
Salzburg Generative Grammar Fiesta 1 . 1

Pattern matching: a finite-state approach to
generation and parsing

László Kálmán and András Kornai
Research Institute of Linguistics, Hungarian Academy of Sciences

0 Introduction

The first section of this paper outlines a novel parsing method characterized by dis-

tributed processing and lack of centralized control. The elementary building blocks

of the parser are called molecules – these correspond, roughly, to ordinary lexical

entries and rewrite rules. The individual molecules behave as finite automata, so

the overall recognition capacity of the system does not exceed Type-3 languages.

The matter of sentence generation is discussed in Section 2. In the last section we

argue that the mechanism proposed for this is equivalent to a finite transducer.

1 Parsing

Usually the lexical component of a parser is but a repository of phonological, mor-

phological, syntactic, and semantic information, and apart from a trivial alphabetic

ordering, it has no internal structure whatsoever. This solution to the problem of

storing information relevant to the process of parsing is rejected by many people

working in the ‘semantic net’ paradigm. The model to be outlined below owes a

lot to the early proponents of that approach, in particular (Quillian1967), but is

extremely impoverished compared to later semantic net representations such as

KRL. In addition to storing various chunks of information, each molecule acts as

a processor of limited capacity. Molecules are linked to other molecules in a unidi-

rectional manner. The flow of information along these links is not regulated by any

supervisor program: depending on its own internal state, each molecule can initiate

communication, and can receive messages. The internal state of the molecules is the

function of their specific information content (or SPINFO), the message received,

and their previous state.

Each molecule is divided into three storage areas. SPINFO, the first of these,

stores permanent or semi-permanent information that is seldom updated. TEMP,

the next one, stores information only for one cycle. The last one, TEMP2, acts

essentially as a buffer for TEMP: its content is either processed immediately or

lost forever. Messages arrive to TEMP2 (in case of conflict, the last one prevails).

Apart from sending messages to neighbors (i.e. dumping the contents of TEMP

or SPINFO to the linked molecules), the fundamental operation a molecule can

perform is taking the union of two graphs. Both SPINFOs and messages are graphs:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42934992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 László Kálmán and András Kornai

nodes are labelled by the name of one of the molecules or by a special symbol ‘*’,

and edges are directed but unlabelled. There can be special (undirected) edges that

signify equivalence, and one of the nodes is distinguished – more about these later.

Communication between the molecules is regulated by a protocol based on a

distinction between top level and other nodes in the message. Those nodes that

are at the endpoint of arrows running from to the distinguished node of a message

constitute its top level. If the name of the receiving molecule does not appear on

the top level of the message received, the molecule stores it on its TEMP, but

does not send it any further. The top level lists the intended addressees of the

message, therefore if we want to send a message to a particular molecule which is

not directly linked to the sender, we have to mention in the message (the name

of) every intermediary molecule. The action a molecule takes might depend on its

internal state (e.g. activated, learning, inhibited, etc. states) as well: for details see

(Kornai1987).

Union of graphs is defined in the ordinary manner; ‘*’ acts as a variable to be

substituted by the appropriate subgraph (preserving edges). No two nodes can have

the same label in any graph, so identically labelled nodes have to be conflated. The

special edges act as conditions on the well-formedness of the graph: unless the

nodes connected by such edges are labelled identically, the graph is ill-formed. By

combining the special edges with the variable symbol, selective substitution becomes

possible. Successful substitution, i.e. the matching of any message that contains no

stars in the starred positions of the SPINFO, will render the molecule in question

inactive for a full cycle.

The SPINFO of a molecule stores paths that lead to other molecules: in effect

these constitute the only association between molecules that are not immediately

linked. Updating a SPINFO is only possible if the molecule is in the learning state.

The message a molecule sends is usually the union of its SPINFO with its TEMP,

and the distinguished node will be the name of the sending molecule.

The basic linguistic properties stored in the SPINFO of a molecule corresponding

to a lexical entry include its spelling or phonological representation, and categorial

information expressing its primary (unmarked) affiliations. This entails that lexi-

cal categories are also molecules, containing no phonological form or spelling, but

rather primary syntactic functions i.e. names of constituents in which they might

occur. The SPINFO of the molecules representing syntactic constituents contains

semantic, syntactic, and pragmatic information about the use of the given con-

stituent. Moreover, their SPINFO is pattern-like, i.e. it contains empty slots. These

slots are represented by variables in the graph; since a message containing such

variables on the top level triggers a substitution process in the receiving molecule,

it acts as a request. The filling in of empty slots may be subject to constraints on

linear order. One of the typical cases is the requirement of absolute adjacency: for

example, a stem has to be immediately adjacent to an ending, a prefix has to be

followed immediately by the word to which it is attached, the English verb imme-

diately precedes its direct object, etc. This corresponds to messages that disappear

if their top-level variable is not substituted immediately. For instance, let us derive

quickly from quick and ly. In the SPINFO of the molecule corresponding to quick,

Pattern matching: a finite-state approach to generation and parsing 3

the name of the molecule ADJ(ective) is on top level, which means that quick is

an adjective. Therefore, the SPINFO of quick is sent as a message to ADJ as soon

as quick is activated. The SPINFO of ADJ contains both STEM and MODIFY on

top level, since these are the main functions of adjectives in larger constructions;

this SPINFO is unified with the message from quick and the result is sent to both

MODIFY and STEM. The SPINFO of STEM looks as follows:

STEM
↓
* = suffix

This is unified with the message from ADJ, and the result is sent to SUFFIX

which, in turn, interprets it as a request. If SUFFIX finds nothing on its TEMP

that can be unified with the request, the process will halt because the request

disappears. In this case the only chance for quick to surface is through the molecule

MODIFY. But if the message sent by e.g. LY arrives on time, communication can

proceed. The SPINFO of ly, namely

LY

��

��

��

li

suffix

��

##

. . .

adv

stem * = adj
oo

contains the information that ly is a deadjectival suffix forming adverbials, that

its phonological representation is /li/, etc. This arrives to SUFFIX, which contains

no relevant information, and therefore stores the message from ly in its original

form roughly, with the only difference that the distinguished node will be SUFFIX.

When the request from STEM arrives, matching can take place, and the result is

SUFFIX

zz �� &&
ly

}} ��

stem adv

li . . . adj

OO

// modify

kvik quickoo

OO

// . . .

4 László Kálmán and András Kornai

This, then, is sent to the molecule ADV(erb) for further processing. It should be

noted that this message will not arrive to ly, but STEM will receive a confirmatory

message which inhibits it for a cycle.

The second type of information about linear order that is supposed to be encoded

in molecules is precedence. The difference between precedence and strict adjacency

is that in the case of precedence the request message does not disappear if it is not

satisfied immediately. This storing of messages is possible if (at least) two molecules

work in close collaboration (i.e. there are bidirectional links between them), and are

able to send messages to each other ad infinitum. Such a ping-pong effect will be

stopped by one of the molecules’ getting inhibited. That is, for any linear precedence

statement A < B, the model employs two interlinked molecules X and X’ having

SPINFOs of the following form:

X

��

X ′

�� $$
X ′ X * = B

Additionally, A has a link to X, and B has a link to X’. In such cases, the message

activating A will be enriched by the SPINFO of A and sent to X. X, in turn, will

enrich it with its own SPINFO, and send it to X’. X’ will send a request to B and

to X as well, and it is this latter message that will come back to X’ in the next

cycle. This way, information will be requested from B at every turn, and this will

go on until X’ gets inhibited by a confirmatory message from B.

The third type of linear ordering is free word order. This is expressed by patterns

containing several variables on the top level. This way, simultaneous requests are

sent to several molecules.

2 Generation

The starting point of a derivation is the semantic representation which is made

up from the SPINFOs of the contentive items. The edges run from dependents to

heads: these are usually (names of) molecules. In addition to these, the graph might

have “ideal” vertices (here depicted as @-signs), which do not correspond to lexical

items: such vertices provide a starting point or an endpoint for arrows that run

from (or to) edges:1

video

patrem @

OO

//
venire

1 This formalism has strong conceptual links with the ideas of dependency grammars
(Tesniére1959) and relational grammar (see (Perlmutter1980), and the references cited
therein): for a rigorous definition, see (Kornai1987).

Pattern matching: a finite-state approach to generation and parsing 5

This picture is inaccurate in one very important respect: the vertices should be

lexical stems rather than fully formed words. We shall return to this question below.

The main task of our generator is to encode such graphs in linear sequences

(surface strings). This linearization is an essentially local process: in any given

moment, only one edge of the graph is under scan. If this edge contains an ideal

vertex, the situation is somewhat more complex: see below. One component of the

grammar is the Local Interpreter (LI) which encodes the relationship expressed by

the edge under scan in the manner appropriate for the language in question. For

instance, the possessive relationship is encoded as morphological marking on the

possessed element in Hungarian, and as morphological marking on the possessor

in English. But in English, it is also possible to encode this relationship with a

grammatical formative of that has to precede the possessor and follow the possessed

item. In general, LI can specify elements for morphological marking, linear order and

nearness, but can also leave these unspecified. This is very similar to the behavior

of the molecules discussed in Section 1: the step-by-step action of the LI is intended

to capture the spreading activation of the various molecules.

DEPENDENCY GRAPH

Pragmatics Local Interpreter

Shack

Pattern Matcher

Morphology and Phonology

SURFACE FORM

The results of the local interpretation are stored in a special short-term memory

called the Shack, which will be discussed later. The most important step in the

linearization process is called pattern matching. This is performed by a component

operating on the contents of the shack. The Pattern Matcher (PM) drains the shack

whenever possible; in general, LI, PM, and the Shack operate concurrently. At

present, the patterns (templates) are stored in the long-term memory of the PM; in

the future, we plan to divide them among the SPINFOs of the molecules constituting

it, and to replace the matching operation by graph unification. The actual choice of

patterns is determined by the content of the shack and by pragmatic information.

6 László Kálmán and András Kornai

(In principle, postlexical suprasegmental information is also part of the patterns –

in practice, neither this nor a proper handling of pragmatics is implemented.)

In general, pattern matching happens in a local manner much as the context-free

rewriting of a node in a phrase structure tree. Matching is left to right (without

backtracking): this means that if adjacency constraints and constituency informa-

tion are incompatible, i.e. in the case of discontinuities, then the surface template

takes over and no phrase structure rule is applied. The resulting forms are fully

specified for morphological and phonological features and thus can drive the phono-

logical component of the grammar.

We shall illustrate the linearization process with the derivation of the Latin sen-

tence oportet varium habere vitae genus from the underlying representation

oporte @oo
PRESENT

variu

habe @

OO

oo @

��
genus @oo

vita

It should be mentioned here that e.g. genus vitae could well be a single word in

another language. In this respect the same meaning can correspond to different

dependency graphs in different languages.

The Local Interpreter first goes to the head of the whole construction, i.e. the ver-

tex that has out-degree zero. This vertex can be reached by following the edges be-

tween normal vertices and switching to the out-arrow at ideal ones. In our example,

the head is oporte. The aim is to interpret every edge in a contiguous manner if pos-

sible, with vertices with smaller degree having priority. Thus, oporte ← PRESENT

has to be interpreted first. In this case, local interpretation means the addition

of the feature 〈TENSE PRES〉 to the stem oporte, and the result is stored in the

shack. The following edge is the one pointing to oporte ← PRESENT. This arrow,

however, both originates in and points to an ideal vertex and therefore cannot be

interpreted directly. For arrows starting in ideal vertices, we apply the Principle of

Chain Forming (PCF), which shifts the starting point of the arrow in question to

the farthest “descendant” of the ideal vertex. In other words, the PCF moves the

tail of an arrow along as many arrows as possible until it reaches a normal vertex.

This vertex will be habe in our example.

If an arrow points to an ideal vertex, this means that its starting point is a depen-

dent of a whole construction (oporte ← PRESENT in our case). In such cases the

agreement resulting from local interpretation usually holds between the dependent

(habe...) and the head of the construction (oporte). Thus the LI interprets an edge

between habe and oporte (the farthest descendant of the ideal vertex) as an agree-

ment pipe : the infinitive form of habe has to agree with oporte in tense. Habe 〈INF

Pattern matching: a finite-state approach to generation and parsing 7

TENSE *A〉 and oporte 〈TENSE *A〉 are stored in the shack, linked together by

the pipe. Since the LI interprets edges rather than vertices, it puts certain elements

in the shack more than once. But items in the shack are unique, much as nodes in

SPINFOs and messages.

In addition to pipes, the elements in the shack can also be linked by nearness-

marking pointers, which we shall call bands. (Bands are probably immaterial in

Latin and in ‘free word order’ languages.) In the unmarked case, edges between

normal vertices are interpreted as pipes and bands at the same time. The same

holds for arrows starting from an ideal vertex, with the only difference that the

starting point of these shifts to the farthest descendant of the ideal vertex, as

required by the PCF.

In the case of arrows pointing to an ideal vertex, the situation is somewhat

more complex: the head of the head-construction is linked to the starting point of

the arrow by an agreement pipe, whereas the nearness pointer runs between the

starting point and the farthest ancestor of the ideal vertex. In our example, the

arrow pointing to oporte ← PRESENT would be interpreted as an agreement pipe

between habe and oporte plus a nearness band between habe and PRESENT. (Of

course, this is only relevant if oporte and PRESENT are encoded as separate words

in the given language.)

The arrow pointing to habe originates in an ideal vertex, therefore its starting

point has to move to its farthest descendant, which happens to be genus. The edge

habe← genus is interpreted as habe + genus 〈CASE ACC〉, and the result is stored

in the shack. The next edge is genus ← vita, the proper encoding being genus +

vita 〈CASE GEN〉. In the next step genus← variu gets interpreted as a pipe: variu

〈GENDER *A PLURAL *B CASE *C〉; genus 〈GENDER *A PLURAL *B CASE

*C〉. By virtue of the PCF, a nearness band between variu and vita might also be

established. The shack differs from an ordinary stack memory in many important

respects. First of all, the stack is finite: we suppose that at any given moment at

most five elements can be stored in it. Secondly, the shack is unordered (random

access). The items in the shack can be identified immediately. This means, as we said

above, that no element can be stored in more than one copy in the shack. In addition

to providing convenient storage area, the shack also performs certain operations on

its content. Information concerning the gender, number etc. of elements can flow

along the pipes, and in the case of syntactic concord this is obligatory. We shall say

that the shack is well-formed whenever these operations have all been carried out.

We suppose that the PM always operates on a well-formed shack.

In general, items do not remain in the shack for long. In any given moment the PM

scans the contents of the shack, and whenever it finds an item which is consistent

with the leftmost slot of the template, matching takes place. If an item is matched, it

is deactivated in the dependency graph but can remain in the shack. In fact, it must

remain in the shack as long as some of its neighbors in the dependency graph are

active but do not appear in the shack. This means that the shack contains every

dependency information between those parts of the sentence which have already

been spoken and those parts which have not. In particular, we suppose that items

that have been matched are inaccessible unless they are still present in the shack.

8 László Kálmán and András Kornai

In our example, the template is (VP →) V〈AUX〉 S. As soon as oporte 〈TENSE

PRES〉 appears in the shack, matching can take place. But as all other vertices

(excepting PRESENT) are still active, oporte 〈TENSE PRES〉 must remain in the

shack. The next appearing element is habe 〈INF〉 which has to agree with oporte in

tense and thus gets fully specified: habe 〈INF TENSE PRES〉. Now oporte 〈TENSE

PRES〉 can disappear from the shack.

In the expansion of S the surface pattern Adj V NP is chosen. Since the leftmost

slot in this template cannot be filled in by anything in the shack, matching must

be delayed.2 The next element to appear in the shack is genus 〈CASE ACC〉, which

does not change the situation. Then vita 〈CASE GEN〉 appears in the shack, but

the PM has to wait until variu arrives.

The well-formedness of the shack requires the gender, number and case features

of genus to be piped to variu. After that, variu 〈GENDER NEUTR PLURAL -

CASE ACC〉 can be matched. The next slot in the pattern can be filled in by

habe 〈INF TENSE PRES〉. Again, for some reason or other, we chose the pattern

(NP →) NP〈CASE GEN〉 NP rather than NP NP〈CASE GEN〉, and we match

vita 〈CASE GEN〉. In the last step, genus 〈CASE ACC〉 is matched and the shack

empties because there are no active vertices in the graph.

3 Conclusions

It would not be proper to say that our model ‘explains’ the well-known performance

restrictions of human speakers, because certain parts of our grammar, most notably,

the shack, were expressly designed to model these very restrictions. Nevertheless,

it should be mentioned that our model gives the right predictions not only for

center-embedded constructions with large depth, but also for purely left-branching

constructions. Examples like John’s stepmother’s father’s uncle were problematic

for the classic model of (Yngve1961), because their depth can be arbitrarily large

without affecting their acceptability. In our model such examples can be generated

only with the aid of pre-planned templates: this seems to explain their rareness

in everyday speech. Since in parsing, the current possessor need not remain in the

TEMP of the POSSESSION molecule for long, the short-term memory of the hearer

is not overburdened, and the construction is acceptable.

Thus, we have a three-way classification of syntactic constructions: purely right-

branching constructions are easy both to produce and to understand, purely left-

branching ones with large depth are easy to understand, but hard to produce, and

mixed ones with large depth are impossible to produce or to understand. Logically,

there is a fourth possibility, namely, constructions that are easy to produce but

hard to understand. Our model cannot describe these and thus predicts that no

such construction will ever be found in natural languages.

The idea of generating surface strings from semantic networks as underlying

2 It appears that in general slot-filling is delayed until the next element appears in the
shack. Thus ordinary derivations seem to involve a certain (strictly limited) amount of
preplanning.

Pattern matching: a finite-state approach to generation and parsing 9

structures is certainly not new in computational linguistics (see e.g. (Shapiro1982)

and the references quoted therein), but in the generative process usually ATNs

or other equally powerful mechanisms are used. Since the present model employs

pipes, bands, and a number of other devices, it is far from obvious that its generative

power is any smaller. For instance, if the well-formed underlying representations are

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦, ◦ ◦ ◦, ◦ ◦ ◦ ◦, . . . ,

and this cannot be ruled out without constraining the semantic component in some

manner, then a trivial (identity) rule of local interpretation, a shack with no pipes,

a single (regular) phrase-structure template S → aS, and a trivial (band-free) PM

component will generate the language {an2 |n > 1}, which is properly context-

sensitive.

Since it is impossible to prove the finite-stateness of our model rigorously without

a well-defined notion of semantically correct dependency graph, pragmatic rules,

etc., the only expedient is to present the broad outlines of such a proof. (Naturally,

the details will have to be spelled out eventually.) The above example makes it

clear that at present we cannot prove the whole grammar to be finite-state: the

only thing we can reasonably claim is that the syntactic component behaves as a

finite transducer. If dependency graphs turn out to be regular3 and if the pragmatic

component can be shown to be well-behaved, then the regularity of the stringsets

generated by our model will follow as a direct consequence of the classic theorem

asserting that the GSM image of a regular language is regular. Here GSM stands for

Generalized Sequential Machine (finite transducer): these can be defined with an

input alphabet Vi, an output alphabet Vo, a finite set S of internal states containing a

unique initial state s (from S), and a set Sf contained in S of final states. The GSM

scans an input string from left to right; at any given point it will emit a string of V∗o
depending only on the input letter under scan and on its current internal state, and

move (possibly non-deterministically) to another internal state. The GSM image of

an input string is simply the concatenation of the strings emitted in the process,

and the GSM image of a language L is defined to be the set containing the images

of the strings in L (and only these).4 We do not want to establish the desired result

by appealing to the finiteness of the lexicon and/or to the length limits of actual

3 This presupposes some definition of regularity for infinite sets of dependency graphs –
obviously, we want to call every finite set of such graphs a regular set.

4 For a more rigorous definition, and for the proof of the theorem mentioned above, see
e.g. (Salomaa1973) p30ff or (Harrison1978) p206ff.

10 László Kálmán and András Kornai

sentences. To the contrary, we think that no arbitrary bounds should be put on

sentence length and that the long-term memory of humans is so vast that it is

a reasonable idealization to take it to be infinite. In addition to this, we cannot

constrain the rules of local interpretation in any principled manner. Therefore, the

starting point of our argumentation has to be the shack: at any rate, the regularity

of our generation model must be the result of the finiteness restriction on the shack.

The regularity of the parser follows from a classical theorem of (Kleene1956).

The pattern matcher operates on the contents of the shack, but it is not the

individual items themselves but rather their lexical categories that determine its

behavior. Items with different inflectional markers or with different subcategoriza-

tion frames must be considered different, since these matters can (and do) affect

the choice of pattern. Since the number of lexical (sub)categories is finite (probably

less than 103) in any natural language, and the number of paradigmatic forms a

word can have is also strictly limited (by, say, 104), at most 107 essentially different

forms can appear in one position in the shack (probably 105 would be more realistic

here).

Since the shack is unordered, there are at most (107)5 = 1035 ways to fill it

completely. If we include a blank symbol with the 105 forms mentioned above,

and take it into account that the shack hardly ever contains more than 3 items,

we get (105)3 = 1015 as a ‘more realistic’ estimate on the number of possible

configurations in the shack. But no matter which estimation we use, only a fraction

of these configurations will be well-formed: we think that the number of well-formed

shack configurations is actually less than 106.

Now, the input alphabet of the GSM modelling the pattern matcher can be

identified with the set of these configurations. (It should be kept in mind that the

input language over this alphabet will not be regular for ‘unnatural’ languages, like

the ‘square’ language above.) The output alphabet of the PM contains the actually

filled slots, which correspond to terminals fully specified for subcategorization and

paradigmatic form. The experience with context-free models of natural languages

shows the number of such terminals to be less than 105, in accordance with our

‘realistic’ estimation above.5

The states of the GSM correspond to the patterns that can be used to fill in

the template: if we take the PM to be a non-deterministic GSM, the number of its

states will equal the number of phrase structure rules plus the number of surface

patterns necessitated by discontinuities. Thus, the number of states need not exceed

103 for any language; again, experience with context-free models shows that quite

detailed grammars can be written with a few hundred CF rule schemata.

Since deterministic and non-deterministic finite transducers are equivalent, our

‘proof’ is complete. But on real-life computers, truly non-deterministic computa-

tion is impossible to implement, and it should be kept in mind that in the actual

5 This number cannot be reduced if the verbs of the language in question have cca. 103

paradigmatic forms (as is the case with Sanskrit and many agglutinative languages),
and the number of verbal subcategories is cca. 102 (which seems to be universally true).

Pattern matching: a finite-state approach to generation and parsing 11

model the ’non-deterministic’ choices of the PM are determined (or at least prob-

abilistically governed) by the pragmatics component.

References

Michael A. Harrison. 1978. Introduction to Formal Language Theory. Addison-Wesley.
Stephen C. Kleene. 1956. Representation of events in nerve nets and finite automata.

In C. Shannon and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton
University Press.

András Kornai. 1987. Finite state semantics. In U. Klenk, P. Scherber, and M. Thaller,
editors, Computerlinguistik und philologische Datenverarbeitung, pages 59–70. Georg
Olms, Hildesheim.

David M. Perlmutter. 1980. Relational grammar. In Wirth and Moravcsik, editors,
Current approaches to syntax, pages 195–229. Academic Press.

M. Ross Quillian. 1967. Semantic memory. In Minsky, editor, Semantic information
processing, pages 227–270. MIT Press, Cambridge.

Arto Salomaa. 1973. Formal Languages. Academic Press.
S.C. Shapiro. 1982. Generalized augmented transition network grammars for generation

from semantic networks. AJCL, 8:12–26.
Lucien Tesniére. 1959. E1lements de syntaxe structurale. Klincksieck, Paris.
Victor H. Yngve. 1961. The depth hypothesis. In R. Jakobson, editor, Structure of Lan-

guage and its Mathematical Aspects, pages 130–138. American Mathematical Society,
Providence, RI.

