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SUMMARY

Real-world experience underscores the complexity of interactions among multiple drivers of climate change
risk and of howmultiple risks compound or cascade. However, a holistic framework for assessing such com-
plex climate change risks has not yet been achieved. Clarity is needed regarding the interactions that
generate risk, including the role of adaptation and mitigation responses. In this perspective, we present a
framework for three categories of increasingly complex climate change risk that focus on interactions among
the multiple drivers of risk, as well as among multiple risks. A significant innovation is recognizing that risks
can arise both from potential impacts due to climate change and from responses to climate change. This
approach encourages thinking that traverses sectoral and regional boundaries and links physical and so-
cio-economic drivers of risk. Advancing climate change risk assessment in these ways is essential for
more informed decision making that reduces negative climate change impacts.

INTRODUCTION

We live in a highly networked world where multiple drivers of

climate change risk interact, as do the risks themselves. Con-

nections among socio-economic, environmental, and techno-

logical systems transmit risk from one system or sector to

another, creating new risks or exacerbating existing ones.1–5

For example, global warming of 2�C above pre-industrial levels

is projected to reduce global yields of staple crops by 5%–

20%.6 Greenhouse gas mitigation options can also increase

food insecurity if bioenergy crops displace food crops, or can

lead to biodiversity loss from land use change for cropping and

afforestation.7 Concurrently, trade networks link distant food

systems together and can thus compensate for reduced food se-

curity, but they can also create new risks of global impacts, such

as multiple-breadbasket failure;8 more rapid spread of disease,
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pests, and other invasive species;9 and new threats to local food

security from changes in commodity prices caused by policy

choices made elsewhere.10 These interactions include both

those risks caused by climate change and those involving re-

sponses to climate change through adaptation and mitigation11

(hereafter collectively termed climate change risks), where risk is

understood to refer to the potential for negative or positive out-

comes for human or ecological systems.

We use the term complex to communicate the diversity of in-

teractions among sectors and systems12 that can amplify or

reduce climate change risks. Although risk assessment ap-

proaches that consider such interactions and networks are

beginning to be used,13–15 many climate change risk assess-

ments often ignore interactions in part or in full. In doing so,

they may significantly misestimate risk, such as when single-

sector models of food production misrepresent the direction,

magnitude, and spatial pattern of risk compared with analyses

that consider cross-sectoral interactions.12,16 However, for con-

venience and tractability, analysts and managers tend to break

risk assessments into silos,17 often taking a component-ori-

ented, rather than interaction-oriented, view.1 For example, the

Intergovernmental Panel on Climate Change (IPCC) typically di-

vides its assessment into three separate working groups

focused on (1) physical climate change; (2) climate impacts,

vulnerability, and adaptation responses (by sector and region);

and (3) emissions mitigation (by sector). This approach is useful

for synthesizing thousands of discipline-specific studies and

also reflects the largely sectoral approach ofmany governments.

Cross-working-group IPCC assessments, such as special re-

ports on managing the risk of extreme events and disasters to

advance climate change adaptation (SREX),18 global warming

of 1.5�C,6 oceans and cryosphere,11 and climate change and

land,5 help to develop more integrated approaches to risk. How-

ever, by tending to divide risk assessment into individual sectors,

regions, asset classes, or types of response options, assess-

ments can miss important interactions that generate climate

change risk.12,19

Multiple material and conceptual boundaries exist that can

constrain the assessment of climate change risk. Four major

types are sectoral, temporal, spatial, and response-option

boundaries (Figure 1). Interactions across these boundaries

often amplify or reduce risk relative to when interactions are

ignored.20,21 Indeed, recent evidence indicates how some of

the most severe climate change impacts, such as those from

deadly heat or sudden ecosystem collapse, are strongly influ-

enced by interactions across multiple sectoral, regional, and

response-option boundaries.3,22 Similarly, how governance or

institutional systems implementing climate change responses

act across these boundaries also affects the nature of risk.23

While in some cases these interacting effects may have small im-

pacts, in many situations the risks cannot be understood without

considering these interactions.14 For instance, many water

agencies’ long-range investment plans are much more vulner-

able to the interactions of climate change with other socio-eco-

nomic factors than to the physical impacts of a changing climate

on their own.24–26 Accounting for these multiple complexities is

necessary for assessments tasked with informing national gov-

ernments on climate change risks, as well as for understanding

andmanaging risks atmore local scales, such as cities, or across

scales in the private sector.14

In this perspective, we synthesize recent work describing

complex climate change risk—such as concepts of compound,

connected, and cascading interactions—and reflect on the con-

sequences for risk assessment and response. We then establish

a framework for risk assessment that encompasses increasing

levels of complexity by including interactions among multiple

drivers of climate change risk (including adaptation and mitiga-

tion responses), as well as among multiple risks. We demon-

strate the framework using diverse case studies from cities, fish-

eries, and finance to illustrate how risk assessments can better

consider and categorize complex risk and thus enable more

informed and effective responses.

WHERE ARE WE NOW?

Risk in recent climate change assessments has been defined as

the potential for adverse consequences for human or ecological

systems, recognizing the diversity of values and objectives

Figure 1. Multiple material and conceptual boundaries exist across which interactions can dampen or amplify climate change risks
Examples include (A) cross-sectoral interactions such as between water, energy, food, and health; (B) temporal lags such as between climate extremes and
behavior change; (C) spatial telecoupling such as for food trade networks and breadbasket failures; and (D) interactions of multiple mitigation and adaptation
response options such as urban greening and fossil-fueled air conditioning as responses to extreme heat.
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associated with such systems.27 For example, a climate hazard,

such as a heatwave, interacts with human exposure and vulner-

ability, creating risk to human health. However, many new de-

scriptors are emerging to convey the complexity of risks from

climate change. To assess the extent to which this development

represents the emergence of a common understanding of com-

plex risk in climate change research and in policy-relevant risk

assessments, we analyzed the special reports released for the

IPCC’s sixth assessment cycle: special reports on global warm-

ing of 1.5�C,6 oceans and cryosphere,11 and climate change and

land5 (see experimental procedures). These special reports

reflect the most recent global synthesis of climate change risks

and are intended to cut across the traditional IPCC working

group divisions in their assessment. We supplemented this

with a review of types of complex risk in peer-reviewed literature

since 2015 (see supplemental information).

Our analysis shows that the climate change research commu-

nity has not yet achieved a consistent framework for assessment

of complex climate change risks. The IPCC acknowledges risks

can aggregate frommultiple sectors,12 but has only two glossary

definitions for types of complex risk, namely, compound risk28

and emergent risk29 (Table 1). Moreover, the IPCC notion of

compound risk focuses most on the interaction of climate haz-

ards determining a risk28 and complex risk terms were most

often applied to the hazard determinant of a risk. This aligns

with a growing research field on climate hazard interac-

tions,2,30–33 such as heavy precipitation coinciding with a

storm surge to increase likelihood of flooding,34 often termed

compound weather or climate events.31 At least a dozen other

terms have been used in recent IPCC special reports to describe

differing degrees of complexity for each risk determinant—haz-

ard, exposure, and vulnerability—with some terms applied to

multiple determinants of risk, as well as to risk from climate

change (Figure 2 and Table 1). Typically, the usage of these

terms is not aligned with a particular risk typology and is instead

reflective of individual author choices, making a consistent inter-

pretation and synthesis difficult to achieve (Tables S1 and S3).

The descriptions of risk are also generally narrowly construed,

considered to unfold over a relatively short period of time and

are limited in scope to a subset of determinants of risk.

Furthermore, in the existing IPCC framework, risk has been

framed predominantly in the context of potential climate change

impacts.11 Risk in the context of climate change adaptation and

mitigation responses,41 such as the financial, political, reputa-

tional, and technological risk related tomitigation or the potential

for adverse outcomes frommaladaptation,42 has been identified

and discussed in the literature but not yet integrated with the

overall IPCC risk framework. Rather, the risks associatedwith re-

sponses, such as competition for resources between different

adaptation and mitigation options or risk from increased policy

instability, are presented and discussed separately.5,43 Howev-

er, real-world decisions do often represent trade-offs across

those different risks. For example, a policymaker concerned

with coastal hazards has to consider the risks from sea-level

rise to coastal properties as well as the risk to policy stability

and personal electoral fortunes if a sufficiently large or vocal

segment of the population does not support a proposed coastal

hazard management plan.44,45 Without clear specification of risk

types and an inclusive framework for integrating more

complexity into risk assessment, there is a danger that percep-

tions of climate change risk remain siloed and thus that coherent

responses will not emerge.

Beyond IPCC, multiple terms have been used to describe

complex risk (Tables 1 and S3). Many of these terms focus on

Table 1. Complex risk terms with and without an IPCC definition

Types of complex risk with IPCC definition

Compound risk compound risks arise from the interaction of hazards, which can be characterized by single extreme events or multiple

coincident or sequential events that interact with exposed systems or sectors28

Emergent risk a risk that arises from the interaction of phenomena in a complex system; for example, the risk caused when geographic

shifts in human population in response to climate change lead to increased vulnerability and exposure of populations in the

receiving region29

Types of complex risk with no IPCC definition

Aggregate risk the accumulation of independent determinants of risk35

Amplified risk the substantial enhancement of background risk through combination or concentrations of determinants of risk in time or

space36

Cascading risk one event or trend triggering others; interactions can be one way (e.g., domino or contagion effects) but can also have

feedbacks; cascading risk is often associated with the vulnerability component of risk, such as critical

infrastructure1,22,37,38

Interacting risk the combinations of hazards and their reciprocal influences between different factors and coincidences among

environmental drivers38

Interconnected risk the complex interactions among human, environment, and technological systemswith physical interdependencies that are

closely linked with interconnected social interactions38

Interdependent risk complex systems involve interactions and interdependencies that cannot be separated and lead to a range of

unforeseeable risks39

Multi-risk the whole risk from several hazards, taking into account possible hazards and vulnerability interactions entailing bothmulti-

hazard and multi-vulnerability perspectives40

Systemic risk systemic risk results from connections between risks (networked risks), where localized initial failure could have disastrous

effects and cause, at its most extreme, unbounded damage4
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climate hazards. However, the boundaries among these defini-

tions can blur, and concepts of complex climate change risk

continue to evolve.30,31 Although some definitions refer only to

hazards or vulnerability, others take a more integrated perspec-

tive on interacting human and environmental systems.1,37 Over-

all, these approaches indicate that risk may arise from a number

of pathways created by interacting drivers, and that understand-

ing the potential for either positive or negative outcomes46 and

their severity requires appreciation of this network of interac-

tions.30,31,47 These interactions may include events attributed

to anthropogenic climate change, such as a false spring;31 other

human-induced events, such as conflict;48 preconditions of risk,

such as saturated soil, which compounds extreme rainfall to

affect flooding;31 and the systemic vulnerability of societies

reliant on complex electricity, communication, and transporta-

tion networks.14,30,31 Other climate assessments are also

acknowledging complex risks; for example, multi-sector risk

assessment and management in the US Fourth National Climate

Assessment,14 risk to health from multi-exposure pathways in

the US Global Change Research Program Climate and Health

Assessment,49 interacting risks in the UK Climate Change Risk

Assessment,13 and globally interconnected risks in the Global

Risk Report.15 The need for transdisciplinary approaches to

complex climate change risk has also seen the development of

Figure 2. The diversity of complex climate
change risk terminology
Terms used to describe complex climate change
risk in recent IPCC Special Reports mapped onto
the IPCC risk framework used in these IPCC
Special Reports. White text shows terms used to
describe a given determinant of risk (that is, haz-
ard, exposure, and vulnerability). Black text shows
terms used to describe complex risk. Red text
highlights terms that have been used to describe
both risk and a determinant of risk, such as
‘‘compound risk’’ and ‘‘compound hazard.’’ Note
that this visual depiction of risk terminology does
not include the role of responses to climate
change affecting risk determinants or existing
risks or in driving new risks through positive or
negative side effects of responses.

new collaborations such as the My

Climate Risk Activity of the World Climate

Research Programme50 and Future Earth

Risk Knowledge Action Network.51 How-

ever, there remains no common frame-

work for assessment of complex climate

change risks.

This analysis of IPCC special reports

and other recent literature highlights

three important gaps where a more holis-

tic approach to climate change risk

assessment is needed. First, interacting

climate hazards are now a key focus for

risk assessment, especially for extreme

events such as concurrent heat and

drought; indeed, the IPCC definition of

compound risk focuses on ‘‘interaction

of hazards.’’28 However, this physical sci-

ence effort on hazards has not yet been

integrated with the multiple interactions among ecological, so-

cial, and economic drivers of exposure and vulnerability. For

instance, low-income workers are often employed outdoors

and live in poorly ventilated housing, spend a greater portion of

their income on healthcare, and lose relativelymore frommissing

a day of work, all making them more vulnerable and exposed to

morbidity and mortality from heat waves.52 Although integrating

quantitative and qualitative knowledge of interactions between

physical, ecological, and social systems remains challenging,

knowledge co-production approaches to complex risk assess-

ment that use integrated risk assessment models,53,54 story-

lines, and scenario planning can highlight interactions across

systemboundaries that generate risk not evident frommore con-

ventional climate impact projections.31,55,56

Second, responses to risk are often excluded as drivers of risk

even though they play a key role in driving potential outcomes,

including inaction, and are well recognized in financial and policy

domains.37,57 Holistic consideration of risks related to climate

change impacts involving the real and perceived risks associ-

ated with response options is necessary in risk management

and decision-making processes.53,58 Understanding response

options as part of climate change risk better explains why deci-

sionmakers sometimes do not take actions to reduce risk arising

from climate hazards, for example, given risks related to
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stranded financial assets,37 reputation among core constitu-

ents,59 or reliance on novel but untested technological solu-

tions.60–62 This broader framing of potential trade-offs and co-

benefits from interacting responses is essential in the context

of multiple interlinked sustainability goals, including stabilizing

the climate, reducing hunger, protecting biodiversity, and

improving human health.63 Including climate change responses

as potential drivers of risk expands the scope of risk assessment

to accommodate positive and beneficial outcomes, not just

negative, adverse ones. This is vital for making informed re-

sponses more transparent and actionable within complex social

decision-making structures,54,64 where stakeholders attach

different weights to the diversity of positive and negative

consequences that can arise from both action and inaction.

Third, risk assessment needs to include interactions among

multiple risks, not just among the determinants of a risk. Risk

has come to be framed in singular terms such as compound

risk,28 cascading risk,38 or multi-risk40 when referring to how

multiple drivers of a risk interact. However, as the collision of

climate change and the coronavirus disease 2019 (COVID-19)

pandemic has shown, the interaction of multiple risks can over-

whelm the capacity to respond.65 For example, in 2020, commu-

nities in the United States, India, Fiji, and Bangladesh faced

evacuation from flooding and tropical cyclones at the same

time as social distancing or stay-at-home orders were in

place.65,66 In Zimbabwe, consecutive droughts followed by an

unseasonal outbreak of African migratory locusts67 left millions

at risk of acute food insecurity during June–September 2020,

while the COVID-19 pandemic made social distancing at

communal water and food distribution points very difficult.68 In

turn, climate change is also projected to worsen existing risk of

undernutrition or to change the geography of future infectious

disease outbreaks.69,70 Considering interactions among these

multiple risks shifts risk assessment from a concentration on in-

dividual climate hazards or interactions of hazards as a single

event, such as a cyclone, to a set of multiple events interacting

continuously with evolving social and economic conditions.

A WAY FORWARD: CATEGORIES OF COMPLEX RISK

Across the suite of terms that have been applied to climate

change risk for human and natural systems, there is a com-

monality: an interaction or aggregation of the determinants

of risk—hazard, exposure, and vulnerability—and of multiple

risks. We propose an expanded assessment approach that

considers responses as an additional determinant of risk

and emphasizes what these interactions are (compound,

cascade, and aggregate) and where and how they originate.

This approach makes the details of interactions within and

among determinants of risk, as well as among multiple risks,

explicit and thus can help guide more detailed and accurate

risk assessment.

We propose that climate change risk assessment can be orga-

nized into three categories of increasing complexity based on

whether it considers (1) only a single driver for each determinant

of risk, (2) multiple interacting drivers within determinants of risk,

and (3) interacting risks. We use determinant to refer to hazard,

vulnerability, exposure, and response, within which the term

driver refers to individual components of these, such as temper-

ature (a driver within the hazard determinant) or income (a driver

Figure 3. Three categories of increasingly complex climate change risk
(A) Category 1: interactions among single drivers (small circles) for each determinant of a risk, namely hazard, vulnerability, exposure, and response to climate
change.
(B) Category 2: interactions of multiple drivers (e.g., compounding vulnerabilities of education and income) within each determinant of risk, as well as among the
determinants of a risk.
(C) Category 3: interacting risks.
Across categories 2 and 3, compounding and cascading interactions, together with aggregations, generate increasing complexity for risk assessment. We use
‘‘determinant’’ to refer to hazard, vulnerability, exposure, and response, within which the term ‘‘driver’’ refers to individual components, such as heavy pre-
cipitation (a driver within the hazard determinant) or access to shelter (a driver within the vulnerability determinant), that interact to affect the overall risk (e.g., flood
mortality).
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within the vulnerability determinant), that interact to affect the

overall nature of a risk, such as heat mortality.

Based on these criteria, category 1 largely reflects the status

quo of existing climate risk assessments5,6,11 where a single

driver for each of climate hazard, vulnerability, and exposure

interact (Figure 3A). However, category 1 goes further by explic-

itly recognizing that a response to climate change can also be a

driver of risk.

Even for category 1, the complexity of climate change risk is

often only partly accounted for in existing risk assessments. For

instance, multiple studies project increased risk from dangerous

heat for people or biodiversity based on their exposure but do

not also consider a driver for vulnerability or responses to heat

stress.71,72 For some risks, responses to climate change may be

the dominant driver of potential outcomes. It is important to

note that a response, as we define it here, can be a human inter-

vention directly targeting the risk being assessed, such as irriga-

tion to reduce risk to food security from heat,73,74 but can also

be an adaptation response in another sector12 or a greenhouse

gas mitigation project that affects the risk being assessed, such

as expansion of conservation areas for biodiversity or of bioenergy

crops that also affect food security.7 This inclusion of how a

response in one sector or region can drive another risk that the

response action had little or no intention of influencing is an impor-

tant feature of an effective assessment approach for complex

climate change risk. The role of climate change responses in

driving risks is not limited to unintended consequences, though:

a decision-maker might very consciously accept an increased

risk elsewhere as long as a climate change responsedelivers a so-

lution to that decision maker’s core concern. Clearer understand-

ing and recognition of different people, populations, and ecosys-

tems being affected by different responses,75 including

disproportionate effects, can help us better understand and char-

acterize such risk trade-offs and the values that underpin such

choices. Lastly, non-human response can also be included,

such as migration of species in response to temperature

change.76

Although adaptive capacity, as the capability to respond, has

been conceptualized as a component of vulnerability since the

IPCC Third Assessment Report,77 distinguishing between re-

sponses and vulnerability highlights specific response actions

available to decision makers that drive potentially negative or

positive outcomes. These options include incremental or trans-

formative actions (both reactive and proactive) that aim to

manage change,78 as well as the consequences of inaction or re-

sponses noted as maladaptation.79 For example, mitigation and

adaptation responses carry the potential for positive and

adverse consequences, including through multiple trade-offs

and co-benefits with other sustainable development goals, and

thereby affect the overall nature and complexity of risk.80,81

The inclusion of response in risk assessment also allows for

greater understanding of the relationship between climate

change risk and resilience because responses are a key part of

the governance and learning about the feedbacks that shape so-

cial-ecological systems.82 As such, the inclusion of response as

a determinant of risk helps further the foundations for a frame-

work-level integration of concepts of climate resilient develop-

ment pathways and climate change risk within climate change

assessments.

Category 2 is distinguishable from category 1 because it con-

siders interactions among multiple risk drivers both within and

across the determinants of a risk (Figure 3B). For example, mul-

tiple hazard drivers, such as concurrent heat and drought,

interact with each other to increase the severity of risk.2

Research on these and other examples of interdependence

among hazard drivers is growing, including the development of

typologies for compoundweather and climate events.31,32 These

approaches fit within category 2, but category 2 expands this

risk assessment space by highlighting the need for equal atten-

tion to interactions among multiple drivers of vulnerability, expo-

sure, and responses. Such interactions include those among the

multiple drivers of vulnerability in the form of gender, age, and

race that increase risk of mortality and morbidity from extreme

heat,52 or the interactions amongmultiple mitigation and adapta-

tion response options, such as city trees mitigating urban heat

islands and thereby reducing energy use from air conditioning.83

Interactions among individual drivers can be uni- or bidirectional.

We use the term compound to describe these interaction types

because it is increasingly widely used in the literature, including

for interacting climate hazards,30,31 and is neutral with respect to

whether interactions amplify positive or negative risk outcomes.

Risk can also be affected by the aggregation ofmultiple indepen-

dent drivers, such as exposure to heat being increased for out-

door workers who also live in the tropics.84 The diversity of inter-

actions in category 2 makes it highly complex, comprising

interconnections among drivers of risk across human, natural,

and technological systems.

Category 3 considers, additionally, the interactions of multi-

ple risks, including both those associated with climate change

and those related to other drivers. For example, a multi-bread-

basket failure can affect financial, food, and human security

through major financial losses to agricultural insurers globally

and enhanced potential for civil unrest.85 Similarly, regions

that rely on expanding and intensifying livestock production

for rural development could face multiple risks from climate

change impacts on feed sources, shifting consumer prefer-

ences for alternative protein sources, along with more variable

commodity prices linked to increased speculation on bioenergy

markets.86 Risk assessment in category 3 is inherently cross-

sectoral and offers opportunities to link with a growing method-

ology on nexus approaches to sustainable development that

simultaneously examine multiple sectors,12 such as the food-

energy-water-health nexus.21,87 This focus on interactions

among multiple risks across different sectors and regions is

important because they are a reality people need to manage

regardless of the level of quantitative assessment available to

inform decision making.30,56 If each risk is assessed indepen-

dently, the severity of individual risks and of the overall risk

landscape can be underestimated.37,40,88 In category 3, each

risk may have its own set of drivers for hazard, exposure,

vulnerability, and responses, but these can also be shared be-

tween risks. Interactions among risks can be uni- or bidirec-

tional in nature and are referred to as compounding interac-

tions, such as risk of biodiversity loss compounding risk of

food insecurity and risk to health.89 In contrast, cascades are

defined as one risk triggering multiple other risks in a prolifera-

tion of interactions,1,22,38 such as the cascade of the risk of tree

death from drought affecting the risks to property and to human
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health from wildfires that affects the risks to property, fresh-

water ecosystems, and to human life from landslides.30,90,91

Across all three categories, the different temporal and spatial

scales over which drivers of risk, aswell asmultiple risks, interact

require consideration of when and where interactions augment

or reduce risk. For example, a risk may increase through tempo-

ral compounding when hazard drivers interact over time, such as

when the succession of heavy precipitation events connected to

the same large-scale climate system in a region can result in

flooding.31 In contrast, temporal or spatial aggregation occurs

when the risk drivers are independent of each other, such as

the co-occurrence of a wildfire and an earthquake.92 These

same dynamics apply to the interaction or aggregation of multi-

ple risks. For instance, in the humanitarian field, risk of violent

conflict interacts over time and space with risk of famine to

determine where and when humanitarian relief workers can

act.93 More generally, climate change in the form of slow-onset

events and short-term shocks will continue to alter risk profiles

over time,94 as will the temporal dynamics of response options

affected by inertia in their implementation or the time taken to

reach adaptation limits.95 As such, shifting to a more dynamic

perspective of risk over time and space can help focus more

attention on interactions among the various response options

required to facilitate recovery and for risk management.92,94

FROM ASSESSMENT TO INFORMED RESPONSE

To inform decision making, assessment of complex climate

change risk will often require consideration of the four determi-

nants of risk (category 1), the multiple interacting risk drivers

within each determinant (category 2), as well as interacting risks

(category 3). We suggest scoping risk assessment to one of

these categories presented, and describing interactions as

either aggregate, compound, or cascading (Figure 3). Building

Figure 4. Complex interactions that
generated risk to infrastructure during the
2018 European heatwave
Arrows indicate interactions and addition signs
indicate aggregation of the individual drivers
of risk.

from available research and incomplete

information, climate change risk assess-

ment may often begin at lower levels of

complexity but should be clear about the

need to regularly update risk assess-

ments based on new knowledge of inter-

acting risk drivers and interacting risks,

including the role of responses to real

and perceived risk.

Here we use examples that bridge from

present to future risks to show how com-

plex climate change risk assessment can

better support approaches to reduce

negative risk outcomes. The following

cases demonstrate the nature of interact-

ing risks from a broad range of sectors

and how a category 3 approach builds

on category 2 and category 1, thereby better enabling risk

assessment that considers interconnected socio-economic,

environmental, and technological systems that generate climate

change risk.

Complex climate risk during the 2018 European
heatwave
Although assessment of climate change risk will often begin with

category 1, stopping there has potentially severe limitations for

risk assessment and response. This is illustrated by understand-

ing interactions that generated risk during the case of the 2018

European heatwave. Between May and August 2018, different

sub-regions of Europe experienced multiple, concurrent heat ex-

tremes that were compounded by severe drought condi-

tions.33,96,97 Low water levels in rivers led to restrictions for ship-

ping, nuclear power plants were shut down because of

insufficient water for cooling, and railway lines buckled under

the heat.98 Crop yield reductions of up to 50% were reported

from Central and Northern Europe alongside losses in the live-

stock sectors.33,99 A category 1 assessment of this case concen-

trates on a subset of interactions for a single risk. For example, risk

to transport can be described as the interaction of extreme heat

(hazard), thermal tolerance of rail infrastructure (vulnerability),

the length of time rail infrastructure experienced prolonged heat

conditions (exposure), and how low water levels due to drought

resulted in restrictions imposed on shipping, an alternative trans-

port mode to rail (response).98 Category 1 assessments like this

could be conducted for each of the domains of value, such as

tourism, electricity generation, or agricultural production.

However, a category 1 assessment excludes key information

because the severity of risk was often determined by interactions

among multiple drivers within each determinant of a risk, better

described by a category 2 climate change risk assessment

(Figure 4). For example, the interacting drivers of strong winds,
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drought, and extreme heat led to severe wildfires that resulted in

extensive damage to infrastructure and extended over popular

tourist areas, claiming more than 100 lives in the Attica region

of Greece.98 The risk to infrastructure from wildfire was further

compounded by ecological responses to the early spring, where

increased vegetation growth contributed to faster than normal

soil moisture depletion,100,101 interacting with human responses,

including spatial planning and inadequate coordination of evac-

uation and firefighting measures.98 In addition to risk to infra-

structure from wildfire, vulnerability of infrastructure was deter-

mined by the dependency of both energy and transport on

available water for electricity generation and shipping, while

transport infrastructure was further vulnerable to extreme heat.98

Similar category 2 assessments could be undertaken for multi-

ple other sectors, such as agricultural productivity, food security,

or food prices.97 For example, crop loss has been attributedmore

to drought stress rather than heat stress in this heatwave’s com-

pound drought and extreme heat.102,103 This highlights how inter-

actions of drivers can have different interaction effects. Further,

agricultural losses in Northern and Central Europe were partially

compensated by a ‘‘water seesaw’’ event among hazards where

drought in Northern and Central Europe was correlated with

higher rainfall in Southern Europe, such that favorable yield condi-

tions in Southern Europe prevented greater market volatility and

price spikes for consumers.97,100 At the global scale in 2018, a

category 2 lens would identify that near-simultaneous heat haz-

ards occurred across Europe, Asia, and North America, leading

to an accumulation of risk to food prices globally. However, how

these risks to food security interact with other risks,12 in this

case to infrastructure, economic output, and human health, re-

quires a category 3 assessment. The following three cases

demonstrate how a category 3 approach builds on and extends

category 2 in order to guide actions that reduce negative out-

comes from climate change.

Cities facing water scarcity
Urban areas are often where interactions between socio-eco-

nomic, environmental, and infrastructural systems are revealed

during climate extremes, and cities facing water scarcity will

increasingly need to manage complex climate change risks.

Assessments that consider interacting risks (category 3) are

therefore integral to anticipating complex risk and supporting

decision making (Figure 5A). For example, the meteorological

conditions of the Cape Town Drought (2015–2018) were three

times more likely due to anthropogenic greenhouse gas emis-

sions.104 However, effective responses to the drought were de-

layed due to the political risk of declaring a disaster and a lack

of feasible water supply alternatives.105 Responses became

increasingly urgent in early 2018 as the potential of a ‘‘day

zero’’ event became possible, the point at which a city of four

million people might run out of water.106 The risk of day zero

was anticipated to cascade to affect risks to health, economic

output, and security. A whole-of-society response was called

for from public and private actors as the local government’s

capability to manage the drought response was stretched to

its limit.106 The responses by different groups interacted to

generate risks to municipal finance. In particular, as elites in-

vested in private, off-grid water supplies,105,107 risk of reduced

municipal revenue collections from newly off-grid households

aggregated with risk of reduced tourism,106 increasing risk to

the reputation of the incumbent administration. The combina-

tion of these risks was not considered in planning scenarios

prior to the drought. As the city’s municipal budget was disrup-

ted, the political risks from capital-intensive responses such as

desalination and groundwater abstraction increased and com-

pounded with the ecological risks from proposed water

abstraction projects.

In the Cape Town case, building the complexity of risk assess-

ment from category 2 to category 3 has revealed preferred

response options. For example, considering interactions among

multiple response options for the risk to water supply (in line with

category 2) and their interaction across multiple risks (in line with

category 3) has led to the inclusion of ecosystem-based adapta-

tion in a new water-sensitive strategy for the city. The clearing of

invasive vegetation from catchments is recognized as the most

cost-effective way to add water to Cape Town’s hydrological

Figure 5. Case studies showing interactions of multiple risks, including compounding and cascading risk interactions, as well as
aggregations of risks
Interactions of multiple risks in (A) cities facing water scarcity, (B) fishing communities in the tropics, and (C) finance and banking affected by sea-level rise.
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system, as well as reducing risk to biodiversity, reducing risk

from wildfire, and increasing employment.108

Complex climate change risks can lead to a heightened risk of

crossing unknown response capacity tipping points.30 In the run

up to day zero, municipal officials developed a Critical Water

Shortages Disaster Plan that aimed for responses with street-

level specificity, but they faced a lack of detail on cascading

risks. When faced with such complex interacting risks, scenario

approaches focused on impact cascades109 or what-if scenario

planning can provide a flexible method for assessment of inter-

acting risks and can be deployed relatively rapidly.53,54,56 Sce-

nario approaches can also be combined with more quantitative

stress testing methods to identify where existing climate change

adaptation might be insufficient as potential weak points are

identified from risk interactions.110,111 Given deep uncertainty,

careful evaluation by a range of experts and stakeholders is a

necessary step in this process, and scenario and storyline ap-

proaches can be used to engage diverse stakeholders.56 There

must also be sustained co-production of risk assessments

amongmultiple stakeholders that leveragesmulti-level and poly-

centric governance approaches to climate change risk.

Fishing communities in the tropics
Themaximum catch potential of exploited fish species in tropical

regions is projected to decline as a result of climate change by as

much as 50% by 2050 relative to 2000–2010 levels.112 Increased

heat stress has already caused widespread coral bleaching,113

and future warming and acidification are projected to cause a

70%–90% loss of coral if global warming is not held below

1.5�C above pre-industrial levels.6 These environmental

changes are projected to result in fishmigration across exclusive

economic zones, which creates potential for local and interna-

tional fisher conflict in the absence of effective governance

structures.76 Caribbean fishing communities illustrate how these

risks to tropical corals and fisheries can interact (Figure 5B). As

climate change increases risk to pelagic fish catches, small-

scale fishers tend to rely on fishing more in shallow waters.

This response to declining fish populations can increase risk to

coral reefs from switching to fishing techniques that are effective

in the short term but damaging to fish populations and corals.

Coral reefs act as a natural breakwater, reducing wave energy

by an average of 97%.114 The risk to reefs frommaladaptive fish-

ing practices and climate change can cascade to risks to human

life, infrastructure, and property on the coastline that is more

exposed towaves, storm surges, and coastal erosion during hur-

ricanes.114 Compounding the risks further, as catches decline,

fishers often draw down their assets, reducing their ability to

cope with, and rebuild after, hurricanes.115 Furthermore, dam-

age to coral reefs reduces tourism and associated cash flows,

which both provide income diversification but also capital to

develop alternative economic activity.115 Climate change risk

to pelagic fisheries therefore has potential to cascade to multiple

other risks facing fishing communities in the tropics.

Risk assessment and adaptation strategies that include local

and traditional knowledge, and associated sustainable manage-

ment practices, can help with understanding and addressing

complex climate change risks.116 For example, participatory

modeling that informs local communities about the projected

severity and timing of multiple climate hazards and co-develops

understanding of the local social-ecological systems that inte-

grate multiple risks can better identify response options, as

well as the limits of response.53,64 These approaches can be

combined with participatory monitoring in order to regularly up-

date assessments as new interactions of risk drivers or of multi-

ple risks are identified.

In contexts where it is difficult to know or agree on relation-

ships between actions and consequences, then robust deci-

sion-making tools using exploratory modeling can be used to

pressure test management approaches to myriad plausible in-

teractions of risks to identify robust adaptive strategies into the

future.117 Deep uncertainty analytical methods117 and systems

thinking in simple or modeled form35,64 can help identify the in-

teracting effects potentially most important to a specific risk

analysis.

Finance, banking, and insurance at the coast
As the interacting hazards of sea-level rise, heavy rainfall events,

flooding, and land instability compound at the coast, there is a

risk to the insured of higher premiums (Figure 5C).37 This risk

can cascade to risk of stranded assets as customers have to

choose to either pay higher deductibles to reduce increased pre-

miums, if they can afford to do so, or not hold insurance

coverage.37,118 As a result, they may stay put, abandon assets

and move, or rely on disaster relief and recovery funds from

the government (taxpayer) as an insurer of last resort. For policy

holders, this can create inequities and business risks. If home-

owners cannot get insurance, then property values will be

depressed. This can cascade to risk of foreclosure on loans

frombanks, risk of banks having tomaintain higher deposit ratios

(i.e., lend less), and risk of greatest impact on the most vulner-

able who are less able to pay, such as the elderly, low-income

residents, or exposed municipalities. Further, climate change

risks leave banks exposed because they hold long-term mort-

gages, often up to 30 years.37 Managing these diverse risks ex-

poses local government to its own set of risks, since community

opposition to coastal hazard management plans can initiate

broader opposition to local government strategies and long-

term community plans.119

Although climate change risk is currently not fully priced into

banking and (re)insurance markets, globally there is evidence

that the financial services sector is beginning to respond to

such risk signals by adopting risk-based pricing for high-inten-

sity rainfall events, sea-level rise, and drought.37,120 This cannot

be done without considering the full breadth of risks and the con-

nections between them.30 Critical systems thinking and path-

ways tools can be used to map the interconnections between

risks in the finance sector and help reveal where climate change

adaptation interventions can be focused. For example, partici-

patory approaches that use expert elicitation and visualize

cascading risks as causal diagrams can provide a robust and

flexible analytical framework for interacting risks and implica-

tions for management.121 For insurers, this would include funda-

mental shifts in ways of doing business to include iteratively

revised understandings of the probabilities of extreme events.30

Dynamic adaptive pathways can be employed to help planning

and guide responses under deep uncertainty.122 In such ap-

proaches, different response options are considered, including

the path dependencies among them through time (e.g., assets
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that will accumulate behind armored coastlines or the time

required to construct major new defenses). This can identify trig-

gers for timely adaptive actions (changes of pathway/behavior)

ahead of critical damage thresholds such as increased flooding

from sea-level rise,123 and the points at which new pathways are

triggered can be responsive to the difficult-to-quantify outcomes

of climate change risk.122 Co-creation of dynamic adaptive path-

ways can introduce new framings of risk using simulation games,

and involve partnerships among multiple stakeholders in a re-

gion that anticipate future interconnections between multiple

sectors, including private sector finance, different levels of gov-

ernment, and affected communities.95,122 Responses based on

such methods are usually more resilient and can be done at

any scale of assessment,124 and can be integrated with existing

risk screening tools, such as risk registers for climate extremes,

infrastructure costs, and finance uncertainties.26 An integral part

of such enhanced assessments is the ability to reflect economic,

social, and environmental constraints on resilience. Through

identifying how interacting risks affect social equity, interven-

tions can target incremental transformations that enhance resil-

ience capabilities for local communities.125,126 This enables the

interests of awider range of affected people to be included, lead-

ing to more credible, relevant, and lasting resilience.

CONCLUSION

Complex climate change risk assessment is a formidable and ur-

gent challenge. Although real-world experience underscores the

importance of interacting drivers of climate change risk and of in-

teractions among multiple risks, these risks have been incom-

pletely and inconsistently assessed to date. The framework pro-

vided here seeks to strengthen assessment of complex climate

change risks by clarifying the types of interactions that generate

risk, and where they originate. Moreover, the integration of re-

sponses into the climate change risk framework helps deepen un-

derstanding and increases the relevance of climate change risk

assessment for a diversity of decision makers, and can help

conceptualize risk trade-offs that are beingmade. Climate change

risk assessment may often begin at lower levels of complexity but

should be clear about the need to regularly update risk assess-

ments based on new knowledge of interacting risk drivers and in-

teracting risks. As environmental, social, and engineering sci-

ences make joint progress toward these goals, they are

beginning to yield more robust risk assessment and inform more

detailed decision making to match the complexity of climate

change risks.2,4,37,53 As climate change continues, further devel-

opment of these newapproaches to risk assessment anddecision

support are increasingly necessary to keep societies safe.
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Methods
Analysis of the IPCC report text was done with NVivo12, exploring where and
when types of complex risk and interactions between determinants of risk
were used in the three IPCC special reports produced between 2018 and
2019.5,6,11 These are compared with existing IPCC definitions, where such
definitions exist.
After this, an exploratory review of types of complex risk in peer-reviewed

literature since 2015, searched for [‘‘climat* change’’ risk AND ‘‘x’’] explored
each of the following descriptors of interaction linked with risk associated
with climate change: impact, effect, risk, hazard, vulnerability, and exposure:
aggregate, amplified, cascade, cascading, co-located coinciding, compound,
concurrent, correlated, cross effects, cumulative, domino effects, emergent,
hyper-, interacting, interconnected, interdependent, multi-, persistent, syn-
chronous, synergistic, systemic, teleconnected, telecoupling. The search
began with the first seven pages of Google Scholar and then took a snowball
approach exploring the citing articles identified. The search aimed to gain a
view on the breadth of the literature and framings of complex risk associated
with climate change rather than a systematic review of all published material
on each type of complex interaction. Literature highlighted by the team of
scholars involved in all three working groups of the IPCC AR6 were also
included where remaining gaps or emerging scholarship was identified. The
gathered literature was then explored for commonly used definitions and vari-
ety of descriptions of complex risk associated with climate change for compar-
ison with use, or lack of use, in IPCC special reports.
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