678) and resemblance measure (F=1.391) had 283 

lower but still significant effect. Only the two most important variables showed significant fit 284 

on the ordination diagram (P=1.57e-27, P=2.5e-17; Fig. 4). Cluster number decreased along 285 

the first axis, while Clymo’s c showed a gradient along Axis 2. 286 

In the simulation test to examine the validity of our modelling approach, variation explained 287 

by db-RDA models decreased monotonically and significantly as more variables were fixed, 288 

while unexplained variation showed small changes with no clear trend (Figure 5). 289 

 290 

Discussion & Conclusions 291 

At the outset, we put forward the hypothesis that adjusted R-squared values would be higher, 292 

for simulated data with random structure than for actual grassland data. In the first case, 293 

variation among classifications would only be attributed to the differences in the 294 

methodological decisions, as superimposed on random variation, while in the second 295 

robustness of biological pattern would resist changes in methodology. Our findings confirmed 296 

this expectation. 297 

The order of importance of the predictors was not the same in all experiments, while some 298 

general trends did appear. Flexible β, cluster level, Clymo’s c and mean plot size were 299 



always among the significant model terms, and in many cases they were given the highest 300 

rank. Obvious interpretation is that decisions about clustering process, including the chaining 301 

algorithm and the number of clusters, influence most strongly the outcome of numerical 302 

classification of compositional data. Nevertheless, the other variables were also critical at 303 

least in one of the four scenarios.  304 

The decision of how large sample units should be is an often highlighted problem in the 305 

ecological literature (Kenkel & Podani 1991; Reed et al. 1993). Mean plot size was among 306 

the most influential variables in all trials and the SD of plot size also had a significant effect in 307 

the model in the simulations. Simulated data lacked biological pattern contrary to the 308 

grassland data, thus plot size can be accountable for a false discovery of non-existing 309 

pattern in multivariate data with random structure. During classification of phytosociological 310 

data comprising different plot sizes, it is advised to check the distribution of plot sizes among 311 

clusters a posteriori. Mean plot size had an effect regardless whether ‘full’ or ‘narrow’ range 312 

of parameters was used. In the narrow-range analysis of the grassland data, plot sizes varied 313 

within a range that is typical or even narrower than usual in phytosociological studies of dry 314 

grasslands (2 to 4 m2; see recommendation e.g. by van der Maarel 2009 or basic statistics of 315 

databases by Dengler et al. 2011). Although in this trial mean plot size was just the fourth 316 

most important predictor of the model, it was still significant. It implies that the influence of 317 

plot size should not be overlooked even within its recommended standard range. This result 318 

supports the recommendations by Chytrý & Otýpková (2003) who argued that for a 319 

comprehensive investigation of a vegetation type, analyses should be done separately for 320 

each plot size. The final definition of vegetation types should be elaborated based on this 321 

series of classifications. The difficulties caused by the uneven distribution of relevés in the 322 

space or among vegetation types should be handled by acquiring new data or by appropriate 323 

resampling methods (Knollová et al. 2005; Lengyel et al. 2011).  324 

Through the four scenarios, data transformation affected classifications of the grassland data 325 

set more strongly than the simulated scenarios. This finding is in line with earlier views that 326 

data transformation can reveal significantly different but biologically relevant patterns of the 327 

same data set (van der Maarel 1979; Podani 1989). Since the effect of data transformation 328 

was higher for the grassland data, we conclude that the choice of the optimal abundance 329 

scale is crucial for understanding the multiple facets of biological variation in real data sets. 330 

Thus, much care should be taken before transforming abundance data. 331 

The resemblance measure showed weaker effect than plot size and data transformation, 332 

however, it was still significant in the narrow-range analysis of the grassland data set, and it 333 

was near the pre-set significance level in the full-range trial of the same data. The matter of 334 



choosing among resemblance measures is more deeply investigated compared to other 335 

methodological decisions, and many papers highlight the differences of the available indices 336 

(Campbell 1978; Legendre & De Cáceres 2013). Without questioning that different 337 

resemblance measures can be appropriate for specific purposes, and the choice between 338 

them had to be taken carefully, our results suggest that the importance of this decision may 339 

be over-emphasized in comparison with other decisions. Thus, we consider the importance 340 

of the resemblance measure as a good reference to assess the significance of the other 341 

explanatory variables. Nevertheless, it must be noted that we employed only four indices that 342 

are very popular among vegetation ecologists. 343 

The β parameter of the flexible clustering was the most significant predictor in three cases. 344 

Its value with full range was more influential than with narrow range, which clearly indicates 345 

that decision on the classification method is most critical between chain-forming (β>0) and 346 

group-forming (β<0) methods, while differences within group-forming algorithms are not that 347 

substantial. This difference is the most striking with the grassland data, for which its effect is 348 

dropped from the 1st to the 3rd most important model term if compared to the full-range 349 

scenario. In recent works of numerical syntaxonomy (for example, Havlová 2006; Knollová & 350 

Chytrý 2004), of the distance-based methods chain-forming algorithms have received much 351 

fewer applications than group-forming ones which include the flexible method with negative β 352 

values applied here. Much more widespread is Ward’s agglomerative method (more 353 

precisely, incremental sum of squares) which also has a preference for spherical group 354 

shapes. The good performance of flexible method with β=-0.25 and the Ward’s method was 355 

also indicated by Lötter et al. (2013) but one is warned that groups show up apparently 356 

clearly in the resulting dendrograms even if in fact they do not exist in the data (Podani 357 

2000). Another very popular hierarchical method is TWINSPAN (Hill 1979; Rolecek et al. 358 

2009), however, its weaknesses are pointed out in several papers (Belbin & McDonald 1993; 359 

Dufrene & Legendre 1997; Lötter et al. 2013). The significant effect of clustering algorithm 360 

implies that during the comparison and revision of existing vegetation classifications the 361 

applied clustering methods should be taken into account carefully. Large differences 362 

between classifications of the same vegetation units of a certain area can be attributed to the 363 

different methods used, and therefore comparison of classification prepared by different 364 

algorithms may even be meaningless. 365 

Cluster level was the second most significant model term in three of the four scenarios and 366 

the most important one for the grassland data set with narrow-range variables. In 367 

classification studies, the number of clusters is usually determined by an expert-based, i.e. a 368 

rather subjective method (but see Botta-Dukát et al. 2005 or Illyés et al. 2007). Cluster 369 

validation, including the choice of the optimal ‘cut level’, is the most data-specific decision 370 



among those we studied here, therefore the only general recommendation that we could 371 

stress is to investigate and to use quantitative measures for this purpose instead of 372 

subjective assessment (for example, Milligan 1996; Aho et al. 2009; Tichý et al. 2010; Tichý 373 

et al. 2011). The validation tools are so numerous that their comparative study focusing on 374 

specific requirement for numerical syntaxonomy would be timely. 375 

In the modelling approach applied here, two crucial assumptions were made in order to 376 

quantify the effect of methodological decisions on the classifications. The first assumption 377 

was that the PAIRBONDS method expresses appropriately the dissimilarities between pairs 378 

of classifications. This index gives the square-root of the number of pairs of plots in the same 379 

group in one classification but separated in the other classification. This is a Euclidean 380 

measure of distance and its suitability to our variation partitioning approach is also supported 381 

by the R-squared values (ca. 18-48%). In ecological modeling studies, in general, lower 382 

explanatory power is often considered meaningful (Møller & Jennioins 2002). It is to be noted 383 

that PAIRBONDS is relatively sensitive to cluster structure, i.e. the number and the sizes of 384 

groups. With this measure, two classifications with different numbers of clusters can never be 385 

at zero distance from each other, therefore any differences in cluster number are 386 

immediately mirrored by the distance matrix. In contrast, certain other dissimilarity indices 387 

(e.g. Cramér’s V, Cramér 1946; Goodman-Kruskal’s Λ, Goodman & Kruskal 1954) control for 388 

the numbers of clusters, thus giving standardized measures of similarity between non-389 

hierarchical classifications. However, we consider these types of indices misleading in our 390 

situation because in practice two classifications of the same data set are rarely interpreted 391 

identically if the numbers of clusters differ. Our preliminary analyses showed that the use of 392 

Cramér’s V or Goodman-Kruskal’s Λ would attribute lower effect to flexible β and cluster 393 

level, nevertheless, it would result in much weaker overall model performance as well. 394 

The second assumption was that the db-RDA model captured relevant information on 395 

variation among classifications. The first part of db-RDA was PCoA known to preserve the 396 

original distance structure of the input matrix. Then, the PCoA axes, as transformed variables 397 

of between-classification distances, were related to the explanatory variables (i.e. the 398 

methodological decisions) by usual RDA method. At this step, even patterns that are non-399 

linear functions of the explanatory variables are decomposed into separate components for 400 

which the explanatory variables can be linearly related. To account for eventual non-linear 401 

relationships that cannot be revealed by this procedure, we included squared terms into the 402 

models and the distribution of the explanatory variables over the first two PCoA axes were 403 

also mapped by a flexible fitting method (GAM). These trend surfaces revealed that cluster 404 

number can show a non-linear pattern along the first two axes. However, this pattern can 405 

likely to be accounted for by db-RDA because cluster number came out as a highly 406 



significant predictor in all cases. In our analysis to validate the appropriateness of our 407 

modelling approach, we found that the amount of unexplained variation of our models is not 408 

related to the number of fixed and randomized variables, that is, it is independent from the 409 

methodological decisions. This suggests that the variation caused by the random 410 

parametrization of the classifications is satisfactorily explained by the db-RDA models. 411 

Therefore, we do not suspect a significant amount of unexplained variation due to non-linear 412 

effects or interactions among methodological decisions. The unexplained variation may have 413 

several different origins. The most trivial reason is that the data set has a certain degree of 414 

robustness which explains low sensitivity to methodological changes. Robustness is 415 

obviously higher for the grassland data set that contains biologically interpretable patterns. 416 

Nevertheless, it is also present in the simulated data set since randomized data do not lack 417 

variation completely but this variation is comparable to what is expected by chance. Another 418 

possible source is the individual ‘fate’ of plots in the analysis. Two classifications can be 419 

identically parameterized in terms of the selected plot sizes but the sample to be analysed 420 

can still differ because it is not fixed which plot size should be selected from a certain 421 

location. 422 

The few most important variables identified by the variation partitioning approach using db-423 

RDA in most cases showed good fit to the first two axes of the PCoA ordination. However, 424 

their pattern was not always linear, therefore they could not be detected by simply checking 425 

the correlation between ordination axes and the tested variables.  426 
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Table 1.  Predictors of the db-RDA model for the simulated data set on full ranges of the 545 

variables. P-values are based on 199 permutations. 546 

 Df Var% F P 

flexible β 1 32.569 121.388 0.005 
cluster level 1 7.093 26.437 0.005 
mean plot size 1 1.769 6.592 0.005 
Clymo's c 1 1.563 5.827 0.005 
SD of plot sizes 1 0.927 3.455 0.005 
resemblance measure 3 0.966 1.200 0.093 
Clymo's c squared 1 0.324 1.208 0.150 
flexible β squared 1 0.274 1.021 0.360 
Residual 189 50.709 - - 

Total 199 100.000 - - 
R2=0.493,  R2

adj=0.466 547 

548 



Table 2.  Predictors of the db-RDA model for the simulated data set on narrow ranges of the 549 

variables. P-values are based on 199 permutations. 550 

 Df Var% F P 

flexible β 1 13.614 36.524 0.005 
cluster level 1 9.146 24.538 0.005 
mean plot size 1 1.112 2.984 0.005 
SD of plot sizes 1 0.956 2.564 0.005 
Clymo's c 1 0.857 2.300 0.005 
resemblance measure 3 1.195 1.068 0.265 
Residual 191 71.193 - - 
Total 199 100.000 - - 
R2=0.288,  R2

adj=0.258 551 

552 



Table 3.  Predictors of the db-RDA model for the grassland data set on full ranges of the 553 

variables. P-values are based on 199 permutations. 554 

 Df Var% F P 

flexible β 1 16.232 43.651 0.005 
cluster level 1 3.668 9.865 0.005 
Clymo's c 1 2.898 7.793 0.005 
Clymo's c squared 1 1.368 3.678 0.005 
mean plot size 1 0.820 2.206 0.005 
resemblance measure 3 1.425 1.278 0.015 
SD of plot sizes 1 0.489 1.314 0.036 
flexible β squared 1 0.461 1.241 0.055 
Residual 189 70.281 - - 

Total 199 100.000 - - 
R2=0.297,  R2

adj=0.260 555 

 556 

557 



Table 4.  Predictors of the db-RDA model for the grassland data set on narrow ranges of the 558 

variables. P-values are based on 199 permutations. 559 

 Df Var% F P 
cluster level 1 12.011 28.336 0.005 
Clymo's c 1 1.630 3.847 0.005 
flexible β 1 1.204 2.841 0.005 
mean plot size 1 1.135 2.678 0.005 
resemblance measure 3 1.769 1.391 0.005 
SD of plot sizes 1 0.443 1.045 0.300 
Residual 191 80.958 - - 
Total 199 100.000 - - 
R2=0.190,  R2

adj=0.157 560 

561 



Figure 1.  Principal coordinates analysis of classifications of the simulated data sets with the 562 

full ranges of predictor variables. Continuous variables are fitted as trend surfaces a 563 

posteriori by GAM, factor variables are fitted by averaging of object scores on the two 564 

ordination axes. Axes 1 and 2 explain 62.5% and 2.6% of the total variation, respectively. 565 

 566 

567 

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

mean plot size

Axis 1

A
xi

s 
2

 200 

 300 

 400 

 500 

 600 

 700 

 800 

 900 

 1000 

Fit: P= 4.1e-11

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

SD of plot sizes

Axis 1

A
xi

s 
2

 2.4 

 2.5 

 2.6 

 2.7 

 2.8 

 2.9 

 3 

 3.1 

 3.2 
 3.3 

 3.4 

Fit: P= 0.035

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

Clymo c

Axis 1

A
xi

s 
2

 -10 

 -8 

 -6 

 -4 
 -2 

 0 

 2 

 4 

Fit: P= 9.2e-07

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

resemblance measure

Axis 1

A
xi

s 
2

Bray-C.

EuclideanMar.-S.

Manhattan

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

flexible beta

Axis 1

A
xi

s 
2

 -0
.7

 
 -0

.6
  -0

.5
 

 -
0.

4  

 - 0. 3  
 -0 .2  

 -0 .1 
 0 

 0.1 

 0
.2

 
 0

.3
 

 0.4 
 0 .5 

Fit: P= 3.4e-88

-3000 -1000 0 1000 2000

-1
50

0
-1

00
0

-5
00

0
50

0

cluster number

Axis 1

A
xi

s 
2

 3 

 3
 

 4
 

 4 

 4
 

 5
  5 

 6
 

 6 

 7
 

Fit: P= 1.19e-14



Figure 2.  Principal coordinates analysis of classifications of the simulated data sets with the 568 

narrow ranges of variables. Continuous variables are fitted as trend surfaces a posteriori by 569 

GAM, factor variables are fitted by averaging of object scores on the two ordination axes. 570 

Axes 1 and 2 explain 38.6% and 2.7% of the total variation, respectively. 571 
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Figure 3.  Principal coordinates analysis of classifications of the grassland data sets with the 574 

full ranges of variables. Continuous variables are fitted as trend surfaces a posteriori by 575 

GAM, factor variables are fitted by averaging of object scores on the two ordination axes. 576 

Axes 1 and 2 explain 29.7% and 2.8% of the total variation, respectively. 577 
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Figure 4.  Principal coordinates analysis of classifications of the grassland data sets with the 581 

narrow ranges of variables. Continuous variables are fitted as trend surfaces a posteriori by 582 

GAM, factor variables are fitted by averaging of object scores on the two ordination axes. 583 

Axes 1 and 2 explain 18.5% and 3.4% of the total variation, respectively. 584 
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Figure 5.  Relationship between average explained, unexplained and total variation and the 587 

number of fixed variables out of the six variables in the simulation with narrow-range settings. 588 
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