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ABSTRACT

The main role of polyamines was originally assumed to be as direct protective compounds 

important under stress conditions. Although in some cases a correlation was found between 

the endogenous polyamine content and stress tolerance, this relationship cannot be 

generalized. Polyamines should no longer be considered simply as protective molecules, but 

rather as compounds that are involved in a complex signaling system and have a key role in 

the regulation of stress tolerance. The major links in polyamine signaling may be H2O2 and 

NO, which are not only produced in the course of the polyamine metabolism, but also 

transmit signals that influence gene expression via an increase in the cytoplasmic Ca2+ level. 

Polyamines can also influence Ca2+ influx independently of the H2O2- and/or NO-mediated 

pathways. Furthermore, these pathways may converge. In addition, several protein kinases 

have been shown to be influenced at the transcriptional or post-translational level by 

polyamines. Individual polyamines can be converted into each other in the polyamine cycle. 

In addition, their metabolism is linked with other hormones or signaling molecules. However, 

as individual polyamines trigger different transcriptional responses, other mechanisms and the 

existence of polyamine-responsive elements and the corresponding transacting protein factors 

are also involved in polyamine-related signaling pathways. 

Highlights:

- Polyamines are interconvertible in the polyamine cycle

- The statement “the higher the polyamine level the better” cannot be generalized

- In stress responses the ratio of signaling to direct protection is more important 

- Polyamines are also involved in hormonal cross-talk

- H2O2 and NO are the major but not the only links in polyamine stress signaling
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1. Introduction

Polyamines are aliphatic amines found in all living cells. The most abundant 

polyamines in plants are putrescine, spermidine and spermine, which can be found in 

relatively high amounts. However, specific roles have also been reported for less abundant 

polyamines, such as agmatine, cadaverine and thermospermine. Polyamines occur in free, 

conjugated (associated with small molecules such as phenolic acids) or bound forms 

(associated with various macromolecules). The total and individual polyamine contents vary 

markedly depending both on the plant species or organ and on the developmental stage, and 

are much higher in plants than those of endogenous phytohormones. The biosynthetic

pathway and key enzymes of the polyamine metabolism are well documented [1]. Briefly, 

putrescine is synthesized by the decarboxylation of ornithine, catalysed by ornithine 

decarboxylase, or indirectly by the decarboxylation of arginine by arginine decarboxylase 

(ADC), via agmatine. Higher polyamines (spermidine and spermine or thermospermine) are 

produced by the sequential addition of aminopropyl moieties to the putrescine skeleton 
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through enzymatic reactions catalyzed by the spermidine and spermine/thermospermine 

synthases (SPDS and SPMS/TSPMS). The donor of the aminopropyl groups is 

decarboxylated S-adenosyl-methionine, which is synthesized from S-adenosyl-methionine by 

S-adenosyl-methionine decarboxylase (SAMDC). Polyamines are catabolized by diamine 

oxidases (DAO) and polyamine oxidases (PAOs). 

Polyamines were previously presumed to be simply direct protective compounds. Due 

to their cationic nature at physiological pH, they are able to interact with negatively charged 

macromolecules in a reversible way, thus stabilizing their structure, especially under stress 

conditions. They can bind to the phospholipid head groups of membranes influencing their 

permeability characteristics. They can also bind to various proteins non-specifically, 

stabilizing their structure and resulting in changes in their activity and/or function, as well as 

to chromatin, causing an alteration in the availability of genomic sites to DNA or RNA 

polymerases, leading to altered DNA and RNA synthesis [2]. There are several lines of 

evidence supporting the relationship between polyamines and photosynthesis. The 

conjugation of polyamines to photosynthetic complexes and proteins is catalyzed by 

transglutaminase [3] and leads to enhanced photosynthetic activity under stress conditions [4].

Besides their direct protective role, polyamines also regulate various fundamental 

cellular processes as signaling molecules. It has been increasingly shown that abiotic stress 

tolerance is chiefly influenced by the role of polyamines in signaling processes rather than by 

their accumulation. The present review focuses on this aspect of the mode of action of 

polyamines and attempts to find answers to the many open questions which have not yet been 

satisfactorily answered: 1. Is the accumulation of the individual polyamines essential for plant 

tolerance and abiotic stress responses?  2. How do they act in signaling? 3. What are their 

specific roles, and which of these is really necessary?
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2. Are polyamines markers of stress severity or indicators of stress tolerance?

The polyamine pool is dynamic, changing over time, and polyamines also undergo 

rapid interconvertion in the “polyamine cycle” (Fig. 1). Besides the PAOs, which catalyze the 

terminal catabolism of spermidine, spermine or thermospermine, five enzymes in Arabidopsis 

and three in rice were shown to be involved in the partial and/or full back-conversion of 

spermine/thermospermine to spermidine and of spermidine to putrescine [5-6]. Stress-

responsive elements are found in the promoters of certain genes playing a role in polyamine 

synthesis (ADC, SPDS, SPMS, SAMDC), resulting in the early activation of polyamine 

biosynthesis in response to stress [7-8]. 

Several reviews [6, 9-10] have dealt with the relationship between tolerance and the 

capacity to enhance the synthesis of polyamines upon exposure to stress. Plants 

overexpressing genes encoding enzymes involved in polyamine biosynthesis accumulate 

higher levels of polyamines and show enhanced tolerance to various stresses [9-14]. This 

suggests that an increase in polyamine synthesis is effective against all types of stress. Most 

studies carried out so far have been focussed on the beneficial effects of polyamines, and 

emphasize that a correlation exists between stress tolerance and elevated polyamine contents. 

However, the real situation is more complicated, as in some cases the excess accumulation of 

polyamines due to the overexpression of these genes or to the absorbed exogenous 

polyamines is harmful to plant cells [3, 11].

Furthermore, while some plants accumulate polyamines, others have constant or even 

lower endogenous polyamine content when exposed to stress conditions, and individual plant 

species exhibit diverse responses in terms of polyamine levels. Salt tolerance was positively 

related with spermidine but negatively correlated with spermine levels in rice [15]. In another 
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study on the same species, no correlation was found between either the initial levels or the 

stress-induced accumulation of polyamines (putrescine, spermidine or spermine) and drought 

tolerance [16]. The initial stress-induced accumulation of putrescine, spermidine and 

spermine was greater in drought-sensitive cultivated chickpea than in a tolerant wild species 

[17]. The amount of putrescine showed a substantial increase during cold hardening in winter 

wheat and a decrease in spring wheat, while the spermidine content increased in both, and the 

spermine level increased only in the spring wheat variety [18]. Low temperature also 

increased the putrescine level in cold-sensitive species, for example in maize [19]. 

Furthermore, higher freezing tolerance and a smaller pool of free spermine was found in 

Thellungiella, but not in related accessions of Arabidopsis [20]. 

These results show that it is difficult to establish a direct relationship between 

increased levels of polyamines, especially that of individual polyamines, and abiotic stress 

tolerance. Indeed, elevated polyamine content might be the cause of stress-induced injury 

and/or of some protective mechanisms, suggesting that the statement “the higher polyamine 

level the better” cannot be generalized. There is often an immediate increase in polyamine 

levels in response to stress, but after a while polyamine levels decrease and resemble those of 

non-stressed plants, even if the stress conditions persist [21]. 

Specifically, salt stress may lead to changed (spermidine+spermine)/putrescine ratio 

and salt-tolerant plant species were found to accumulate less putrescine [22]. In fact, the 

greater accumulation of putrescine, leading to a low (spermidine+spermine)/putrescine ratio, 

may even injure plants. It seems that the main factor responsible for stress tolerance is not so 

much an elevated level of putrescine as its enhanced turnover, and the ability to accumulate 

high spermidine and spermine levels. Although, it can be concluded that in many species 

polyamines are an indisputable part of acclimation to a given stress factor, their actual 
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amounts may not play such a critical role as is generally assumed. The correlation between 

stress tolerance and polyamine levels is not general.

3. Possible action mechanisms of individual polyamines during abiotic stresses

So, which of the three most abundant polyamines plays the central role in plant stress 

responses? The possible polyamine action mechanism can be revealed in two ways. The 

application of exogenous polyamine treatment under normal and stressed growth conditions 

shows which other compounds or processes are influenced, while transgenic plants 

overexpressing genes responsible for polyamine biosynthesis or the use of loss-of-function 

mutants also help to identify polyamine-dependent stress responses. It should be taken into 

consideration, however, that: i. The exogenous polyamines absorbed or the elevated levels of 

endogenous polyamines can quickly be converted into each other. ii. The enzymes involved in 

biosynthesis and catabolism are also affected by polyamine treatment. iii. Polyamine 

production and/or transport mechanisms may be tissue-, compartment- and age-specific. iv. 

The effect of the treatment may also be genotype-dependent. 

3.1. Putrescine 

The beneficial, general stimulatory effect of putrescine has long been known. 

However, this effect is not obviously direct. Putrescine is also involved in the development of 

stress tolerance by regulating abscisic acid levels [23], activation of the antioxidant system, 

and induction of phenylalanine ammonia lyase, one of the key enzymes in the synthesis of 

flavonoids, but these changes were depending on the degree of stress tolerance of the plants 

and on growing – normal or stress – conditions [24-26]. Polyamines have been reported to 

promote protein synthesis [2], so they probably act at the transcription level rather than by 
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direct activation. However, the induction of antioxidant enzymes via ROS production from 

polyamine oxidation was also occurred.  

Putrescine acts as a buffer and osmolite, and induces increment in proline content 

leading to maintenance of leaf water status under stress conditions [27]. Exogenous putrescine 

increased the phospholipase D activity, which has a role in the mitigation of drought stress 

injury in the early stages of drought treatment [28]. Exogenous putrescine also enhanced the 

transcript levels of a heat shock protein gene, HSP17, during heat shock, and this response 

was found to be much more pronounced in thermotolerant than in susceptible cultivars [29] 

(Table 1).

Microarray analysis of arginine decarboxylase (ADC2) overexpression revealed both 

the up- and down-regulation of various stress-responsive, hormone- and signaling-related 

genes. These included genes encoding transcription factors belonging to the 

APETALA2/ethylene responsive factor domain family (e.g. DREB1C, DREB2A), genes 

involved in the biosynthesis of auxin, ethylene, abscisic acid, gibberellin and salicylic acid, 

genes for auxin transport, and genes coding for auxin-responsive proteins, ethylene- and 

abscisic acid-responsive transcriptional factors, and also jasmonate-induced proteins [30] 

(Table 1). These results confirm the dual role of putrescine (and polyamines in general): direct 

protection and participation in acclimation signaling pathways.

3.2. Spermidine

The protective effect of spermidine during salt or drought stress involved the higher 

transcription level of genes encoding antioxidant enzymes [31-32]. Thirty-four genes were 

up-regulated in spermidine-treated tomato fruits as compared with non-treated fruits. These 

genes are putatively involved in primary metabolism, signal transduction, hormone responses, 
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transcription factors and stress responses, while 55 genes putatively involved in the energy 

metabolism, cell wall metabolism and photosynthesis were down-regulated [33]. The 

exogenous application of spermidine to the alga of the lichen Xanthoria parietina resulted in 

an increase in the transcript level of the gene psbA encoding the D1 protein in photosystem II 

[34]. Besides increased α-amylase and β-amylase activities, there was a reduction in the sugar, 

fructose and glucose contents and an elevation in the expression level of β-amylase gene after 

spermidine treatment [35] (Table 1). 

Polyamines may modulate the up- or down-regulation of gene expression either 

directly or by stimulating the phosphorylation of regulatory proteins such as transcription 

factors. The overexpression of a spermidine synthase gene up-regulated the expression of 

various putative stress-regulated genes in chilled transgenic Arabidopsis compared to the 

corresponding wild type. These genes putatively encode transcription factors such as WRKY, 

MYB, B-box zinc finger proteins, DREB2B, sucrose non-fermenting protein 1 (SNF1)-related 

protein kinase 2 (SnRK2), calmodulin-related protein and stress-protective proteins, such as 

rd29A [11] (Table 1). SnRK2, characterized as OSPDK in rice, is Ca2+ independent and has a 

role in the activation of various stress regulatory molecules, such as the phosphorylation of 

OSBZ8, a bZIP class of ABRE-binding transcription factors. The gene expression of OSPDK 

is regulated both at the transcriptional and translational level both by spermidine and by 

abscisic acid [36]. 

Besides the transglutaminase reaction, which is of especial importance in the 

chloroplasts, another case of the covalent binding of polyamines to proteins is hypusine 

biosynthesis. The butylamino group of spermidine is used for the post-translational 

modification of the precursor of the eukaryotic translation initiation factor 5A (eIF5A), which 
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modifies lysine to hypusine [37]. Hypusinated eIF5A is essential for the growth of all 

eukaryotic cells.

3.3. Spermine

Research in recent years has revealed the involvement of non-specific phospholipase 

C, a novel type of phospholipase, in plants root development, brassinosteroid signaling, 

abscisic acid sensing, and tolerance to abiotic stresses. Spermine treatment increased the 

phospholipase C activity, which demonstrated the interaction of spermine with the signal 

transduction cascade of phosphoinositide-Ca2+ [38]. 

Spermine treatment may also increase the expression levels of the stress-related genes 

that protect seedlings from stress damage (Table 1). Abscisic acid-responsive element binding 

factors (ABFs) are basic region/leucine zipper (bZIP) class transcription factors involved in 

the transcriptional regulation of abscisic acid- and/or stress-responsive genes via interaction 

with ABRE cis elements in their promoters. Trifoliate orange seedlings pre-treated with 

spermine had significantly higher expression of genes for heat shock proteins and ABFs than 

the control plants both under normal conditions and during combined drought and heat 

treatment [39]. Spermine has also been shown to induce certain enzymes, such as wound-

induced protein kinase, and to be responsible for the post-translational activation of certain 

mitogen-activated protein kinases, such as salicylic acid-induced protein kinase. However, the 

activation of the latter also requires H2O2, and the inhibition of polyamine oxidase suppressed 

it [40]. This suggests that the generation of H2O2 via the oxidative degradation of polyamines 

plays a role in polyamine-related signaling processes. Spermine application also exerted an 

effect on mitochondrial functions since it transcriptionally activated the alternative oxidase 

pathway [40].
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Microarray analysis of Atpao4 plants (in which the lack of AtPAO4 induced a decrease 

in spermidine and an increase in spermine) detected several alterations in gene expression 

including the up-regulation of genes encoding drought stress response proteins (e.g. DRE-

binding protein, LEA protein, LEA domain-containing protein, desiccation-responsive protein 

29A and universal stress protein family protein) and genes involved in flavonoid and/or lignin 

biosynthesis, such as phenylalanine ammonia lyase 1 [41] (Table 1). 

Arabidopsis plants with increased spermine levels caused by the overexpression of 

SAMDC1 or SPMS differed in their transcriptome profiles. Nevertheless, many genes 

responded similarly in these genotypes, such as genes involved in the biosynthesis of 

jasmonic acid and abscisic acid, jasmonic acid- and salicylic acid-responsive genes, receptor-

like kinases, mitogen-activated protein kinases, genes with a role in calcium regulation, or the 

genes of transcriptional factors [30]. As also observed for other polyamines, an elevated 

spermine level in Arabidopsis plants upregulated genes encoding heat shock transcription 

factors and heat shock proteins after exposure to high temperature [42]. Transcripts of 

antioxidant enzymes, such as ascorbate peroxidase, manganese superoxide dismutase and 

glutathione-S-transferase, were also induced more significantly by abiotic stressors, such as 

salt, cold or acidic stress, in tobacco plants overexpressing carnation SAMDC [43] (Table 1).

3.4. Thermospermine

Thermospermine is synthesized from spermidine by thermospermine synthase. The 

gene encoding this enzyme, ACAULIS5 (ACL5), is specifically expressed in xylem vessel 

elements. In the deficient Arabidopsis mutant, acl5, it was demonstrated that thermospermine 

modifies the expression of auxin-related genes [44]. Although the potential role of 

thermospermine in biotic stress protection has already been noted, its role in abiotic stress has 
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not yet been established [45]. It should also be mentioned that, since thermospermine is 

usually indistinguishable from spermine in the standard analysis of polyamines, further 

improvements in analytical techniques may also shed some light on its role in other 

physiological processes in the future.

4. Signaling components providing linkage between polyamines and stress responses

Another important aspect of polyamines is their double-edged role, as being both 

sources of ROS and potential ROS scavengers and playing role as redox homeostasis 

regulators in plants [46]. Both the catabolism and back-conversion of polyamines by DAO 

and PAOs result in the production of H2O2 in the apoplast and peroxisomes [8]. H2O2 has long 

been known as a signal molecule. It is able to mediate various processes, such as stomatal 

closure, directly due to its ability to influence ion channels, while it can also activate specific 

stress response processes through the MAPK cascade [47]. Polyamines, especially 

spermidine, also induce superoxide anion (O2˙
-) production by the activation of NADPH-

oxidase. However, O2˙
- dismutates spontaneously or enzymatically to H2O2. The ratio of O2˙

-

to H2O2 is an important signal in transcription [48], and might be the mediator of polyamines 

in plant adaptation to unfavorable conditions (Fig. 2).

Polyamines are related to the production not only of ROS, but also of NO. As a small, 

highly diffusible gaseous molecule, NO functions as an intra- and intercellular messenger, 

inducing various processes including stress responses in plants. Rapid NO accumulation was 

reported after spermidine and spermine treatments without a lag phase, whereas putrescine 

had little effect in Arabidopsis [49]. In contrast, exogenous polyamines, especially putrescine, 

induced NO generation in soybean [50]. Reduced NO release was observed in copper amino 

oxidase 1 knock-out Arabidopsis [51]. These results suggest that DAO might be involved in 
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NO biosynthesis induced by polyamines. Polyamines also modulated the arginine-linked NO 

synthase and nitrate reductase pathways [52-53]. It seems that NO can fill the gap between 

several physiological effects of polyamines and the mitigation of stress [54].

In citrus plants 271 S-nitrosylated proteins were identified as being polyamine-

regulated [55]. As Fe-superoxide-dismutase, dehydroascorbate reductase and 

monodehydroascorbate reductase are also polyamine-induced S-nitrosylation target proteins, 

NO-modulated S-nitrosylation is also a possible link between polyamines and stress responses 

[51]. The mode of action by which polyamines affect S-nitrosylation may differ for individual 

polyamines [55]. They influence the stress responses of plants through interconversion loops 

occurring in the polyamine cycle, since H2O2, as an upstream signaling molecule, also leads to 

NO production in plants.  It should also be mentioned that NO acts as an intermediate 

signaling molecule in cytokinin, abscisic acid, auxin, cytokinin and ethylene signaling.  

Stress adaptive responses are closely related to the ability of the plant to control ion 

transport and ion homeostasis. One of the best examples of the polyamine action mechanism 

in signaling is their influence on ion channels, which they exert both by direct binding and 

through polyamine-induced signaling molecules (ROS and NO). Polyamines may further 

regulate the activity of ion channels indirectly by membrane depolarization. The 

hyperpolarization-activated Ca2+ influx and the NO-induced release of intracellular Ca2+ result 

in a higher cytoplasmic Ca2+ concentration, which is a basic component in general stress 

responses such as stomatal movements; the cytosolic Ca2+ level also regulates several plasma 

membrane channels [56].

The overexpression of vacuolar cation/H+ exchangers was observed in spermine 

synthesis deficient plants, suggesting that polyamines have a role in the regulation of the 

vacuolar Ca2+ level [57]. They are also able to block vacuolar cation channels in the sequence 
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spermine 4+ > spermidine 3+ > putrescine 2+. Thus, polyamines assist in vacuolar Na+

sequestration during salt stress [6]. In contrast to the vacuolar cation channels, plasma 

membrane cation channels do not respond selectively to different types of polyamines. 

Polyamines inhibit the inward-rectifying K+ channels in the guard cell membrane. This effect 

is concentration-dependent and correlated with stomatal closure. They also inhibit the inward-

rectifying and outward-rectifying K+ channels in root cells [6, 58]. 

Ion channels are the potential targets of ROS. Both H2O2 and hydroxyl radicals 

mediate multiple ion channels, including those responsible for Ca+ influx and K+ efflux [6, 

58]. In addition, polyamine-induced NO generation also causes the inhibition of outward-

rectifying K+ channels by direct nitrosylation, and the activation of plasma membrane H+-

ATP-ase [6]. However, different polyamines have different effects on H+-ATPase, depending 

on their type, concentration, and tissue-specific expression [6]. These changes are related not 

only to their stimulatory effect on the interaction between 14-3-3 protein with H+ -ATPase 

[51], but also for example to polyamine-activated Ca2+ efflux [6].

5. Connection with hormones and other small hormone-like protective molecules

Since NO acts as an intermediate signaling molecule not only for polyamines, NO 

biosynthesis could be the key to the overlapping responses induced by plant hormones. In 

addition, microarray analysis revealed that increased polyamine contents caused 

modifications in the expression levels of genes involved in the synthesis of various plant 

hormones (see Section 3). 

Putrescine and abscisic acid are integrated in a positive feedback loop in response to 

abiotic stress [5] (Fig. 3). Abscisic acid-responsive elements (ABRE) or ABRE-related motifs 

occur in the promoters of ADC2, SPDS1 and SPMS, which are also highly up-regulated in 
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response to drought stress [10]. Abscisic acid also influences the catabolism of polyamines as 

it induces the expression of PAO [59], while at the same time, polyamines influence abscisic 

acid synthesis [30]. The transcriptional regulation of the 9-cis-epoxycarotenoid dioxygenase 

gene (NCED), which encodes the key enzyme involved in abscisic acid biosynthesis via 

putrescine accumulation, has been reported in ADC overexpressing transgenic plants under 

stress conditions [60-61]. Conversely, the suppression of arginine decarboxylase (in both adc1

and adc2 plants) resulted in the reduced expression of NCED3 and the down-regulation of 

abscisic acid-regulated genes. These plants had better tolerance of low temperature when 

exogenous putrescine was provided [23]. 

In contrast, polyamines and ethylene have antagonistic roles (Fig. 3.). Polyamines 

inhibit senescence, while ethylene promotes it [5].  Polyamines and ethylene compete for a 

common substrate, as S-adenosyl methionine is also a substrate for the synthesis of 1-

aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. Polyamines, 

especially spermine, regulate ethylene biosynthesis by inhibiting the accumulation of ACC 

synthase transcripts [62], and ethylene is an effective inhibitor of ADC and SAMDC [5]. It 

was also reported that PAOs were involved in ethylene-induced H2O2 production in the guard 

cells of Arabidopsis due to increased transcript levels of the AtPAO2 and AtPAO4 genes and 

to the elevated activity of PAOs [63].

Gamma-aminobutyric acid (GABA) is involved in defense mechanisms, protecting 

plants from stress through the regulation of cellular pH, acting as an osmoregulator or 

signaling molecule. 4-aminobutanal that is produced by DAO and PAOs could be converted 

into GABA via Δ1-pyrroline. Thus, an increase in polyamine level may be followed by an 

increase in GABA accumulation [64] (Fig. 3). 
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Brassinosteroids are another group of phytohormones that regulate not only plant 

growth and development but also abiotic and biotic stress responses either alone or in 

interaction with other hormones, such as abscisic acid, auxin, cytokinins, ethylene, jasmonic 

acid, salicylic acid and gibberellins (GAs). A relationship between brassinosteroids and 

polyamines is suggested by the fact that epibrassinolide treatment was reported to influence 

the level of polyamines, which in turn alleviated copper stress [65] (Fig. 3). The application of 

a brassinosteroid analogue, which diminished the effect of salt stress, restored the polyamine 

level to that detected under non-stress conditions [66].

ADC2 overexpressing transgenic plants exhibited a reduction in both the contents of 

GA1, 4 and 9 contents, and in the expression levels of the AtGA20ox1, AtGA3ox1 and 

AtGA3ox3 transcripts [67], suggesting that putrescine accumulation represses GA synthesis. 

The loss-of-function mutant of SAMDC4 resulted in hyposensitivity to exogenous auxin and 

hypersensitivity to cytokinin treatment. This finding suggests that polyamines increase the 

sensitivity of auxin perception, and repress cytokinin biosynthesis or signaling [68] (Fig. 3). 

Salicylic acid has long been known as a signal molecule in the induction of defense 

mechanisms in plants; furthermore, it participates in the signaling of abiotic stresses. The 

parallel changes in salicylic acid and polyamine contents under stress conditions have only 

been described in a few studies, but recent results have suggested that salicylic acid treatment 

influences polyamine synthesis and/or catabolism (Fig. 3). It is also evident that different 

concentrations of salicylic acid had different effects on the polyamine metabolism [69]. In 

addition, seed pre-treatment with spermidine or spermine was very effective in enhancing the 

salicylic acid content of wheat under salt stress [70]. On the other hand, the MAP kinase 

kinase (MEK2)–salicylic acid-induced protein kinase/wound-induced protein kinase cascade 

is involved in regulating polyamine synthesis, especially putrescine synthesis, through the 
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transcriptional regulation of biosynthesis genes in tobacco [71]. Based on these results, a 

relationship is thought to exist between the endogenous salicylic acid and polyamine contents, 

but the exact cross-talk mechanisms under abiotic stress conditions are still not clear.

6. Conclusions and future prospects

Most abiotic stress responses share common elements in their pathways, which are 

potential nodes for cross-talk. Several of these common elements may serve as major 

switching points and have a role in stress tolerance. It is becoming clear that polyamines are 

also switching points of this kind and that polyamine-induced responses are interconnected at 

many levels. The most abundant polyamines, namely putrescine, spermidine and spermine, 

are able to influence several physiological processes, including photosynthesis, the 

antioxidant system and ion channels, but not always with the same specificity and efficiency 

under stress conditions. The question arises of whether the accumulation of the individual 

polyamines is essential for plant tolerance and abiotic stress responses. The generation of 

transgenic plants overexpressing the genes involved in polyamine biosynthesis is promising 

tools to improve the stress tolerance of plants. However, examples have been reported where 

the polyamine levels do not correlate with stress tolerance, which also confirm that “the more 

the better” phrase cannot be true in all cases. Even if polyamines accumulate, this does not 

necessarily prove their unique involvement in direct stress protection. Polyamines should no 

longer be considered only as protective molecules, but rather as multifaceted compounds, 

which have a key role in the regulation of stress tolerance, are involved in direct interactions 

with other metabolic routes and hormonal cross-talk, and also activate the expression of 

stress-responsive genes. These mechanisms make it unnecessary or of secondary importance 

for polyamines to participate in direct protection. Indeed, small changes in polyamine 



Page 18 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

18

concentration are need to fine tuning for the triple balance in polyamine signaling: i. balance 

in synthesis and catabolism. ii. balance between antioxidant function and ROS production. iii. 

balance with plant hormones.

So, how the polyamines act in signaling? They may have many modes of action. H2O2 

and NO, the possible links between polyamines and stress responses, may act as two 

independent signaling molecules, but they are also interrelated in the polyamine-induced plant 

immune response, which could result in convergence. In addition, polyamines are able to 

influence Ca2+ influx independently of the H2O2- and/or NO-mediated pathways, and they are 

also reported to have a direct post-translational protein kinase activating effect.  Recent gene 

expression studies have led to a greater understanding of the effect that polyamines and 

abiotic stress pathways have on each other. Nevertheless, as different polyamines may trigger 

differential transcriptional responses, other pathways must exist in addition to those 

mentioned above, where specific direct action on polyamine-responsive elements is 

responsible for the specific gene expression. 

What, then, are the specific roles of polyamines, and which of these are really 

necessary? The polyamine metabolism is dynamic. The exogenous polyamines absorbed or 

the elevated levels of endogenous polyamines can be rapidly converted into each other in the 

polyamine cycle. In addition, the polyamine metabolism is also related to the synthesis of 

plant hormones and signaling molecules. The enzymes involved in biosynthesis and 

catabolism are also affected by polyamine treatment. Thus, only very complex experimental 

conditions, in which individual polyamine levels are influenced differently, could represent 

the real situation, in addition to which the effect of the treatment may be genotype-dependent. 

Polyamine analogs, which compete with polyamines for binding site for example on DNA, 
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but metabolically stabile, do not enter the polyamine cycle, and/or inhibit PAO could be 

promising tools in these experiments.

The identification of polyamine-regulated downstream targets, such as polyamine-

responsive elements and the corresponding transacting protein factors, and the discovery of 

connections between polyamines and other stress-responsive molecules have opened up new 

possibilities to investigate the function of individual polyamines at the transcriptional, 

translational and molecular levels. 
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Table 1. Examples of changes in gene expression induced by gene modification or exogenous 

polyamine treatment.

Overexpressed
gene

Modified genes Plant species References

ADC2 APETALA2/ethylene-responsive factor domain family Arabidopsis [67]

genes of AtGA20ox1, AtGA3ox1 and AtGA3ox3 

ADC2 auxin, ethylene, abscisic acid and salicylic acid synthesis genes Arabidopsis [32]

genes for auxin transport

genes for auxin-responsive proteins

ethylene- and abscisic acid-responsive transcriptional factor genes

genes for jasmonate-induced proteins

ADC2 9-cis-epoxycarotenoid dioxygenase gene Lotus tenuis [60]

SPDS genes of transcription factors (WRKY, MYB, B-box zinc finger proteins, DREB2B) Arabidopsis [11]

 rd29A

gene for calmodulin-related protein

 sucrose non-fermenting protein 1 (SNF1)-related protein kinase (SnRK) gene

SPMS or 
SAMDC1

jasmonic acid and abscisic acid synthesis genes Arabidopsis [32]

jasmonic acid- and salicylic acid-responsive genes

receptor-like kinases, mitogen-activated protein kinases 

genes with a role in calcium regulation 

genes for transcriptional factors 

SPMS or 
SAMDC1

heat shock proteins and heat shock transcription factors Arabidopsis [46]

SAMDC genes for ascorbate peroxidase, manganese superoxide dismutase, 
and glutathione-S-transferase 

tobacco [44]

Mutant gene

adc1 and 
adc2

9-cis-epoxycarotenoid dioxygenase gene
abscisic acid-regulated genes 

Arabidopsis [23]

pao4 stress response proteins (e.g. DRE-binding protein, LEA protein, LEA domain-
containing protein, desiccation-responsive protein 29A and universal stress protein 
family protein)

Arabidopsis [42]

genes involved in flavonoid and/or lignin biosynthesis, such as phenylalanine 
ammonia lyase 1

Exogenous 
polyamine
putrescine heat shock protein 17 gene wheat [31]

spermidine photosystem II D1 protein gene Xanthoria 
parietina

[36]

spermidine genes involved in primary metabolism, signal transduction, hormone responses tomato [35]

genes of transcription factors

genes involved in energy metabolism, cell wall metabolism, and photosynthesis 

spermidine β-amylase gene white clover [37]

spermine heat shock protein genes trifoliate orange [41]

abscisic acid (ABA)-responsive element binding factor (ABF) gene

9-cis-epoxycarotenoid dioxygenase gene 
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Figure legends:

Fig. 1. Polyamine cycle. Higher polyamines, such as spermidine (SPD) and spermine (SPM) 

are synthesised from putrescine (PUT). However, the degradation of SPM or SPD may 

also lead to lower polyamines releasing hydrogen peroxide. (dcSAM: decarboxylated 

S-adenosyl methionine; SPDS: spermidine synthase; SPMS: spermine synthase; PAO: 

polyamine oxidase;       : synthesis;   : catabolism).

Fig. 2. Schematic representation of signaling routes mediated by polyamines. (ABA: abscisic 

acid; GABA: -aminobutyric acid; PLC: phospholipase C; PLD: phospholipase D).

Fig. 3. Relationship existing between polyamines and plant hormones. (ABA: abscisic acid; 

BR: brassinosteroids; CK: cytokinin; ET: ethylene; SA: salicylic acid; GA: 

gibberellins; GABA: -aminobutyric acid).
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