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Abstract: 
An entrepreneur or private-equity-backed firm’s decision to pursue an initial public offering (IPO) is a complex 

process that can lead to many sleepless nights for company founders. Nevertheless, there is a pathway to going 

public for most companies. Understanding the critical drivers of IPOs and how they react under different conditions 

or states should be of paramount concern to those considering an IPO and their advisors. Using a monthly net IPO 

volume series for Amex-, NYSE-, and Nasdaq-listed stocks for the period 1990–2019, my results suggest the 

interplay of the VIX Index and Wilshire 5000 returns, along with IPO lagged values, promote both state and time 

dependency in the IPO market. My dissertation takes a fresh approach to the IPO quandary, leveraging a series of 

stochastic and nonstochastic, nonparametric models, including threshold autoregressive, self-exciting threshold 

autoregressive, logistic smooth threshold autoregressive, and Markov switching. A five-regime threshold 

autoregressive model yields the best out-of-sample forecast performance of all the models tested, with a 1-month lag 

of the VIX Index’s monthly average as the switching variable. A two-state Markov-switching model reveals a high 

degree of instability in the IPO market up to October 2000. Since then, there has been a clear, well-defined one-state 

pattern of IPO activity. 
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1. Introduction 

Initial public offerings (IPOs) continue to play a critical role in the capital markets1 and 

the overall economy. With the total number of IPOs2 remaining considerably below historic 

levels, developing a more thorough understanding of their drivers and how they vary under 

different conditions could benefit market participants and regulators. In this dissertation, I 

consider the relevant academic literature and extend the paradigm that stock market growth 

positively influences IPO activity, and market volatility tempers IPO volume—while also 

accounting for the present instability in the data through a regime-switching3 approach.  

I will show that the interplay of the Chicago Board Options Exchange Volatility Index 

(VIX Index) and the Wilshire 5000 Total Market Index (Wilshire 5000 Index) returns, along 

with lagged IPO values, create both state and time dependency in the IPO market. These 

intertemporal results are meaningful for investment bankers, academic scholars, law firms, and 

professional investors participating in the IPO market. 

Each of these constituencies should find the time-varying and state-dependent nature of 

IPOs meaningful and, subsequently, consider factoring this information when making 

recommendations on new equity issues to their clients. Government regulators, policy experts, 

                                                
1 Some authors have suggested that what happens in the IPO market is a “leading indicator” of the financial markets 

(Beaulieu & Bouden, 2015). 

2 Consistent with other studies, I focus on net IPOs, which excludes closed-end funds, real estate investment trusts 

(REITs), acquisition companies, offer prices below $5, American depositary receipts (ADRs), limited partnerships, units, banks, 

and savings and loans (S&Ls). 

3 Merriam-Webster’s dictionary has multiple definitions for the word “regime,” which broadly fall into two categories: 

(1) “a government in power” and (2) “the characteristic behavior or orderly procedure of a natural phenomenon or process.” 

When thinking about “regime-shifting” models to describe IPO behavior, I mean an equation that follows an orderly process of 

moving from one state of IPO activity to another state of activity. More specifically, a regime shift will typically mean moving 

from a “lower” state of IPO activity to a “higher” state, or vice versa. I would like to thank Hamaker et al. (2010) for providing a 

similar analogy in their paper “Regime-Switching Models to Study Psychological Processes,” which helped shape my 

explanation here.   
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and political leaders interested in reenergizing the IPO market should also pay particular interest 

to these findings.  

As Hansen (2001 p. 127) inquired in his seminal study on the importance of identifying 

and understanding the impact of structural breaks on time-series data, “Is this break permanent or 

transitory?” My research aims to shed new light on the IPO market by addressing such questions.  

An entrepreneur or private-equity-backed firm’s decision to pursue an IPO is 

complicated. The IPO process officially begins in the public arena by filing the S-1 registration 

statement with the Securities and Exchange Commission (SEC). Once this happens, market 

anticipation begins to build, and so does a company’s anxiety. Company executives must follow 

strict guidelines about what they can and cannot say during the period leading up to the IPO, 

formally known as the quiet period.4 Investor demand and the broader market outlook are two 

significant and interrelated drivers of IPO activity. Conversely, when the equity markets become 

unsettled, and the investor fear index, formally known as the VIX Index, spikes, the IPO window 

can close abruptly for companies.  

IPO activity is essential to the equity markets because institutional and retail investors 

depend on an ample supply of newly public companies to replace firms delisted because of a 

bankruptcy, a merger or acquisition, or a go-private transaction.5 Today in the United States, 

there are significantly fewer public companies than 20 years ago, which means more private 

companies do not follow the regular cycle of public disclosures required by the SEC. And 

                                                
4 Please see Latham & Watkins LLP’s US IPO Guide (2020) for a thorough discussion of communications allowed 

during the IPO quiet period. 

5 According to Doidge et al. (2017), publicly listed firms delist for three primary reasons: (a) they no longer meet the 

exchange’s listing requirements, (b) they were acquired, or (c) they decided to delist voluntarily. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjThNfn9OruAhWBnOAKHdDLCWAQFjAOegQIIRAC&url=https%3A%2F%2Fwww.lw.com%2FthoughtLeadership%2Flw-us-ipo-guide&usg=AOvVaw3vkJzY5CMYpyvKTp0R6kX1
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although a U.S. public corporation today may not be a perfect model of transparency, it does 

provide a significantly higher level of financial information than most private companies. 

The Wilshire 5000 Index, which measures the equity performance of all publicly traded 

companies in the United States, ballooned to 7,562 companies by July 31, 1998. As of December 

31, 2019, the Wilshire had only 3,473 members—a decline of 54.073% from its peak. On a per-

capita basis, only 11 publicly listed companies operated for every million residents in the United 

States through 2016, down from 23 companies in 1976 (Stulz, 2018). According to Stulz, this 

percentage decline puts the United States only slightly ahead of Venezuela among countries that 

have seen a decline in their equity listings. 

The decline in IPO volume presents a challenge for those looking to save for retirement 

because an increasing percentage of retirement assets in the United States are held in defined 

contribution accounts that invest primarily in equity-based mutual funds. By definition, having 

fewer publicly traded companies means it is more difficult for individual investors to diversify 

the equity holdings in their retirement portfolios because professional money managers must 

choose from among a smaller investment pool.  

Companies going public today are also more mature than those that have gone public in 

the recent past. A Wall Street Journal article on IPOs from 2019 cited research from IPO scholar 

Jay Ritter (n.d.) on how the median age of technology companies going public in 2018 was 12 

years, compared with 4 or 5 years in 1999 and 2000 (Cimilluca, 2019). Thus, stock market 

investors today have access to fewer high-growth companies. Given the convergence of these 

factors, it is no surprise that both individual investors and public pension funds (which serve 

public school teachers, police officers, firefighters, etc.) have needed to temper their expected 

return assumptions in recent years.  
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A contributing factor to the drop-off in public companies may be that technology firms, 

rich with intangible assets, prefer to stay private longer, so they need not disclose confidential 

information to competitors in required filings (Stulz, 2019). Concurrently, technology firms 

benefit from private capital and the “specialized knowledge” they bring as investors during the 

early growth phase compared with investors in a traditional public company (Stulz, 2019).  

Scholars have studied IPOs extensively over the past two decades, with many analyzing 

why IPO activity has declined from previous levels, particularly compared with those in the 

1990s. Indeed, a Google Scholar search of the term “initial public offerings” on January 3, 2021, 

for the period 1999–2019, yielded 23,600 results. Numerous papers have explored whether the 

decline in IPO volume results from market regulations such as the Sarbanes–Oxley Act of 2002 

(Sarbanes–Oxley) or deregulation such as the National Securities Markets Improvement Act 

(NSMIA) of 1996, which increased the supply of private equity capital. Other researchers have 

contended the decline is the result of weak investor demand in the market. 

My dissertation takes a novel approach to reexamine IPO activity through a series of 

stochastic and nonstochastic, nonparametric models, including threshold autoregressive (TAR), 

self-exciting threshold autoregressive (SETAR), logistic smooth threshold autoregressive 

(LSTAR)–first order, and Markov switching (MS). I will show that IPO activity varies according 

to equity returns, market volatility, and previous IPO levels while responding differently under 

statistically determined regimes that create both state and time dependency. According to M. 

Marchese, personal communication from, March 29, 2021: 

[in] finance, we care not just for modeling the relationships among variables/quantities 

but also about forecasting the target quantities (not only conditional mean returns but also 

variances or correlations). If, and when, such relationships are subject to instability over 
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time, then such instability needs to be modeled and predicted. Regime switching models 

are a set of relatively recent and innovative statistical tools that are used to detect and 

predict instability (the discontinuities referred to above) in statistical relationships.  

Because the MS and TAR model series do not nest, I compare the static out-of-sample forecasts 

of each to determine which produces the most accurate estimates. Such an approach is beneficial 

since industry participants long for more precise predictions. Model assessment results include 

several evaluation statistics for each of the models: root mean square error (RMSE), mean 

absolute error (MAE), mean absolute percentage error (MAPE), symmetric mean absolute error 

(SMAPE), Theil U1, and Theil U2.  

Of all the models across all of the evaluation statistics (RMSE, MAE, MAPE, SMAPE, 

Theil U1, and Theil U2), the best static out-of-sample forecast performance is achieved by a 

five-regime TAR model.  The top-performing IPO forecasting model has a one-period lag of the 

VIX monthly average as the switching variable, IPO volume as the dependent variable, and a 

one-period lag of the VIX monthly average, the Wilshire 5000 return, and 12 one-month lags of 

IPO volume as the independent variables. 

The TAR model also outperforms all of the chosen forecast averaging methods. These 

include simple mean, simple median, least-squares, mean square error, mean square error (MSE) 

ranks, smooth Akaike information criterion (AIC) weights, and Schwarz information criterion 

(SIC) weights. 

At this juncture, it is fundamental also to demonstrate how the TAR model performs 

against the ordinary least squares (OLS) regression model using the same independent variables. 

If the TAR model outperforms the OLS regression model following the same static out-of-



8 

 
 

sample forecast approach, there is additional justification for adopting a regime-switching 

approach. Again, the TAR model outperforms across all the evaluation statistics. 

The MS model shows undefined, frequent swings in the IPO market before October 

2000. Since then, there has been a clear, well-defined one-state pattern, demonstrating time 

dependency in the IPO market. 

A significant contribution of my dissertation is that I examine IPO volume vis-à-vis a 

combination of leading state and time-dependent models. Indeed, I found no scholarly research 

that accounts for the present instability in the IPO market following a comprehensive regime-

switching approach while assessing forecast performance through an out-of-sample process. 

The balance of my dissertation is organized as follows: Section 2 presents my literature 

review; Section 3 introduces my sample data and the descriptive statistics; Section 4 discusses 

the regime-switching models used in the analysis; Section 5 presents the forecast results for all 

the models; Section 6 examines the findings of my top state and time-dependent models; and 

Section 7 offers concluding remarks. 

2. Literature Review 

One of the most frequently cited studies and perhaps the seminal paper on IPO volume 

trends is Lowry (2003). Lowry segmented the market forces that drive fluctuations in the IPO 

market into three main categories: (a) capital demands, (b) information asymmetry, and (c) 

investor sentiment. 

The foundation of the capital demands hypothesis is that a strong economy and bright 

outlook stimulate businesses’ desire to seek additional capital for growth. Although various 

mechanisms exist to raise capital, a rational manager will pursue an IPO when this form of 

capital is more advantageous than other financing options (Lowry, 2003). 
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The information asymmetry hypothesis postulates that the IPO market’s reasonable 

efficiency incentivizes firm managers to take their companies public when their valuations are 

high. Thus, investors will lower the value they assign to a firm when it goes public (Lowry, 

2003). The firm seeking to raise capital will go public only when the IPO’s worth exceeds both 

the direct-issue cost and any adverse-selection costs. In other words, when information 

asymmetry is high, companies usually choose different types of financing as an alternative to 

going public. 

The investor sentiment hypothesis proposes that investor enthusiasm in the equity 

markets drives IPO volume (Lowry, 2003). When markets are strong, investors are willing to pay 

more (and sometimes overpay) for shares in an IPO, which leads to increases in IPO volume. 

When investor enthusiasm is low, investors may undervalue firms going public, contributing to 

declines in IPO volume.  

Similarly, Pastor and Veronesi (2005) showed that companies seeking to go public tend 

to do so during periods of favorable market conditions to improve their valuations, contributing 

to what has become known as IPO waves. Beaulieu and Bouden (2015) developed a vector 

autoregressive (VAR) model to demonstrate that riskier firms are more likely to go public during 

an IPO wave to maximize their valuations; Ritter’s (1984) and Chui’s (2008) research echoed 

similar points about waves. At the same time, Beaulieu and Bouden (2015) inferred that most 

companies are generally rational in their approach and decide to go public when the market 

appropriately values their shares.  

Loughran et al. (1994) were among the first to document the stock market performance’s 

positive influence on IPO volume. Their foundational research influenced the construction of 

Lowry’s (2003) time-series model. 
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Tran and Jeon (2011) used a vector error correction (VEC) model to show that the S&P 

500 Index stimulates IPO activity. The authors extended the interpretation of their VEC model 

by running impulse response functions. They found that the innovation, or the shock, to IPOs 

occurs during the first 3 months—and that the shock is only modest. 

Gao et al. (2013) developed time-series regressions to explain scaled IPO activity. They 

hypothesized that “economies of scope” and “speed in bringing products to market” have driven 

the decline in IPOs over recent years, predominantly among smaller companies. The results were 

statistically significant and more “pronounced” for smaller firms. The authors concluded that 

IPO levels will not return to their previous levels because smaller firms are “not necessarily the 

profit-maximizing form of organization” (p. 1691). 

Blum’s (2011) research showed that the VIX Index negatively correlates to the IPO 

market at the 0.01 level, supporting Lowry’s (2003) investor sentiment hypothesis. Firms tend to 

shy away from going public during periods of high volatility, as measured by the VIX Index. 

Schill (2004) found that, during periods of high market volatility, the number of IPO transactions 

declines by 13%, and the amount of capital raised drops by 21%.  

Beaulieu and Bouden’s (2015) VAR model revealed that high VIX levels in the current 

month decrease IPO volume in the subsequent month. At its foundation, the authors interpreted 

these results to mean that more companies will initiate an IPO once the VIX declines from an 

elevated level. Why? So, the owners can benefit from an increased valuation. 

Brau and Fawcett (2004) undertook another critical study on IPOs; however, their 

research was based on a survey of 336 CFOs that included information about their decision to go 

public or stay private. When determining when to take their company public, CFOs reported 

placing less importance on the IPO market’s robustness and instead emphasized market and 
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industry stock returns. CFOs of venture-capital-backed companies or those with lower insider 

ownership levels reported a tendency to weigh market timing issues over other topics. 

Another factor when considering IPO volume is how long a company typically takes to 

go public following the filing of its registration statement with the SEC. Bouis’s (2009) survey of 

IPOs from 1986 to 2007 found the average registration period is approximately 85 days, 

although this number varies by issuer. According to the study, when market volatility is high, 

many firms that have filed their IPO registration statements ultimately withdraw their filing to go 

public. Lowry et al. (2017, p. 12) noted in their compendium of research on IPOs that “20% of 

IPOs are withdrawn” before completing the process. Of these companies, few go on at a later 

point to become a public entity. However, it is worth noting that nothing stops a company from 

delaying going public once it makes its S-1 registration statement with the SEC if market 

sentiment turns negative.  

Congressional testimony delivered by New York Stock Exchange (NYSE) President 

Thomas W. Farley in 2017 suggested that public companies’ current regulatory environment—

most notably Sarbanes–Oxley—negatively affects corporate owners’ decision to take their 

companies public. Other key influencers have echoed this same point over recent years. Wang 

and Yung (2019) found no statistical breaks in their 1970–2015 IPO data series related to 

Sarbanes–Oxley. They concluded that weak investment conditions more likely drove the decline 

in IPO volume, a finding consistent with Gallardo and Phillippon’s (2016) research.  

Tran and Jeon (2011) found that including a dummy variable in their OLS benchmark 

IPO regression for Sarbanes–Oxley did not add meaningful information. Ritter (2012) attributed 

only a small part of the drop-off in IPO volume over recent years to Sarbanes–Oxley. Gao et al. 

(2013) found little support for the idea that market regulations affect small-cap companies’ IPO 
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levels. They instead postulated that there are fewer independent small companies today because 

of structural changes in the economy that make selling out to a larger firm more advantageous 

because sellers’ businesses can then benefit from more significant economies of scale. Wang and 

Yung (2019) noted that the cost of going public is not cheap, with the SEC estimating the initial 

compliance cost as $2.5 million—with another $1.5 million spent each year after that. These 

compliance costs seem to lessen the desires of small companies to pursue an IPO.  

Ewens and Farre-Mensa (2020) argued that the implementation of NSMIA has created an 

environment where late-stage private companies can delay going public because there is an 

ample supply of private capital available to support their growth needs. The authors’ results 

suggested that NSMIA has created a “new equilibrium” where fewer new ventures ultimately 

pursue an IPO, and those that decide to go public do so at a later point in their growth cycle. The 

authors also noted that staying private is not without its downside for the economy. These 

venture-backed companies tend to operate with a lower degree of transparency than their 

publicly traded counterparts.6  

As previously noted, there is relatively limited research on applying a regime-switching 

approach to model IPO activity. Brailsford et al. (2000) employed an MS model to investigate 

the phenomenon of hot and cold IPO markets. The authors followed the traditional definition of 

hot and cold markets established by Ritter (1984) and Ibbotson and Jaffe (1975): high IPO 

activity and large underpricing. They demonstrated that several states existed in the IPO market 

during the 1976–1998 period and further explored the results through a VAR model. Brooks et 

                                                
6 One clear benefit of going public is that it typically provides a firm with a lower cost of capital. However, the 

downside is that agency costs can affect managers’ decision-making to choose appropriate positive net present value (NPV) 

projects (Lowry et al., 2017).  
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al. (2010) also leveraged an MS model to study IPO states, but they instead focused on the 

Chinese A-share market.  

Brailsford et al. (2004) developed a generalized autoregressive conditionally 

heteroscedastic model to examine the theory of hot and cold IPO markets, utilizing the 13 lags of 

IPO volume, IPO underpricing, and market returns. They found that almost all of the coefficient 

signs were positive, contributing to greater IPO activity. They also cited research from Lipman 

(1997) on how entrepreneurs cannot move so quickly because taking a company public requires 

3 to 6 months at a minimum. 

3. Data 

I use monthly net IPO volume for Amex-, NYSE-, and Nasdaq-listed stocks for the 

1990–2019 period. IPO volume data come from the IPO website of Jay R. Ritter (n.d.), a leading 

scholar in the IPO field. The benefit of using Ritter’s IPO data is that the data have been 

reviewed extensively for errors. Consistent with other studies, my dissertation focuses on net 

IPOs, which exclude closed-end funds, REITs, acquisition companies, offer prices below $5, 

ADRs, limited partnerships, units, banks, and S&Ls. I obtained data on the VIX Index monthly 

average values from Federal Reserve Economic Data (FRED; 2020) and Wilshire 5000 Index 

data from Yahoo Finance (2020). 

Although these IPO data do not include S&Ls, one cannot underestimate the impact the 

S&L crisis had on the financial markets throughout the 1980s. With the passage of the Financial 

Institutions Reform, Recovery and Enforcement Act of 1989 and the bulk of the S&L issues 

worked through the system up to this point, the 1990–2019 period is appropriate to model the 

current IPO market. Moreover, FRED first reported VIX Index monthly average values starting 

in 1990.  
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Figure A1 graphs monthly IPO volume versus the VIX Index monthly average from 1990 

to 2019. As the graph shows, once the VIX Index begins to spike above approximately 25, IPO 

levels drop off precipitously. The correlation coefficient between IPO volume and the VIX Index 

monthly average is modestly negative at -0.257989. A VIX Index lower than 15.2 equates to a 

low volatility state; intermediate volatility exists when the VIX Index is between 15.2 and 25.0, 

and high market risk exists when the VIX Index exceeds 25.0 [L. Orlowski, personal 

communication, February 24, 2021, updating the original Bai–Perron Threshold test conducted 

in Orlowski (2017)].  

… insert Figure A1… 

Figure A2 graphs the Wilshire 5000 Index returns for the 1990–2019 period. These are 

the differences in the Wilshire 5000 Index’s logarithmic values for the period indicated.  

… insert Figure A2… 

Table 1 presents the descriptive statistics for IPO volume, VIX Index, and Wilshire 5000 

Index Returns. I use EViews 12 to conduct the statistical tests and econometric modeling 

throughout my dissertation. 

The median number of IPOs each month over the sample period is 12, the median for the 

VIX Index monthly average is 17.38689, and the median for the Wilshire 5000 Index return is 

0.012316. I reject the Jarque–Bera normality test for all three variables at the 1% level of 

significance. The levels of skewness and kurtosis both support the rejection of normality.  

The augmented Dickey–Fuller unit root test for monthly IPO volume is rejected at the 

0.05 level of significance. Past research has indicated that IPO volume is somewhat 

nonstationary, so this finding is not surprising. For this version of the Dickey–Fuller unit root 
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test, I included the trend and intercept in the test equation. Both the VIX Index and Wilshire 

5000 Index Returns were stationary at the 0.01 level of significance.  

 

Table 1 

Descriptive Statistics for IPO Volume, VIX Index, and Wilshire 5000 Returns 

 
 IPOs VIX Wilshire 5000 Return 

Number of Obs.   360  360  360 

Mean  18.23611  19.16071  0.006287 

Median  12.00000  17.38689  0.012316 

Standard dev.  16.86510  7.441267  0.042389 

Minimum  0.000000  10.12545 -0.195293 

Maximum  90.00000  62.63947  0.107879 

Skewness  1.333163  2.029740 -0.890911 

Kurtosis 4.330301 9.819401 4.934359 

Jarque–Bera  133.1849  944.7542  103.7495 

Probability  0.000000  0.000000  0.000000 

ADF -3.713302 -4.371656 -17.85496 

Probability 0.0226 0.0004 0.0000 

 

Tables A2, A3, and A4 present the OLS regression Bai–Perron breakpoint tests for IPO 

volume versus IPO volume (-1) and IPO volume (-2); IPO volume versus VIX Index; and IPO 

volume versus Wilshire 5000 Index returns. I include a 1- and 2-month lag of IPO volume for the 

VIX Index monthly average and Wilshire 5000 Index return OLS regression models to address 

the first-order autocorrelation, bringing the models’ Durbin–Watson statistics close to 2.  

… insert Table A2… 

… insert Table A3… 

… insert Table A4… 
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In all three instances, I reject the null hypotheses that there are no structural breaks in the 

IPO volumes series for 0 versus 1 and 1 versus 2 at the 0.05 level of significance because the 

scaled F-statistics are greater than the critical values. These baseline outcomes justify 

undertaking a more in-depth examination of these relationships’ robustness to determine whether 

state and time dependency exist in the IPO market.  

 

4. Model Framework 

To expand upon the preliminary Bai–Perron breakpoint test results and show whether 

state and time dependency exist in the IPO market, I employ a sequence of regime-switching 

modeling techniques: TAR, SETAR, LSTAR, and MS. 

I have chosen this approach because there is significant instability in the IPO data from 

1990 to 2019. It is vital to account for structural breaks when building economic and financial 

models. As Hansen (2001) noted, “Structural change is pervasive in economic time series 

relationships, and it can be quite perilous to ignore. Inferences about economic relationships can 

go astray, forecasts can be inaccurate, and policy recommendations can be misleading or worse” 

(p. 127). 

Consequently, to develop an IPO model that is both stable and one that produces the most 

accurate forecasting results, it is essential to leverage an approach that seamlessly adjusts for 

state and time dependency. The models I apply meet these criteria. 

TAR 
Tong (1980) developed the TAR model, providing several deep reflections on its 

contributions to time-series modeling 30 years later in another influential paper. Although there 

are numerous ways to explain a TAR model, Tong described it as follows: 
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series taking values in {1, 2, . . . , J}. Here the indicator, Jt, operates as the switching 

mechanism.7 

SETAR 

 

 Tong8 (1990) developed the SETAR model, which is represented by the equation below. 

Here Tong stated that the indicator J = 2. Next, he let Jt = 1 if Xt−d ≤ r and Jt = 2 if Xt−d > r for 

some real threshold “r” and some positive integer “d,” which he defined as the delay parameter. 

In essence, the self-exciting component, the “SE” of the “SETAR,” is the lagged values of the 

dependent variable driven by r.  
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where , , , ,   and      are real constants. 

 

Smooth Threshold Autoregressive (STAR) 

The regime switch that occurs in a TAR or SETAR model is discrete, whereas the switch 

in a STAR model is continuous and occurs smoothly,9 as its name implies. Chang and Tong 

(1986) were the first to introduce and develop these models under the STAR name. 

                                                
7 According to Tong (2010), “The basic idea of a threshold model is piecewise linearization through the introduction of 

the indicator time series, {Jt}” (p. 9). 

8 Tong (2010) went out of his way to note that the SETAR model has at times been misconstrued, “perhaps because of 

its popularity,” as representing the “entire family of TAR models, which it does not” (p. 9). 
9 Teräsvirta (1994) noted that the main economic benefit of using a STAR model is that there are typically many 

players at work in macroeconomic time-series data, even if these agents still behave discretely. As a result, a regime-switch 

model that accounts for these transitions through a smooth process may present a more accurate depiction of economic reality 

because these processes are typically observed in aggregate.  
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There are two primary forms of the STAR model today: one follows a logistic function, 

and the other follows an exponential function. My dissertation focuses on the logistic function, 

precisely the first order. Teräsvirta (1994) formulated the LSTAR model, which has been used 

widely in economic time-series models: 

 0 01 1 02 2 0 1 11 1 12 2 1( ) ( , , ) ,t t t p t p t t p t p t tY c Y Y Y c Y Y Y G s c                      

 (1.3) 

where 2(0, ),  and G(s , , )t tN c   is the continuous transition function bounded by st . 

 

The logistic function within the LSTAR model is described as follows:  

 

 
1

G(s , , )      0
1 exp{ ( )}

t

t

c
s c

 


 
  

 (1.4) 

MS 

A significant difference between MS and the TAR series of models is the mechanism of 

the switch. Within the TAR family, the switch can be pinned to an observable exogenous or 

endogenous variable. A latent or unobservable variable will instead drive the different states in 

an MS model—this is a critical distinction between the two classifications of models. Hamilton’s 

(1989) seminal paper introduced econometricians to MS models.  

I outline the two-state MS process below: 

 

State 1 is prescribed by the following: 

 

 2
1 1( , )t stY N     (1.5) 

 2
2 2( , )t stY N     (1.6) 

The transition probabilities between the states in an MS model are defined as 1( )t t ijP s j s i p 

Henceforth, if we were in state i  yesterday, our probability of moving to state j is ijp .  
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The transition probability matrix for a two-state MS model is as follows: 

 

 
11 21

12 22

p p
P

p p

 
  
 

 (1.7) 

5. Out-of-Sample Forecast Results 

As shown in Table 5, my TAR model has the best static10 out-of-sample forecast 

performance across all my evaluation statistics: RMSE, MAE, MAPE, SMAPE, Theil U1, and 

Theil U2. The evaluation period is the last 6 months of the sample period11 of 2019. I selected 

this evaluation period for a few reasons: (a) companies can start and complete the IPO process 

within 3 to 6 months if the stars align properly (Lipman, 1997); (b) once a company files its S-1 

registration statement with the SEC, and it is declared effective, a company has a degree of 

latitude as to when it ultimately decides to go public; and (c) financial advisors such as 

investment bankers understand that forecast accuracy matters, and the longer the forecast, the 

less likely it is going to be accurate.  

The TAR model also outperforms several of the more commonly used forecast 

averaging12 methods, including simple mean, simple median, least-squares, MSE, MSE ranks, 

smooth AIC weights, and SIC weights. 

It is also essential to demonstrate whether the TAR model performs better than the OLS 

regression model using the same independent variables and following the same static out-of-

sample forecast approach. Once again, the TAR model outdoes the OLS model, as shown in 

                                                
10 When lagged values of the dependent variable are also explanatory variables in the model, the static forecast 

produces more robust and reliable results than a dynamic forecast. The dynamic out-of-sample forecast result for the last 6 

months of the sample period may, however, be found in Table A13 in the Appendices. 

11 For those with an interest, Table A14 in the Appendices includes the out-of-sample forecast results for the last 18 

months of the sample period. Again, the TAR model performs best. 

12 Aiolfi et al. (2010) noted that forecast-averaging approaches have gained much popularity among central banks, 

private sector forecasters and in the academic communities as a way to “improve and robustify the forecasting performance over 

that offered by individual models.” (p. 2) 
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Table 5. These results provide additional justification for deviating from the traditional OLS 

model and adopting a regime-switching approach.  

Table 5 

Static Out-of-Sample Forecast Results: 6 Months 

Sample: 2019M07 2019M12 
    

Included observations: 6 
    

Evaluation sample: 2019M07 2019M12 
   

Training sample: 1991M01 2018M07 
   

Number of forecasts: 13 
    

       
        Evaluation Statistics 

       
       Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

       
       OLS Basic**  9.775285  8.945902  166.2339  76.40927  0.366289  1.684608 

Markov Switch #1  12.70535  12.01901  219.9646  89.44313  0.428915  2.170828 

Markov Switch #2  12.63677  11.95339  218.8366  89.21564  0.427565  2.155906 

Markov Switch #3  11.33661  10.60261  197.1937  83.97953  0.401987  1.896729 

TAR  3.876475  3.698322  58.69378  47.30564  0.209524  0.517348 

SETAR  6.658230  4.948723  108.5760  53.60089  0.293929  1.252227 

LSTAR  10.10101  9.378666  174.1840  78.78778  0.373570  1.701290 

Simple mean  9.114182  8.255411  158.8266  73.54116  0.352431  1.587618 

Simple median  10.69626  9.990636  185.6889  81.53747  0.387462  1.798114 

Least-squares  4.977734  4.074578  84.37482  49.92903  0.242842  0.816705 

Mean square error  9.018328  8.152878  157.1960  73.04419  0.350127  1.570927 

MSE ranks  8.119535  7.176121  141.4235  68.04912  0.327654  1.423151 

Smooth AIC weights  9.139164  8.280320  159.2404  73.65655  0.353049  1.592084 

SIC weights  8.621043  7.723170  150.1902  70.88969  0.340353  1.510312 

       
       * Trimmed mean could not be calculated due to insufficient data. 

** OLS basic forecast results excluded from the averaging forecast results.  
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6. State- and Time-Dependent Models 

TAR Model Results 

Table A6 illustrates my top-performing model results—the five-state TAR model with a 

one-period lag of the VIX monthly average as the switching variable13. IPO volume is the 

dependent variable, and a one-period lag of the VIX monthly average, the Wilshire 5000 return, 

and 12 one-month lags of IPO volume are the independent variables. It is essential to underscore 

that the VIX monthly average value’s 1-month lag drives the TAR model’s threshold values, 

creating state dependency. The TAR model includes five distinct states that pin to specific VIX 

monthly average values.  

The IPO volume TAR model has an R-squared of approximately 83.49%, indicating that 

the independent variables (in their five states) explain a high degree of variation in the dependent 

variable. The Durbin–Watson statistic of 1.99 shows there is no first-order autocorrelation 

present. The Breusch-Godfrey-LM test indicates no higher-order serial correlation up to and 

including the 12th lag. The Breusch-Pagan Godfrey test indicates heteroskedasticity is present; 

hence, the white coefficient covariance matrix is selected. 

… insert Table A6… 

In State I, the VIX monthly average (-1) includes 113 observations, with a threshold 

value of less than 14.489999. For State II, the VIX monthly average (-1) consists of 55 

observations, with a threshold value 14.489999 and < 16.91863. In State III, the VIX monthly 

average (-1) includes 52 observations, with a threshold value  16.91863 and < 19.66227. For 

State IV, the VIX monthly average (-1) includes 67 observations, with a threshold value 

                                                
13 The sequential L+1 threshold vs. L is chosen as the threshold specification, with a maximum of 5 breaks. Up to 12 lags of IPO 

volume were considered for the switching variable.  
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19.66227 and < 24.7459. In State V, the VIX monthly average (-1) includes 61 observations, 

with a threshold value  to 24.7459. 

At each level of the prior month’s VIX average level, the preceding month’s IPO 

coefficient is positive and statistically significant. It is noteworthy that the 1-month lag of IPO 

volume is also the switching variable in my SETAR model (see Table A8 in the Appendices).14  

When evaluating the coefficients, it can help to think about the five states operating 

within three broad market volatility levels: low, intermediate, and high as defined by L. 

Orlowski, personal communication, February 24, 2021, updating the original Bai–Perron 

Threshold test conducted in Orlowski (2017).  

In State I, the prior month’s IPO volume has a coefficient of 0.282746 and is significant 

at the 0.05 level. For State II, it has a coefficient of 0.475824 and is significant at the 0.01 level. 

In State III (intermediate market volatility level), it has a coefficient of 0.610776 and is 

significant at the 0.01 level. For State IV (intermediate market volatility level), it has a 

coefficient of 0.591531 and is significant at the 0.01 level. In State V (high market volatility 

level), it has a coefficient of 0.559336 and is significant at the 0.01 level. 

In the TAR model’s fourth state (intermediate volatility), where the VIX monthly average 

threshold is   to 19.66227 and < 24.7459, exciting results emerge. The 12th lag of IPO volume 

becomes significant at the 0.01 level with a coefficient of 0.253340. In the fifth state (high 

volatility), where the VIX monthly average threshold is greater than or equal to 24.7459, the 12th 

lag of IPO volume is also significant at the 0.01 level with a coefficient of 0.326298. 

One plausible interpretation of why the IPO (-12) affects current IPO volume is that 

companies that go public at higher volatility levels tend, on average, to receive a lower premium 

                                                
14 The Appendices includes details on all of the models referenced in the out-of-sample forecast results. 
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and raise less capital. Why? Because fewer companies are going public, and the investor demand 

is lower. Hence, investors need an enticement to participate in the offering during a higher 

volatility period (the opposite effect occurs during an IPO wave). If these companies are willing 

to accept lower proceeds by going public during a volatile market period, they probably made a 

firm commitment to go public internally by a certain date, regardless of VIX levels. By all 

accounts, this date would be earlier than when they filed their S-1 registration statement with the 

SEC and may align closely with the 12-month lag of IPO volume.  

Buoyant stock market returns have long been a driver of IPO volume. What is unique in 

these TAR model results is the isolation of the Wilshire 5000 return’s impact in State IV before 

entering the period of high market volatility. The Wilshire 5000 return produces a robust 

coefficient in this state of 88.26117 and is statistically significant at the 0.01 level. It is difficult 

to pinpoint why the Wilshire 5000 return becomes significant at this elevated VIX level and then 

becomes insignificant once the VIX moves into a high market-volatility state. It may result from 

a wave in the IPO market building from the previous lower states of volatility that accelerates as 

investor demand increases and the equity markets spike, creating a self-feeding mechanism. 

Moreover, once the VIX transfers to a higher state of volatility, IPO activity begins to temper 

and markets become unsettled, so it is not surprising to observe Wilshire 5000 returns become 

statistically insignificant as a driver of new equity issues. In the heightened state of market 

volatility, the VIX Monthly Average (-1) independent variable becomes significant at the 0.01 

level with a coefficient of -0.168695. 

MS Results 

As shown in Table 5, the MS models did not perform as well as the TAR series of 

equations when examining the out-of-sample forecasts for IPO volume. However, this is not the 



24 

 
 

end of the story because a few unique MS model properties warrant a discussion of the model’s 

results, given my dissertation’s hypotheses. MS models are nonparametric models that are 

particularly well suited for determining whether a dependent variable is time-varying.15 Given 

the robust and statistically significant results of my MS model, I believe its outcomes and their 

interpretation, particularly its regime probabilities and constant expected durations, provide a 

meaningful contribution to this dissertation and the body of academic literature on IPOs. 

The Wilshire 5000 Index return is the switching regressor in my top-performing MS 

model for IPOs. A one-period lag of the VIX monthly average is the nonswitching regressor, and 

the fifth lag of IPO volume is the probability regressor, which drives the transition matrix16. A 

first-order autoregressive term addresses the first-order serial correlation in the model, bringing 

the Durbin Watson statistic in-line to 2.026180. 

As shown in Table A7, the model’s coefficients are all robust and statistically significant. 

The switch from ˆ
1 
to ˆ

2 is particularly pronounced, moving from -18.36420 to 112.8233. The 

nonswitching regressor, the one-period lag of the VIX monthly average, has a coefficient of -

0.384689, consistent with the investor fear index’s tempering activity on IPO levels. 

… insert Table A7… 

 Figure 3 highlights the MS smoothed regime probabilities. These results clearly show the 

time dependency in the IPO market. Although there was a significant amount of instability in the 

IPO market during the 1990–October 2000 period, since then, there has been a well-defined one-

state pattern. I consider the post-October 2000 period the “new normal” for IPO activity. It is no 

                                                
15 Langrock et al. (2015) noted, “In regression scenarios where the data have a time series structure, there is often 

parameter instability with respect to time (Kim et al., 2008). A popular strategy to account for such dynamic patterns is to employ 

regime switching where parameters vary in time, taking on finitely many values, controlled by an unobservable Markov chain.”  

16 In a traditional MS model, the Kalman filter extracts the residuals to drive the transition matrix. With the addition of 

IPO (-5) as a probability regressor, the linear function of the fifth lag of IPOs is now driving the regime switch. Accordingly, one 

could consider the construct of this model to represent a hybrid version of an MS and SETAR model. 
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secret that, in the fall of 2000, the Nasdaq bubble began to deflate rapidly, which appears to have 

contributed to the shift. Indeed, according to Kleinbard (2000), the 200 stocks that comprised the 

Bloomberg U.S. Internet Index lost $1.755 trillion from their 52-week highs, with the bulk of 

those losses ending in September 2000.  

The model results in Table A7 indicate left skewness in State I and right skewness in 

State II. As per the skewness level, the model’s tail risk level is pronounced and stable over time, 

as per kurtosis. State I is the dominant regime, with a constant expected duration of 70.76571 

months. In contrast, State II has a constant expected duration of 2.115550.  

The most notable marking in the smoothed regime probabilities is May 2007 (the regime 

probability declines to 0.93 compared to the median of 0.985869 for the entire period). It 

returned to a stable state in December 2007. The subprime crisis began in April 2007 with the 

bankruptcy of New Century Financial. Freddie Mac, which had announced a couple of months 

prior that it was exiting the subprime market, undoubtedly was a contributor to New Century 

Financial’s difficulties. These events appear to be contributors to this period’s most significant 

marker, even though the Great Recession did not theoretically begin until the end of 2007. The 

probability of being in State I is 0.985869 and the likelihood of switching to State II is only 

0.014131. The likelihood of being in State II is 0.527310, and the possibility of changing to State 

I while in State II is 0.472690. 
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Figure 3 

MS Smoothed Regime Probabilities 
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7. Conclusions 

 

My dissertation results show the essential nature of accounting for state and time 

dependency in the IPO market and why investment bankers, academic scholars, law firms, and 

professional investors should consider these findings when advising their clients on new equity 

issues.  A five-state TAR model produces the best out-of-sample forecasts with a 1-month lag of 

the VIX Index’s monthly average as the switching variable. Looking at time dependency, a two-

state Markov-switching model shows a clear and stable one-state pattern of IPO activity since 
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October 2000. From 1990 up to the tranquil period, there was a considerable amount of 

instability in the Markov-switching smooth regime probabilities.  

The U.S. capitalist system has created vast economic wealth for most people compared to 

any other method. History shows that the U.S. capital markets work best when there is a high 

degree of transparency. Public corporations are significant players in the capital markets. Despite 

the shortcomings of the public-entity structure, companies listed on the NYSE and NASDAQ 

follow the cadence of regulatory and financial disclosures with the SEC. Most public companies 

also hold quarterly calls with investors that are open to the public. Today, unfortunately, there 

are far fewer public companies, and many public companies today are more mature than the 

typical public company 20 years ago. Over the past two decades, the influx of private equity 

capital has put further pressure on the public company model, particularly for many technology-

driven startups, which can now stay private longer. 

It is vital for government regulators, policy experts, and political leaders to understand 

the critical role public corporations play in society. To do this, they need to appreciate the drivers 

of IPO activity to help advance transparency in the workplace and capital markets (since public 

corporations, by definition, are more transparent than private companies). They need to create a 

long-term environment for IPOs to thrive, which can stimulate economic growth. They need to 

improve the opportunities for average citizens to grow their retirement savings by ensuring they 

too can invest in a sufficient number of high-growth companies in the public arena.  

 Future research should look to leverage Dealogic’s IPO data, which begins in 1999. So 

far, scholars have not had access to this data, which Jay Ritter has praised for its quality. The 

added benefit of Dealogic data is its geographic reach. With IPOs now a global phenomenon, it 
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would be wise to examine new equity issues with such high-quality data, mainly to see what the 

state and time dependency may look like in different markets. 

It would also be fascinating to extend this state and time-dependency analysis to the 

traditional question of hot and cold IPO markets. Many of the past studies incorporate additional 

independent variables. Advances in machine learning techniques, such as through a Least 

Absolute Shrinkage and Selection Operator (LASSO) regression, would allow one to identify the 

optimal variables to include in a TAR or another type of regime-switching model. By combining 

the power of the LASSO with traditional econometric methods, the forecast evaluations should 

in theory, improve.    
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Appendices 

Figure A1 

Monthly IPO Volume (1990 to 2019) versus VIX Index 
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Figure A2 

Wilshire 5000 Index Returns (1990 to 2019)  
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Table A2 

Bai–Perron Breakpoint Tests of IPO Volume vs. IPO Volume (-1) and IPO Volume (-2) 

Break Test F-Stat Scaled F-Stat Critical Value** 

0 vs. 1 * 16.26229 48.78687 13.98 

1 vs. 2 * 6.738022 20.21407 15.72 

2 vs. 3 0.802252 2.406755 16.83 

Break Dates    

 Sequential Repartition  

1 2000M09 1995M06  

2 1995M06 2000M09  

Bai–Perron tests of L+1 vs. L sequentially det. breaks. 

* Significant at the 0.05 level. 

** Bai–Perron (Econometric Journal, 2003) critical values.  
 

 

Table A3 

Bai–Perron Breakpoint Tests of IPO Volume vs. VIX Index, with a 1- and a 2-Month Lag of IPO 

Volume  

Break Test F-Stat Scaled F-Stat Critical Value** 

0 vs. 1 * 16.80998 67.2399 16.19 

1 vs. 2 * 15.53661 62.14643 18.11 

2 vs. 3 1.003159 4.012638 18.93 

Break Dates    

 Sequential Repartition  

1 2000M09 1995M10  

2 1995M10 2000M09  

Bai–Perron tests of L+1 vs. L sequentially det. breaks. 

* Significant at the 0.05 level. 

** Bai–Perron (Econometric Journal, 2003) critical values. 
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Table A4 

Bai–Perron Breakpoint Tests of IPOs vs. Wilshire 5000 Returns, with a 1- and 2-Month Lag of 

IPO Volume 

Break Test F-Stat Scaled F-Stat Critical Value** 

0 vs. 1 * 11.33562 45.34248 16.19 

1 vs. 2 * 5.737324 22.94930 18.11 

2 vs. 3 0.720273 2.881092 18.93 

Break Dates:    

 Sequential Repartition  

1 2000M09 1995M06  

2 1995M06 2000M09  

Bai–Perron tests of L+1 vs. L sequentially det. breaks. 

* Significant at the 0.05 level. 

** Bai–Perron (Econometric Journal, 2003) critical values. 
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Table A6 

TAR Model Results 

Dependent variable: IPO volume 

Method: Discrete threshold regression 

Sample (adjusted): 1991M01 2019M12 

Included observations: 348 after adjustments 

Variable chosen: VIX monthly average (-1) 

Selection: Trimming 0.15, max. thresholds 5, sig. level 0.05 

Threshold variables considered: VIX monthly average (-1) . . . VIX monthly average (-12)  

White heteroskedasticity-consistent standard errors & covariances 

     
     Variable Coefficient Std. Error t-Statistic Prob. 

     
     STATE I: VIX Monthly Average (-1) < 14.489999, 113 observations 

     
     C -1.334095 9.184180 -0.145260 0.8846 

VIX Monthly Average (-1) 0.336070 0.701128 0.479327 0.6321 

Wilshire 5000 Return 4.640878 32.94250 0.140878 0.8881 

IPO Volume (-1) 0.282746 0.117846 2.399282 0.0171 

IPO Volume (-2) 0.112758 0.109879 1.026203 0.3057 

IPO Volume (-3) 0.127461 0.129530 0.984032 0.3260 

IPO Volume (-4) 0.267741 0.114635 2.335587 0.0202 

IPO Volume (-5) 0.209085 0.136891 1.527388 0.1278 

IPO Volume (-6) 0.006542 0.148221 0.044135 0.9648 

IPO Volume (-7) -0.120263 0.130327 -0.922778 0.3569 

IPO Volume (-8) 0.048917 0.146508 0.333887 0.7387 

IPO Volume (-9) -0.084378 0.106002 -0.796003 0.4267 

IPO Volume (-10) -0.399583 0.112003 -3.567611 0.0004 

IPO Volume (-11) -0.030178 0.112311 -0.268702 0.7884 

IPO Volume (-12) 0.524054 0.133808 3.916457 0.0001 

     
     STATE II: 14.489999 VIX Monthly Average (-1) < 16.91863, 55 observations 

     
     C 4.129391 24.18799 0.170721 0.8646 

VIX Monthly Average (-1) -0.281624 1.546591 -0.182094 0.8556 

Wilshire 5000 Return 53.13394 46.01242 1.154774 0.2492 

IPO Volume (-1) 0.475824 0.133563 3.562540 0.0004 

IPO Volume (-2) -0.188566 0.110179 -1.711443 0.0881 

IPO Volume (-3) 0.389613 0.160289 2.430686 0.0157 

IPO Volume (-4) -0.205685 0.130933 -1.570914 0.1174 

IPO Volume (-5) 0.213298 0.132634 1.608172 0.1090 

IPO Volume (-6) -0.099440 0.149112 -0.666882 0.5054 

IPO Volume (-7) 0.188269 0.165984 1.134255 0.2577 

IPO Volume (-8) 0.345988 0.188471 1.835766 0.0675 

IPO Volume (-9) -0.522766 0.158747 -3.293082 0.0011 

IPO Volume (-10) 0.404949 0.132245 3.062108 0.0024 

IPO Volume (-11) 0.317814 0.109615 2.899367 0.0040 

IPO Volume (-12) -0.258789 0.116774 -2.216153 0.0275 
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     STATE III: 16.91863   VIX Monthly Average (-1) < 19.66227, 52 observations 

     
     C 26.61603 27.80208 0.957340 0.3392 

VIX Monthly Average (-1) -1.267356 1.518848 -0.834420 0.4048 

Wilshire 5000 Return -22.77264 30.42994 -0.748363 0.4549 

IPO Volume (-1) 0.610776 0.161721 3.776728 0.0002 

IPO Volume (-2) 0.234422 0.203231 1.153476 0.2497 

IPO Volume (-3) -0.013666 0.138439 -0.098715 0.9214 

IPO Volume (-4) 0.588700 0.087629 6.718134 0.0000 

IPO Volume (-5) -0.243573 0.198582 -1.226565 0.2210 

IPO Volume (-6) -0.200293 0.209644 -0.955391 0.3402 

IPO Volume (-7) -0.188384 0.158262 -1.190327 0.2350 

IPO Volume (-8) 0.033935 0.158298 0.214377 0.8304 

IPO Volume (-9) 0.315753 0.230072 1.372413 0.1711 

IPO Volume (-10) -0.467498 0.283313 -1.650112 0.1001 

IPO Volume (-11) 0.307159 0.307815 0.997870 0.3192 

IPO Volume (-12) -0.318205 0.194827 -1.633267 0.1036 

     
     STATE IV: 19.66227   VIX Monthly Average (-1) < 24.7459, 67 observations 

     
     C -20.75434 18.13024 -1.144736 0.2533 

VIX Monthly Average (-1) 0.941966 0.819640 1.149244 0.2515 

Wilshire 5000 Return 88.26117 25.02282 3.527227 0.0005 

IPO Volume (-1) 0.591531 0.201663 2.933258 0.0036 

IPO Volume (-2) -0.003148 0.168588 -0.018671 0.9851 

IPO Volume (-3) 0.227222 0.138395 1.641835 0.1018 

IPO Volume (-4) 0.142543 0.164486 0.866599 0.3869 

IPO Volume (-5) -0.000564 0.161467 -0.003495 0.9972 

IPO Volume (-6) -0.093956 0.158690 -0.592074 0.5543 

IPO Volume (-7) -0.065971 0.150521 -0.438284 0.6615 

IPO Volume (-8) 0.049810 0.124413 0.400356 0.6892 

IPO Volume (-9) -0.110129 0.159834 -0.689020 0.4914 

IPO Volume (-10) 0.156312 0.118892 1.314740 0.1897 

IPO Volume (-11) -0.140639 0.124228 -1.132101 0.2586 

IPO Volume (-12) 0.253340 0.099874 2.536590 0.0118 

     
     STATE V: 24.7459   VIX Monthly Average (-1), 61 observations 

     
     C 6.660379 2.486415 2.678708 0.0078 

VIX Monthly Average (-1) -0.168695 0.061130 -2.759623 0.0062 

Wilshire 5000 Return 5.421373 9.817103 0.552238 0.5812 

IPO Volume (-1) 0.559336 0.157042 3.561693 0.0004 

IPO Volume (-2) 0.130775 0.210544 0.621130 0.5350 

IPO Volume (-3) -0.241127 0.131666 -1.831346 0.0681 

IPO Volume (-4) 0.027916 0.104682 0.266669 0.7899 

IPO Volume (-5) -0.167395 0.131567 -1.272311 0.2043 

IPO Volume (-6) -0.094611 0.133302 -0.709748 0.4785 

IPO Volume (-7) -0.005745 0.144567 -0.039741 0.9683 

IPO Volume (-8) -0.026387 0.173111 -0.152426 0.8790 

IPO Volume (-9) 0.065130 0.078838 0.826124 0.4095 

IPO Volume (-10) -0.137861 0.090334 -1.526125 0.1281 

IPO Volume (-11) 0.122969 0.105016 1.170956 0.2426 

IPO Volume (-12) 0.326298 0.113059 2.886082 0.0042 
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     R-squared 0.834868     Mean dependent var 18.54885 

Adjusted R-squared 0.790107     S.D. dependent var 17.02923 

S.E. of regression 7.801792     Akaike info criterion 7.134888 

Sum squared resid 16616.95     Schwarz criterion 7.965104 

Log likelihood -1166.470     Hannan-Quinn criterion 7.465413 

F-statistic 18.65163     Durbin-Watson stat 1.993811 

Prob (F-statistic) 0.000000    
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Table A7  

Estimation of Two-State MS for Changes of IPO Volume to Wilshire 5000 Index Returns, with 

the VIX Index as a Common Term 
Changes in IPO Volume as a Function of Wilshire 5000 Index Returns, with the VIX Index as a Common Term and IPO 

Volume (Fifth Lag) as a Probability Regressor 

 
State I 

   ĉ 
1 
= 23.21037*** (7.122334) 

ˆ
1 = -18.36420** (-2.093516) 

 

State II 

ĉ
2 = 46.11307*** (12.55267) 

ˆ
2 = 112.8233*** (2.583785) 

 

 

Common Terms 

 

VIX Monthly Average = -0.384689*** (-3.201134) 

 

AR(1) = 0.830709*** (26.56951) 

log  = 1.962094*** (47.84981) 

 

 

 

 

 

Transition Matrix Parameters 

 

 

 

P11- ĉ 
1 
= 5.612886*** (6.824865) 

 

P11-IPO Volume (-5) = -0.105211*** (-5.273819) 

 

P21- ĉ 
2 
= -0.164111 (-0.138194) 

 

P21-IPO Volume (-5) = 0.004213 (0.170486) 

 

 

 

 

Diagnostic Tests 

 
Log likelihood = -1254.517 

Schwartz Info. Criterion = 7.169222 

Durbin Watson = 2.026180 

 

Smoothed Regime Probabilities 

 

State I Median 

Skewness 

Kurtosis 

 

State II Median 

Skewness 

Kurtosis 

 
 

0.999889 
-2.679059 

 8.379015 

 
 0.000111 
2.679059 
 8.379015 

 

Constant Transition Probabilities, Probability of Staying 

(Switching)  

 

State I Median 

Skewness 

 

State II Median 

Skewness 

 

 

0.985869 (0.014131) 

-2.849011 (2.849011) 

 

0.527310 (0.472690) 

-1.313142 (1.313142) 

 

Constant Expected Durations  

State I Median 

State II Median 

 

70.76571 months 

2.115550 months 

Note: Adjusted sample period July 1990–December 2019 (354 included observations), *** denotes significance at 1%, ** at 5%, z-statistics in 

parentheses. 
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Table A8 

 

SETAR Model Results 
 

Dependent Variable: IPO Volume 

Method: Discrete threshold regression (SETAR) 

Sample (adjusted): 1991M01 2019M12 

Included observations: 348 after adjustments 

Variable chosen: IPO Volume (-1) 

Selection: Trimming 0.15, max. thresholds 5, sig. level 0.05 

Threshold variables considered: IPO Volume (-1) … IPO Volume (-12) 

White heteroskedasticity-consistent standard errors & covariances 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     IPO Volume (-1) < 9, 119 observations 

     
     C 9.669728 2.296706 4.210258 0.0000 

IPO Volume (-1) 0.333401 0.226881 1.469496 0.1427 

IPO Volume (-2) 0.052997 0.095336 0.555899 0.5787 

IPO Volume (-3) -0.007402 0.092660 -0.079883 0.9364 

IPO Volume (-4) 0.008383 0.103747 0.080805 0.9356 

IPO Volume (-5) 0.015570 0.082307 0.189170 0.8501 

IPO Volume (-6) -0.051696 0.077251 -0.669187 0.5039 

IPO Volume (-7) 0.075969 0.073931 1.027565 0.3050 

IPO Volume (-8) -0.043996 0.091281 -0.481985 0.6302 

IPO Volume (-9) -0.021120 0.075448 -0.279930 0.7797 

IPO Volume (-10) -0.050796 0.090739 -0.559798 0.5760 

IPO Volume (-11) 0.038592 0.075808 0.509080 0.6111 

IPO Volume (-12) 0.074949 0.062358 1.201914 0.2303 

     
     

9   IPO Volume (-1) < 29, 147 observations 

     
     C 7.275453 2.374595 3.063872 0.0024 

IPO Volume (-1) 0.173250 0.170183 1.018023 0.3095 

IPO Volume (-2) 0.261789 0.118077 2.217107 0.0273 

IPO Volume (-3) -0.020723 0.097818 -0.211851 0.8324 

IPO Volume (-4) 0.243889 0.100322 2.431052 0.0156 

IPO Volume (-5) -0.058655 0.100860 -0.581550 0.5613 

IPO Volume (-6) -0.008991 0.113643 -0.079114 0.9370 

IPO Volume (-7) 0.082045 0.110913 0.739717 0.4600 

IPO Volume (-8) 0.140970 0.117790 1.196788 0.2323 

IPO Volume (-9) 0.018386 0.123616 0.148738 0.8819 

IPO Volume (-10) -0.189261 0.129617 -1.460160 0.1453 

IPO Volume (-11) -0.079123 0.101720 -0.777844 0.4373 

IPO Volume (-12) 0.200788 0.103775 1.934826 0.0539 
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29   IPO Volume (-1), 82 observations 

     
     C 20.30994 6.942328 2.925523 0.0037 

IPO Volume (-1) 0.361465 0.154115 2.345424 0.0196 

IPO Volume (-2) -0.096016 0.103981 -0.923398 0.3565 

IPO Volume (-3) 0.160593 0.103752 1.547860 0.1227 

IPO Volume (-4) 0.178318 0.147006 1.212994 0.2261 

IPO Volume (-5) 0.304433 0.156877 1.940581 0.0532 

IPO Volume (-6) -0.088409 0.111175 -0.795222 0.4271 

IPO Volume (-7) -0.195129 0.118627 -1.644891 0.1010 

IPO Volume (-8) -0.066424 0.117234 -0.566595 0.5714 

IPO Volume (-9) -0.227483 0.153968 -1.477464 0.1406 

IPO Volume (-10) -0.103213 0.133805 -0.771371 0.4411 

IPO Volume (-11) 0.099457 0.110502 0.900047 0.3688 

IPO Volume (-12) 0.253488 0.084529 2.998829 0.0029 

     
     Non-Threshold Variables 

     
     VIX Monthly Average (-1)  -0.242091 0.066172 -3.658499 0.0003 

Wilshire 500 Return 23.11426 10.23405 2.258564 0.0246 

     
     R-squared 0.770710     Mean dependent var 18.54885 

Adjusted R-squared 0.740835     S.D. dependent var 17.02923 

S.E. of regression 8.669280     Akaike info criterion 7.267726 

Sum squared resid 23073.02     Schwarz criterion 7.721577 

Log likelihood -1223.584     Hannan-Quinn criterion 7.448413 

F-statistic 25.79792     Durbin-Watson stat 1.922911 

Prob(F-statistic) 0.000000    

     
     

 

Table A9 
 

LSTAR 1st Order Model Results 

Dependent Variable: IPO Volume 

Method: Smooth threshold regression (LSTAR 1st Order) 

Transition function: Normal 

Sample (adjusted): 1991M01 2019M12 

Included observations: 348 after adjustments 

Threshold variable chosen: IPO Volume (-3) 

Threshold variables considered: IPO Volume (-1) … IPO Volume (-12) VIX Monthly 

Average (-1) … VIX Monthly Average (-12) 

Starting values: Grid search with concentrated regression coefficients 

HAC standard errors & covariance using outer product of gradients (Bartlett 

        kernel, Newey-West fixed bandwidth = 6.0000) 

Convergence achieved after 29 iterations 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     Threshold Variables (linear part) 

     
     C 5.467029 1.615220 3.384696 0.0008 

IPO_VOLUME(-1) 0.575450 0.090036 6.391328 0.0000 

IPO_VOLUME(-2) 0.076843 0.088437 0.868908 0.3856 

IPO_VOLUME(-3) 0.108362 0.083439 1.298706 0.1950 

IPO_VOLUME(-4) 0.058479 0.071205 0.821276 0.4121 
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IPO_VOLUME(-5) 0.070702 0.084936 0.832413 0.4058 

IPO_VOLUME(-6) -0.094246 0.088500 -1.064920 0.2877 

IPO_VOLUME(-7) -0.007691 0.132629 -0.057991 0.9538 

IPO_VOLUME(-8) 0.025855 0.107099 0.241408 0.8094 

IPO_VOLUME(-9) -0.006397 0.065783 -0.097247 0.9226 

IPO_VOLUME(-10) -0.088972 0.067353 -1.320971 0.1875 

IPO_VOLUME(-11) -0.009687 0.060503 -0.160105 0.8729 

IPO_VOLUME(-12) 0.197742 0.070660 2.798490 0.0054 

     
     Threshold Variables (nonlinear part) 

     
     C -0.842532 18.49908 -0.045545 0.9637 

IPO_VOLUME(-1) -0.446468 0.212904 -2.097042 0.0368 

IPO_VOLUME(-2) -0.145861 0.137012 -1.064588 0.2879 

IPO_VOLUME(-3) -0.020863 0.298976 -0.069780 0.9444 

IPO_VOLUME(-4) 0.422534 0.113730 3.715226 0.0002 

IPO_VOLUME(-5) 0.394702 0.159854 2.469136 0.0141 

IPO_VOLUME(-6) 0.343194 0.221100 1.552210 0.1216 

IPO_VOLUME(-7) -0.153115 0.158517 -0.965923 0.3348 

IPO_VOLUME(-8) 0.053538 0.173761 0.308115 0.7582 

IPO_VOLUME(-9) -0.503789 0.182131 -2.766079 0.0060 

IPO_VOLUME(-10) -0.047663 0.238979 -0.199443 0.8420 

IPO_VOLUME(-11) 0.089889 0.168494 0.533485 0.5941 

IPO_VOLUME(-12) 0.007367 0.133068 0.055360 0.9559 

     
     Non-Threshold Variables 

     
     VIX Monthly Average -0.204378 0.066847 -3.057382 0.0024 

     
     Slopes 

     
     SLOPE 14.39808 2.20E+12 6.55E-12 1.0000 

     
     Thresholds 

     
     THRESHOLD 41.48333 7.40E+10 5.61E-10 1.0000 

     
     R-squared 0.758241     Mean dependent var 18.54885 

Adjusted R-squared 0.737021     S.D. dependent var 17.02923 

S.E. of regression 8.732844     Akaike info criterion 7.251714 

Sum squared resid 24327.76     Schwarz criterion 7.572731 

Log likelihood -1232.798     Hannan-Quinn criterion 7.379517 

F-statistic 35.73201     Durbin-Watson stat 1.876580 

Prob(F-statistic) 0.000000    

     
     

 

Table A10 

 

OLS Basic Model Results 
 

Dependent Variable: IPO Volume 

Method: Least Squares 

Sample: 1991M01 2019M12 

Included observations: 348 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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C 4.737414 1.631440 2.903823 0.0039 

VIX Monthly Average (-1) -0.173286 0.068692 -2.522668 0.0121 

WILSHIRE 5000 Return 24.25539 11.95189 2.029419 0.0432 

C 0.478802 0.053790 8.901323 0.0000 

IPO Volume (-1) 0.055432 0.059788 0.927139 0.3545 

IPO Volume (-2) 0.130869 0.059499 2.199518 0.0285 

IPO Volume (-3) 0.176589 0.059697 2.958073 0.0033 

IPO Volume (-4) 0.108016 0.060802 1.776518 0.0766 

IPO Volume (-5) -0.075745 0.060446 -1.253111 0.2110 

IPO Volume (-6) -0.071060 0.060479 -1.174970 0.2408 

IPO Volume (-7) 0.076200 0.060302 1.263634 0.2072 

IPO Volume (-8) -0.088001 0.059713 -1.473734 0.1415 

IPO Volume (-9) -0.093460 0.059516 -1.570317 0.1173 

IPO Volume (-10) 0.025724 0.059667 0.431131 0.6667 

IPO Volume (-11) 0.191586 0.053442 3.584916 0.0004 

     
     R-squared 0.722574     Mean dependent var 18.54885 

Adjusted R-squared 0.710910     S.D. dependent var 17.02923 

S.E. of regression 9.156117     Akaike info criterion 7.308868 

Sum squared resid 27916.88     Schwarz criterion 7.474912 

Log likelihood -1256.743     Hannan-Quinn criterion 7.374973 

F-statistic 61.95140     Durbin-Watson stat 1.933404 

Prob(F-statistic) 0.000000    

     
     

 

Table A11 

 

Markov-Switching Results #1 
 

Dependent Variable: IPO Volume 

Method: Markov Switching Regression (BFGS / Marquardt steps) 

Sample (adjusted): 1990M02 2019M12 

Included observations: 359 after adjustments 

Number of states: 2 

Initial probabilities obtained from ergodic solution 

Standard errors & covariance computed using observed Hessian 

Random search: 25 starting values with 10 iterations using 1 standard 

        deviation (rng=kn, seed=1192883331) 

Convergence achieved after 15 iterations 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     Regime 1 

     
     C 23.02463 2.854495 8.066096 0.0000 

VIX_MONTHLY_AVG -0.426734 0.117225 -3.640306 0.0003 

WILSHIRE5000RETURN -18.37855 8.853538 -2.075843 0.0379 

     
     Regime 2 

     
     C 53.67707 6.025433 8.908417 0.0000 

VIX_MONTHLY_AVG -0.646049 0.286665 -2.253670 0.0242 

WILSHIRE5000RETURN 66.97432 25.91289 2.584595 0.0097 

     
     Common 

     
     AR(1) 0.777611 0.044924 17.30952 0.0000 
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LOG(SIGMA) 1.963250 0.041744 47.03086 0.0000 

     
     Transition Matrix Parameters 

     
     P11-C 3.069026 0.309161 9.926938 0.0000 

P21-C -0.842188 0.463884 -1.815514 0.0694 

     
     Mean dependent var 18.27577     S.D. dependent var 16.87182 

S.E. of regression 10.22627     Sum squared resid 36706.39 

Durbin-Watson stat 2.125183     Log likelihood -1290.340 

Akaike info criterion 7.244234     Schwarz criterion 7.352404 

Hannan-Quinn criter. 7.287249    

     
     Inverted AR Roots       .78  

     
     

 

Table A12 

Markov-Switching Results #2 
 

Dependent Variable: IPO Volume 

Method: Markov Switching Regression (BFGS / Marquardt steps) 

Date: 12/14/20   Time: 14:10 

Sample (adjusted): 1990M02 2019M12 

Included observations: 359 after adjustments 

Number of states: 2 

Initial probabilities obtained from ergodic solution 

Standard errors & covariance computed using observed Hessian 

Random search: 25 starting values with 10 iterations using 1 standard 

        deviation (rng=kn, seed=127413390) 

Convergence achieved after 10 iterations 

     
     Variable Coefficient Std. Error z-Statistic Prob.   

     
     Regime 1 

     
     C 49.73231 3.439627 14.45864 0.0000 

WILSHIRE5000RETURN 69.04903 27.77674 2.485858 0.0129 

     
     Regime 2 

     
     C 23.17072 2.850029 8.129993 0.0000 

WILSHIRE5000RETURN -19.09818 8.845625 -2.159054 0.0308 

     
     Common 

     
     VIX_MONTHLY_AVG -0.436819 0.117206 -3.726920 0.0002 

AR(1) 0.775921 0.047206 16.43682 0.0000 

LOG(SIGMA) 1.965501 0.041725 47.10632 0.0000 

     
     Transition Matrix Parameters 

     
     P11-C 0.856160 0.482101 1.775891 0.0758 

P21-C -3.072430 0.312188 -9.841598 0.0000 

     
     Mean dependent var 18.27577     S.D. dependent var 16.87182 

S.E. of regression 10.21490     Sum squared resid 36729.13 

Durbin-Watson stat 2.123273     Log likelihood -1290.656 
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Akaike info criterion 7.240426     Schwarz criterion 7.337780 

Hannan-Quinn criter. 7.279140    

     
     Inverted AR Roots       .78  

     
     

 

Table A13 

Dynamic Out-of-Sample Forecast Results: 6 Months  

 

Dynamic Forecast Evaluation     

Sample: 2019M07 2019M12     

Included observations: 6     

Evaluation sample: 2019M07 2019M12    

Training sample: 1991M01 2018M07    

Number of forecasts: 13     

       
       Evaluation Statistics 

       
       Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

       
       OLS Basic **  9.775285  8.945902  166.2339  76.40927  0.366289  1.684608 

Markov Switch #1  12.70535  12.01901  219.9646  89.44313  0.428915  2.170828 

Markov Switch #2  12.63677  11.95339  218.8366  89.21564  0.427565  2.155906 

Markov Switch #3  11.33661  10.60261  197.1937  83.97953  0.401987  1.896729 

TAR  3.876475  3.698322  58.69378  47.30564  0.209524  0.517348 

SETAR  6.060751  4.498569  99.05027  51.14781  0.276567  1.131742 

LSTAR  10.21063  9.611016  175.4734  80.06713  0.374282  1.719080 

Simple mean  9.012021  8.173267  157.0719  73.19554  0.349591  1.564840 

Simple median  10.72999  10.07593  186.0960  82.01920  0.387490  1.805916 

Least-squares  5.103524  4.224135  86.42744  51.18097  0.247434  0.803329 

Mean square error  8.923473  8.076428  155.5726  72.71952  0.347478  1.549479 

MSE ranks  8.236481  7.297386  143.5402  68.69508  0.330796  1.438944 

Smooth AIC weights  9.033339  8.195016  157.4232  73.29799  0.350115  1.568492 

SIC weights  8.507315  7.630076  148.2497  70.47205  0.337103  1.485137 

       
       *Trimmed mean could not be calculated due to insufficient data 

** OLS basic forecast results excluded from the averaging forecast results.   
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Table A14 

Static Out-of-Sample Forecast Results: 18 Months  

Forecast Evaluation   

Date: 12/14/20   Time: 18:51  

Sample: 2018M07 2019M12   

Included observations: 18  

Evaluation sample: 2018M07 2019M12 

Training sample: 1991M01 2017M07 

Number of forecasts: 13   

       
       Combination tests       

Null hypothesis: Forecast i includes all information contained in others 

       
       Equation F-stat    F-prob      

       
       Markov Switch #1 1.045242 0.4356     

Markov Switch #2 1.009360 0.4534     

Markov Switch #3 0.702900 0.6321     

TAR 1.032287 0.4420     

SETAR 2.031089 0.1460     

LSTAR 2.122908 0.1325     

       
       Evaluation statistics       

       
       Forecast RMSE MAE MAPE SMAPE Theil U1 Theil U2 

       
       

Markov Switch #1  12.36073  11.26280  280.7789  85.13356  0.393109  1.971174 

Markov Switch #2  12.28155  11.17639  279.3990  84.81008  0.391696  1.955924 

Markov Switch #3  11.13946  9.927327  255.0383  79.95934  0.371100  1.735792 

TAR 5.611925 4.863679 115.1760 57.14372 0.240366 0.543152 

SETAR  8.777298  7.202692  205.0013  67.56182  0.326205  1.358594 

LSTAR  10.34077  8.722190  238.1575  74.34672  0.358521  1.539214 

Simple mean  9.808474  8.423467  226.0268  73.69313  0.343323  1.495479 

Simple median  10.68694  9.322313  246.5623  77.33204  0.362430  1.636146 

Least-squares  6.867616  6.228894  124.3274  66.49098  0.285022  0.573022 

Mean square error  9.699231  8.317778  223.5043  73.24581  0.340924  1.473759 

MSE ranks  9.104689  7.733529  210.0811  70.69803  0.327891  1.357412 

Smooth AIC weights  12.31502  11.21288  279.9809  84.94700  0.392295  1.962371 

SIC weights  12.31502  11.21288  279.9809  84.94700  0.392295  1.962371 

       
       

*Trimmed mean could not be calculated due to insufficient data 

 

 

 

 

 

  


