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ABSTRACT: In this study, a novel in-fiber optofluidic trace ethanol sensor is proposed firstly. The microstructured hollow fiber 
(MHF) with a suspended core is a key part of the overall device which is integrated with graphene oxide (GO). The GO can be uni-
formly trapped on the whole surface of the suspended core in the MHF by using evanescent field inducing method. When trace 
microfluidic ethanol passes through the in-fiber device, the light intensity of the suspended core can be significantly modulated 
through the interaction between the GO on the core and ethanol. The device presents an excellent linearity on-line response with an 
average sensitivity of 0.16 dB/% with linear regression equation of y=0.16x+25.989. In general, this compact optofluidic in-fiber 
trace ethanol sensor can be utilized as for on-line detection of trace amounts of ethanol in special environments. 
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Carbon materials become a research hotspot due to their ex-
cellent electronic, magnetic, optical and thermal properties [1-

3]. Especially, graphene is a very important kind of two-
dimensional material. Generally, it is a two-dimensional hex-
agonal lattice of single-atom thick carbon materials composed 
of sp2 bonded carbon atoms. Unlike graphene, graphene oxide 
(GO), as an oxidized form of graphene, contains many oxidiz-
ing functional groups, and these oxidizing functional groups 
greatly affect its electronic, mechanical, optical and electro-
chemical properties [4]. What’s more, due to the functional 
groups on the surface of GO, especially the large amount of 
carboxyl groups and hydroxyl groups, it can be well combined 
with organic solvents in deionized water with rich negative 
charge. Recently, graphene oxide, as an important derivative 
of graphene, has been considered as an excellent alternative to 
graphene flakes, and has been widely applied in various areas 
including catalysis, biomedical, electrochemistry, and antimi-
crobial, especially in sensing applications [5-9]. 

Optofluidics as an emerging field is the combination of pho-
tonic and microfluidic technologies [10-12]. It is a tool that inte-
grates sensing elements into a microfluidic device to generate 
an optical signal. This technology is very attractive in research 
fields such as sensing, chemistry, biomedical engineering, 
photonic devices [13-17]. On the other hand, microstructured 
hollow fibers (MHF) used as low loss waveguides and the 
microfluidic channel has shown unique advantages in con-
structing optical flow control sensors in fibers [18-20]. The small 

amount of fluid can flow through the MHF, because of the 
unique structure of the MHF. Meanwhile, a portion of the 
model field in the aperture allows the guided light to interact 
directly with trace amounts of sample through evanescent field 
effects. It makes use of the interaction between light and sam-
ples in microscale. In general, MHF is a natural optofluidic 
flow control carrier device [21-26]. 

In this paper, we integrate GO into a special designed MHF 
with suspended core and present an in-fiber on-line optofluidic 
device for trace ethanol detection. Specifically, adequate light 
can be coupled into the microfluid through the evanescent 
field of the suspended core within the bore of the MHF. The 
GO can be uniformly trapped on the whole surface of the sus-
pended core in MHF by using evanescent field inducing. 
When trace microfluidic ethanol passes through the MHF, the 
signal intensity can be significantly modulated through the 
interaction between GO and ethanol [27-29]. Here, ethanol is 
widely used in food, daily necessities, and beverages [30, 31]. 
Excessive doses of ethanol can cause inflammation of the na-
sal mucosa and cause discomfort of skin. Therefore, it is es-
sential for the detection of trace amounts of ethanol [32, 33]. In 
this paper, the in-fiber sensor based on GO film for ethanol 
detection has a high sensitivity and can be integrated with 
microreactor, micro-separators and other units.  

 
METHODS 
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The sequential surface functionalization processes to coat 
the GO film schematically is shown in Fig.1. The piranha so-
lution (4 volume of H2SO4 and 1 volume of H2O2) was inject-
ed into the MHF, and then the hydroxyl group was exposed. 
The inner surface of the MHF was hydroxylated. The exposed 
hydroxyl group (-OH) can be connected with the groups of the 
GO. Here, the concentration of GO solution was 0.5 mg/ml, 
and the absorption spectrum of GO is shown in Fig.2. The 
absorption peak of graphene oxide locates at 300-500 nm. So, 
we chose a coupling light wavelength of 485 nm. When the 
GO solution was filled into the MHF by capillary force, the 
semiconductor laser (3W maximum average power) was cou-
pled into the fiber core from one end. Thus, the GO was coat-
ed onto the suspended core. In order to uniformly grow a ro-
bust graphene oxide film, the second part of the growth pro-
cess needs to continuously couple the light for 20 minutes. 

 
Fig.1. The fabrication procedure for the GO film deposition onto the 

suspended core in MHF for in-fiber optofluidic ethanol detection 

 

Fig.2. The absorption spectrum of the GO solution 

The schematic diagram of the optofluidic in-fiber ethanol 
detection device with GO is shown in Fig.3. The proposed 
optofluidic MHF micro circulation channel is illustrated in the 
inset of the figure. The optofluidic part was composed of a 
piece of MHF modified with GO film. In particular, in the 
design, the MHF with an inner core based on silica was de-
signed and fabricated in the lab. The microfluidic optical fiber 
was made by using tube and rod stacking method. Many pa-

rameters such as the heating temperature, translation speed, 
drawing speed and pressure in the hole were controlled during 
this process. By selecting suitable sets of parameters, we can 
completely control the profiles of the fibers. And the inset of 
the figure shows the cross-section of the MHF. The suspended 
core diameter is 8 µm, and its RI is 1.462. The diameter of the 
air hole in the MHF is 43 µm. And the thickness of the annular 
cladding with a RI of 1.472 is 41.5 µm. In addition, there is a 
suspended core inside the air hole of the MHF. During the 
grinding process for making microfluidic channel, the opening 
at the end face will not damage the structure of the core. The 
MHF grinding angle in the part of the air hole is about 15°. 
Meanwhile, the structure of the MHF is convenient to connect 
with single-mode fiber, which is convenient for light coupling. 
Both ends of MHF about 13 cm long were spliced with single 
mode fiber (SMF) by applying the electric arcs in a fusion 
splicer (Ji Long, KL-260B). In general, the optofluidic channel 
was built by grinding, polishing, and butt-jointing two ends of 
the MHF. 

Actual assembly of “SMF-input-MHF-output-SMF” is 
shown in inset of Fig.3. For the optical path, the suspended 
core of the MHF was coupled with the amplified spontaneous 
emission (ASE) light source and a spectrometer with a mono-
chromator. 1550 nm was as chosen as the measure wave-
length. And the light intensity at the wavelength was measured 
by an InGaAs2400-TE detector. Then, the light was coupled to 
the suspension core of the MHF through the SMF, and inter-
acted with microfluidic sample of ethanol and GO through the 
evanescent field of the MHF core. To realize the optofluidic 
in-fiber ethanol detection, the sample solution was sucked 
through the microhole of the fiber by the negative pressure of 
the syringe pump and flows out from the other microhole of 
the fiber. Here, the different concentrations of ethanol solu-
tions were obtained by mixing pure ethanol and deionized 
water in different ratios and the entire in-fiber optofluidic eth-
anol sensor is immobilized on a silica substrate with epoxy 
glue.  

 
Fig.3. The diagram of the device for in-fiber optofluidic ethanol 

detection. Inset: end-face of MHF without growing GO film 

 

 
RESULTS AND DISCUSSION 

 



 

 
Fig.4. (a) The microscope image of the MHF without the GO film. 

(b) SEM image of end-face of the MHF with grown GO film. (c) 
SEM image of the GO film coated onto the surface of the core, inset 
the SEM of Go in solution. (d) Raman spectrum of the GO 

Fig. 4(a) depicts the microscope image of the MHF after 
grinding. From this figure, the opened microhole at the fiber 
end is clearly observed, and the edge of the microhole is uni-
form. The suspended core can be seen inside and the structure 
is not damaged during the grinding process. The scanning 
electron microscope image (SEM-Hitachi S-3400N) at the end 
of the MHF is shown in Fig. 4(b), and it can be observed from 
the end face of the MHF that the GO film has been grown on 
the surface of suspended core. The surface morphology of the 
GO film on the surface of the core is further examined using a 
SEM, as exhibited in Fig.4(c). Its original morphology is in 
the form of sheet in the graphene oxide dispersion liquid like 
the inset of the Fig.4(c). When the GO solution is sucked into 
the fiber and the 485 nm laser is coupled, the GO solution 
forms a GO film on the suspension core under the action of a 
strong evanescent field of the fiber. From the figure, we can 
observe that the surface of the grown GO film is very com-
plete and smooth. In general, GO can be successfully grown 
on the surface of the MHF suspended core by using the light-
induced growth method.  

Raman scattering spectroscopic characterization of the GO 
film coated on the suspended core of MHF excited with 532 
nm laser is shown in Fig. 4(d). The spectral presents the typi-
cal D band at ~1350 cm-1 and the G band at ~1590 cm-1. Hy-
droxyl groups and epoxy groups on the basal and local defects 
lead to the production of D bands, and the G band was formed 
due to the bond stretching of the sp2 carbon pair in the ring and 
the chain. In general, the intensity ratio of I2D/IG for the 2D and 
G bands can characterize the number of layers of graphite 
material [34-36]. If the I2D/IG＜0.7, the GO is a single layer struc-
ture and if the 0.7＜I2D/IG＜1, the GO is a double layer struc-
ture. When the I2D/IG＞1, the GO is a multilayer structure. In 
this experiment, I2D/IG=0.1017, this result shows that the GO is 
a single layer structure. Meanwhile, the thickness of the single 
graphene oxide layer should be about 0.8 nm and its refractive 
index was about 1.70±0.30 [37]. Then, it can be confirmed the 
single layer structure GO can be smoothly and uniformly coat-
ed onto the suspended core. 

In this device, the temporal intensity response at 1550 nm 
from the bare and GO-coated in-fiber optofluidic sensors is 
intuitively demonstrated in Fig. 5(a). And the Fig. 5(b) shows 
the relative optical intensity of each ethanol concentration in 
bare fiber and the GO-coated fiber. For the detection, we ini-
tially sucked the air (0% concentration of ethanol) into the 
microchannel of the MHF, and after a few minutes 20% (v/v) 
ethanol solution was inhaled, then 40% ethanol was taken, and 
so on. Fig. 5(a) presents the different concentrations of the 
microfluidic ethanol influenced the propagation of the light in 
the core. In particular, when the MHF was modified with Go, 
the collected outputs were greatly changed especially in the 
range of 80-100%. From Fig. 5(b), it can be seen throughout 

the measured range, GO-coated in-fiber optofluidic MHF is 
about 4.6 times more sensitive than the bare MHF for ethanol 
detection. This is because of the strong interaction between 
GO and the ethanol. The groups of the GO on the surface of 
the in-fiber optofluidic channel, such as -OH, -O- and -CO2H, 
which combines with the -OH groups of ethanol to cause effi-
cient adsorption of ethanol on GO under the action of a hydro-
gen bond network. In addition, the coating of graphene oxide 
also increased the evanescent field penetration depth of the 
suspended core. Thus, the GO significantly enhanced the sen-
sitivity between optical fiber and target ethanol, consequently 
exhibiting a wide measurement range. As the volume fraction 
of ethanol increases, the absorption response of GO-coated 
fiber also increases. The result demonstrates that the in-fiber 
optofluidic channels of GO-coated can detect different con-
centrations of ethanol. 

 

 
Fig.5. (a) Responses of the in-fiber optofluidic GO-coated MHF sen-

sor and the bare fiber to ethanol with different concentrations. (b) 
Relative optical intensity changes with different concentrations 

When the ordinate of Fig. 5(b) is transformed, the response 
of the device can be linearly regressed as Fig. 6. From the 
figure, the GO-coated in-fiber optofluidic MHF sensor exhib-
its slope linearity of 99% shows a high sensitivity. The linear 
regression equation of the GO-coated MHF sensor can be ex-
pressed as y=0.16x+25.989 with the coefficient of R2=0.9947, 
where y stands for the relative optical intensity and x is the 
ethanol concentration. The sensitivity of the GO-coated MHF 
is 0.16dB/%. Meanwhile, the ethanol concentration of 20%, 
40%, 60%, 80%, 100%, the error analysis of multiple meas-
urements is performed. From the error bar of the Fig. 6, the 
error of each concentration is very small. The maximum error 

(a) 

(b) 



 

is only about 0.22 dB, which can explain that the device has a 
good reliability. 

 
Fig.6. Linear fit of the responds to ethanol concentration for the in-
fiber optofluidic sensor which is modified with GO sensing layer 

To measure the stability of the GO-coated MHF optofluidic 
in-fiber sensor, different ethanol with the concentrations (20%, 
40%, 60%, 80% and 100%) and air was alternately absorbed 
into the microfluidic channel. The corresponding dynamic 
responses of the device are depicted in Fig.7. For the response 
time, the device with GO can make a quick equilibrium when 
the sample pass through the fiber. The data from 0% to 20% 
ethanol concentration present that it is about 0.6 seconds 
which is shown in the inset. On the other hand, from the Fig. 7, 
the intensity value of the device when the air was absorbed 
remains substantially the same during each interval, which 
indicates that the device shows good stability.  

 

Fig.7. Dynamic response obtained for GO based in-fiber optofluidic 
MHF sensor towards ethanol 

In order to examine the reliability of the developed sensors, 
sampling was done by repeatedly absorbing 80% of ethanol 
with random changes such as 40 % in the process, which is 
shown in Fig. 8. The results present the intensity change be-
tween the two sampling of the 80 % concentration is only 
0.88 %. This indicate the interaction between GO and ethanol 
maybe a dynamic process. When the concentration around the 
core is the same, the bonding between GO and ethanol can 
reach a balance, which is of great significance for accurate 
quantitative detection of ethanol. 

 
Fig.8. Repeatability of the GO based in-fiber optofluidic MHF sensor 

for alcohol detection 

 

 
CONCLUSIONS 

In conclusion, we first introduce GO into a special designed 
MHF with suspended core, and present an in-fiber integrated 
optofluidic device for ethanol detection. The GO film was 
deposited into the whole length of the MHF suspended core by 
using the MHF evanescent field. The device presents high 
sensitivity of ethanol detection because of the interaction of 
ethanol with GO in the fiber. Specifically, different concentra-
tions of ethanol in the range of 0 to 100% in water can be on-
line detected. The device shows a linearity response with an 
average sensitivity of 0.16dB/% with linear regression equa-
tion of y=0.16x+25.989. The experimental results show the in-
fiber optofluidic device integrated with GO present high re-
peatability and stability to ethanol detection. It can be used for 

trace ethanol concentration analysis in many research fields 
such as food safety and environmental safety in the future.  
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