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AFIT/ENS/GOR/01M-10 

Abstract 

The problem of classifying pilot mental workload is important to the United States Air 

Force. Pilots are more subject to errors and G-induced loss of consciousness during periods of 

mental overload and task saturation. Often the result is the loss of aircraft, and in extreme cases, 

the loss of the pilot's life. Current research efforts use different psychophysiological features to 

classify pilot mental workload. These include cardiac, ocular, respiratory, and brain activity 

measures. 

The focus of this effort is to apply statistical process control methodology on different 

psychophysiological features in an attempt to classify pilot mental workload. The control charts 

track these features throughout the flight, and classify a segment as high workload if the 

measurements of these features are greater than predefined control limits. We find that certain 

control charts prove to be effective workload classifiers and maintain high classification 

accuracies when applied to other flight data. 



USING STATISTICAL PROCESS CONTROL METHODS 

TO CLASSIFY PILOT MENTAL WORKLOAD 

1. Introduction 

1.1. Statement of the Problem 

The purpose of this research is to use statistical process control (SPC) methods to classify 

pilot mental workload. Past research (East, 2000; Laine, 1999; Greene, 1998) has used artificial 

neural networks and multivariate discriminant models to classify pilot mental workload using data 

from both simulated and actual flight. These classifiers attain high levels of classification accuracy 

when used to classify pilot mental workload for the same pilot on the same day. However, these 

classifiers do not maintain high classification accuracies when used to classify pilot mental 

workload on other days or for different pilots. Our initial goal is to discover if SPC methods are 

suitable ways to classify pilot workload, with a long-range goal of finding a statistical process 

control method that can accurately classify pilot workload across multiple days for the same pilot, 

and ultimately across multiple days for different pilots. For the purpose of this research, we use 

data obtained from two individual pilots, with each pilot flying a prescribed and flight route on two 

different days. 

1.2. Background 

The problem of workload has been a concern for many pilots. As technology has 

increased, the complexity of Air Force weapon systems has increased as well. Due to this 

complexity, the mental demands on the pilot have increased. Often, pilots have to split their 

attention among different tasks. When the pilot's focus is divided, the mental stress upon the pilot 

increases as well. Consequently, these increases in mental demands have caused some pilots 



to forget basic flying procedures, such as G-straining maneuvers, and have resulted in several 

fatalities. Between 1986 and 1995 the USAF lost 14 pilots due to G-induced loss of 

consciousness (Auten, 1996). Initially, such accidents were attributed to inexperience or pilot 

error. Further investigation, however, revealed that neither lack of experience nor ability was 

common among all the accidents. What was common, with only one exception, was that these 

accidents occurred in the most demanding periods of flight. The conclusion of this investigation 

was that pilots were becoming mentally overloaded in the cockpit and forgetting their flying 

fundamentals. In an effort to reduce the risk of mental overload, the Air Force is developing an 

automated warning system, which would indicate periods of high mental workload. This system 

could not only protect our pilots, but it could also improve their effectiveness in the cockpit. 

1.3.        Research Objectives 

Previous research has focused on using multivariate discriminant models to classify pilot 

mental workload. This will be the first attempt to use statistical process control to classify pilot 

workload. SPC methods track a process and signals when that process has breached predefined 

control limits. In the case of pilot workload, an automated system could track a 

psychophysiological feature and signal when that feature exceeds certain limits. The research 

involves four different tasks. The first task is to identify which psychophysiological features 

should be used to track using SPC techniques.   An obvious first choice would be to use the 

features found to be important in previous research (Laine, 1999; East, 2000). However, we may 

look at every psychophysiological feature to determine which ones work best on control charts. 

The second task is to take the important physiological features and construct a data set, which 

we can plot on the control charts. Since we are interested in monitoring different features at the 

same time, we need a method to put them on the same timeline. The third task would be to build 

these control charts and measure the classification accuracy of each control chart. The final task 

is to modify these control charts so that we minimize the misidentification and false alarm rates. 



Since the development of a warning system for the pilot is the ultimate goal, the classifier 

must integrate into this larger, more complex system. The hope is that this system will warn the 

pilot if he or she is in a state of high mental workload. Another hope is that this system will 

automate tasks when the pilot is in this state of high mental workload. This system must not only 

be able to accurately classify high mental workload, but it also must not signal high mental 

workload when the pilot is not mentally overloaded. 

1.4.        Research Methodology 

We must accomplish several tasks if we hope to determine whether SPC methods can 

accurately classify pilot mental workload. The first task is to determine which of the 151 

psychophysiological features should be monitored as a part of this classifier. These input 

features include brain electric activity, heart rate, respiratory measures, and ocular measures. 

The next task is to develop data sets to use with statistical classifiers. Since we wish to measure 

different psychophysiological features at the same time, every feature must be put on the same 

timeline. The next task is to develop different control charts on the given variables to see if any of 

them can classify pilot mental workload. We will first use standard control charts, and if standard 

control charts do not work, then we will investigate if variations on existing control charts can 

improve the classification accuracy of the control chart. For each control chart classifier, we 

determine the classification accuracy when used against itself. In other words, is the control chart 

able to classify pilot mental workload for the same pilot on the same day? Also, we determine the 

classification accuracy of each classifier across different days and different pilots. Finally, we 

must compare SPC classifiers against past multivariate discriminant models to see if SPC 

classifiers provide some kind of improvement over past classifiers. 



1.5.       Document Overview 

This document first covers past research done in the area of classifying pilot mental 

workload, and the application of SPC techniques to similar problems. It then covers the data 

processing, initial analysis of the data set, and the use of traditional control charts, which include 

x-bar charts, EWMA charts, and CUSUM charts. We also modified several of these control 

charts in the hopes that we would be able to improve the accuracy of the classifier. We conclude 

this document with our conclusions and recommendations for further research in this area. 



2. Background and Literature Review 

2.1. Overview 

In order to solve the problem of pilot mental workload classification, we must first 

understand what has been done in the past to solve this problem. This involves understanding 

the different psychophysiological features that have been used to classify pilot mental workload. 

This will provide insight as to which features may be the most relevant in classifying pilot mental 

workload. Once we understand the different psychophysiological features, we can apply SPC 

methodologies to determine which methods and features produce the best classifiers. We must 

also know how these methods work, so we know what kinds of modifications can improve the 

classification accuracy of the classifier. 

2.2. Psychophysiological Features 

Past research shows that there is some correlation between different psychophysiological 

features and pilot mental workload. The psychophysiological features that are most commonly 

measured are cardiac measures, respiratory measures, hormone measures, ocular measures, 

and brain activity measures. During each test flight, these psychophysiological features were 

monitored and recorded. 

2.2.1.       Description of Psychophysiological Features 

Past research focused primarily upon correlating pilot mental workload to different 

psychophysiological features. Recently, research efforts analyzed psychophysiological 

responses in different multi-task environments (Hanks and Wilson, 1998). Only in recent years 

have psychophysiological responses been monitored during actual flight. These 

psychophysiological responses have advantages in different multi-task environments: the 



measurements can be collected throughout the study; they can be easily collected during the 

flight; the features are relatively robust; and the collection does not interfere with the task 

completion (Wilson, 1998). 

2.2.2.      Cardiac Measures 

Heart rate has been used for many years as a method of measuring mental workload. 

Past experiments have considered heart rate and heart rate variability (HRV). Heart rate is the 

number of heartbeats within a given timeframe. In general, heart rate increases as cognitive 

workload increases (Hanks and Wilson, 1998). This research uses a different cardiac measure, 

called heart beat interval, which is related to heart rate. This is the time in milliseconds between 

the current heart beat and the previous heart beat. Heart beat interval decreases as workload 

increases. Another cardiac measure is the heart rate variability. Heart rate variability is a 

measure of the variation in the heart rhythm. However, there is some debate as to the correlation 

between HRV and cognitive workload. 

The first problem with HRV is the question of how to measure it. There are numerous 

ways to measure HRV, and there is no way to know if one method is universally better than 

another. The utility of a given method may be based solely upon the situation. Therefore, we do 

not know which type of measurement would be best in our case. Another problem is conflicting 

conclusions on the advantage of measuring HRV in a given experiment. Some studies conclude 

that there is a great advantage, while others conclude that there is no significant advantage. The 

last problem is to determine the usefulness of HRV in relationship to heart rate. Many studies 

suggest that heart rate is a better predictor of cognitive workload, implying that heart rate alone 

may be adequate. In general, heart rate variability is thought to decrease as mental workload 

increases (Wilson, 1992). 



2.2.3. Respiratory Measures 

There have been few studies using respiration as a predictor for mental workload. The 

respiratory measurements taken for this research are the interval between breaths, and the 

minimum and maximum amplitude of the breath. In general, the inter-breath interval decreases 

as workload increases (Damos, 1996). However, taking respiration measurements during tasks 

that involve verbal communication is very difficult, as they interfere with the breaths. To solve this 

problem, it has been recommended that voice pattern analysis may be a better measure of 

cognitive workload than breath interval. Studies show that fatigue and stress can cause 

measurable changes in the voice pattern (Damos, 1996). 

2.2.4. Hormone Measures 

Another physiological feature is the measurement of hormone levels. High mental 

workload is often a result of a stressful situation, since these stressful situations require 

concentration and quick thinking. When the body responds to this stress, the sympathetic 

nervous system is stimulated. The sympathetic nervous system then changes hormone levels, 

which attempt to help the body respond to the stress. However, collecting hormone 

measurements pose a problem, as hormone levels are typically measured in body fluids, such as 

blood, urine or saliva. It is very difficult to measure these during flight. Therefore, the only 

feasible way to measure hormone levels is after the task is completed (Damos, 1996). Since the 

classifier must classify a high mental workload either before or during the stressful situation, a 

system that classifies workload after the fact will not work for this situation. Therefore, hormone 

measurements are not practical as a classifier of mental workload. 



2.2.5. Ocular Measures 

Ocular measurements have been collected during flights to predict pilot workload (Hanks 

and Wilson, 1998). These ocular measurements include the time between eye blinks, the 

duration of the blink, and the blink amplitude. In general, it has been found that as the visual 

demands increase, both the inter-blink rate and the blink duration decrease, since both inter-blink 

rate and blink duration correspond to the amount of time the eyes are closed. If high mental 

workload is related to increased visual demands, these ocular measurements would be a good 

classifier. However, research has shown that ocular measurements may only be a good predictor 

of visual information processing. Mental workload that is not dependent upon visual information 

(such as remembering checklists and procedures) may not be correlated to ocular measurements 

at all. 

2.2.6. Brain Activity Measures 

The most exhaustive part of the available data set is the brain electrical activity or 

electroencephalography (EEG) data. The brain has electric signals running across it. By placing 

electrodes over the scalp, we can take measurements of these electric signals (East 2000). Brain 

electrical data is taken at a rate of 256 times a second over 29 different nodes. The data is 

processed through a Fast Fourier Transform (FFT), which takes the data at each node and 

separates it into five different frequency bands. In other words, for each second of processed 

data, the FFT takes 256 lines of raw EEG data, and breaks it down into the appropriate 

frequency. Therefore, for each of the 29 nodes, there are five different frequencies for a total of 

145 separate EEG variables. The different frequencies are shown in Table 2-1. 



Table 2-1: Frequency Band Designations, Symbols and Frequency Specifications 

Band Symbol Frequency 
Delta A 1-3 Hz 
Theta e 4-7 Hz 
Alpha a 8-12 Hz 
Beta ß 13-30 Hz 
UltraBeta Mß 31-42 Hz 

Brain researchers have found that different frequencies, as well as the node locations, are 

important in classifying mental workload.   For example, the alpha and theta frequencies have 

been the most useful frequencies in measuring mental workload (East, 2000).   Other research 

has shown that as cognitive demands increase, alpha band activity decreases and theta band 

activity increases (Hanks and Wilson, 1998; Damos, 1996). Each node is also associated with 

certain psychophysiological functions. These relationships are shown in Figure 2-1. 

♦ F-Frontal 
♦ Decision making area 

Nose and Eyes 

♦ T-Temporal 
♦ Auditory functions 

♦ C-Central 
♦ Motor functions 

♦ P-Parietal 
♦ Association area 

♦ O-Occipital 
♦ Visual functions Back of Head 

Figure 2-1: Location of Nodes and Relation to Brain Function 



2.2.7. Previous Research 

Past research classifies pilot workload based on several measurable psychophysiological 

features. In recent years, the Air Force Research Laboratory, Human Effectiveness Directorate 

(AFRL/HE) at Wright-Patterson AFB, Ohio, has researched this problem (AFRL, 1998). Their 

research indicates that a handful of psychophysiological features are most influential in 

classifying pilot mental workload: brain electrical activity, heart rate, breath rate, and eye blink 

measures (Hankins and Wilson, 1998). The table below shows how these variables respond to 

an increase in mental workload. 

Table 2-2: Response of 8 Different Psychophysiological Features in Response to an Increase in 
Pilot Mental Workload 

Psychophysiological Feature Feature Response to 
an Increase in Pilot 
Mental Workload 

Heart Rate Increase 
Heart Beat Interval Decrease 
Heart Rate Variability Decrease 
Number of Eye Blinks Decrease 
Interblink Interval Increase 
Number of Breaths Increase 
Interbreath Interval Decrease 
EEG - Alpha Band Decrease 
EEG - Theta Band Increase 

Initially, 151 psychophysiological features were collected on test subjects in a simulated 

environment. Laine (1999) used feedforward multiplayer perceptron (MLP) neural networks to 

classify pilot mental workload using the data from the simulation. Although the resulting 

classification scheme was found to have promising results, there was no way to know if this 

classifier could actually classify pilot mental workload. In order to determine if different 

classification schemes would work against actual flight data, AFRL/HE collected data from ten 

different pilots flying Wright-Patterson Aero Club Piper Cubs over a predefined route for two days. 

Each pilot wore special equipment to monitor and record brain electrical data, cardiac, 

10 



respiratory, and ocular measurements. Comparing the simulated and the actual data, East 

(2000) found that a classification scheme could only be valid if it was developed using actual pilot 

data. She used various screening methods for pilots 1 and 4 and reduced the 151 features, while 

still maintaining a moderate amount of classification accuracy. Further screening methods 

reduce the 151 features to 23 for pilot 1 on day 1, while maintaining a classification accuracy 

between 74% and 84% for same day data. The same screening methods were used on the other 

three other data sets (pilot 1, day 2, pilot 4, day 1, and pilot 4, day 2) with similar results. 

However, this classification accuracy diminishes greatly when it used to classify mental workload 

across days or between different pilots. East (2000) concluded that a classification scheme was 

still needed that accurately classifies pilot workload across days and pilots. In order to obtain this 

desired level of accuracy, we will design a classifier using a different technique. 

2.3.        Quality Improvement 

In order to define SPC, we first have to define the process. This type of process 

improvement is often referred to by such names as "quality improvement" or "total quality 

management." Montgomery (1997) defines quality improvement as the reduction of variability in 

processes and products to improve them. It is most often used with manufactured goods as a 

means to reduce the occurrence of defective products. SPC is a collection of statistical problem 

solving tools used to achieve process stability and improving capability through the reduction of 

variability (Montgomery, 1997). 

2.3.1.      Basic Terminology of Process Improvement 

One of the uses of SPC is to identify periods of process instability. Variation inherent in 

the process if often referred to as "background noise" or a "stable system of chance causes" 

(Montgomery, 1997). This natural variation exists no matter how well a process is run. When a 

process shows only this natural variation, it is considered to be "in a state of statistical control." 

11 



However, if there is an assignable cause to the variability, we can define the process as being out 

of control. These causes can be such things as operator error, improper settings or invalid input 

parameters (Montgomery, 1997). The quality of a process can be improved by monitoring the 

variability of the output over a period of time. For example, a machine that fills cola bottles will 

usually put in somewhere between 1998ml_ and 2003ml_ of cola. Suppose we find that the 

machine is not filling the bottles with the right amount of soda. Perhaps the machine is putting in 

between 1985mL and 2020ml_ of cola, either not putting in enough cola or overfilling the bottle. 

We would then conclude that something is wrong with the machine. At this point, we may shut 

the machine down until we can find the cause of such variation. 

2.4.        Control Charts 

One of the most widely used tools in quality control is the control chart (Montgomery, 

1997). A control chart monitors the process and determines the point at which the process is no 

longer within the given limits of the process. The purpose of a control chart is to determine if the 

process variation is due to chance or there is an actual change in the process. A shift in the 

process indicates that the process is out of control. 

In a statistical sense, a control chart is a series of hypothesis tests, where each hypothesis 

test has the null hypothesis "H0: u.=Uo" and the alternate hypothesis "Ha: u.*u<,." By failing to reject 

the null hypothesis, we state that u.=u<>, or that the process is in control. However, if there is 

enough evidence to reject the null hypothesis, the process is now out of control. Different types 

of control charts attempt to prove or disprove this hypothesis in unique ways. An example of a 

control chart is in Figure 2-2. 

12 
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Figure 2-2: Example of a Control Chart 

In this chart, the process is considered to be in control while it remains between the two control 

limits. Once the process goes beyond the control limits, there is a violation, and the process is 

considered to be out of control. At this point, the control chart stops monitoring the process until 

the cause of the variation is found. 

2.4.1.       Using Control Charts as Classifiers 

The discussion of control charts has addressed its utility with manufactured goods. 

However, the purpose of this thesis is to classify pilot mental workload, not to improve a 

production line. In order to use control charts as a classifier of pilot mental workload, we need to 

make a couple of modifications to traditional control charts. First, we need to translate what the 

areas of in control and out of control are. In the case of pilot mental workload, we define the area 

of in control as low mental workload, and the area of out of control as high mental workload. 

Since there are only two workload levels, only one control limit is needed. The second 

modification is that the control chart does not stop monitoring the process when it finds that it is 

13 



out of control. Rather, we state that the workload level is high, and continue to monitor the 

process. This is because we do not want to stop monitoring the process even if we detect high 

mental workload. An example of what a control chart for pilot mental workload will look like is in 

Figure 2-3. 
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Figure 2-3: Example of a Control Chart as a Classifier of Pilot Mental Workload 

In the chart above, there are two regions separated by the control limit. If the workload level is 

above the control limit, the mental workload is high. If the workload level is below, the mental 

workload is low. 

2.4.2.      X-bar Charts 

The most common types of control charts used are charts for variables or Shewhart charts 

(Montgomery, 1997). This type of control chart monitors the mean of each sample, and 

compares them to predefined control limits to determine if the process is in control or not. To build 

a chart for variables, we define several statistics relating to the data set. The simplest 
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measurement we take is the mean (u), which is simply an average of all the samples in the data 

set. There will also be a degree of variability in the data, which we measure using the standard 

deviation (a). Using these two measurements, we can build the simplest control chart, the x-bar 

chart.  An example of an x-bar chart is shown in Figure 2-4. 
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Figure 2-4: Example of an x-bar Chart with Upper and Lower Control Limits 

The chart contains a centerline (CL), which is defined by u., or the average of all the data 

points. In addition to the center line, there are two control limits, an upper control limit (UCL) and 

a lower control limit (LCL). These are the points at which the process is defined to be out of 

control. These three points are defined in Equation 2-1. 
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where 

UCL =n + kj°2/ 

CL = \i (2-1) 

LCL =n-kS°/ 

n = sample size 

k = number of standard deviations between the center line and the control limit 

Traditionally, k is assigned to be three, which generates an interval that is six standard deviations 

wide. The assignment of k determines several characteristics of the x-bar chart. As the value of 

k increases, the number of data points that fall between these control limits will increase as well. 

Increasing k will also decrease the chance of accidentally calling the process out of control when 

the process is actually in control. However, it will also increase the chance of stating that the 

process is in control when the process is actually out of control. Most control charts use control 

limits that are three standard deviations separated from the mean in both directions. An x-bar 

chart with these control limits will on the average capture 99.73% of all data points that are in 

control. This means that one out of every 370 data points would on the average naturally fall 

outside of the three standard deviation control limits. 

One of the assumptions about an x-bar chart is that the input data is derived from a 

normal distribution. Therefore, the majority of the data points will be centered about the mean. 

On the average, a two standard deviation interval centered about the mean (i.e. u±o) will contain 

68.26% of the data points. Expanding the length of this interval to four standard deviations will 

contain 95.44% of the data points, and an interval of six standard deviations will contain 99.73% 

of the data points. Table 2-3 shows the relationship between the value of k and the probability of 

in-control data falling within those control limits, and the average number of data points needed 

before detecting one data point that is out of control. 
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Table 2-3: Relationship Between Number of Standard Deviations and the Percentage of Data 
Within Control Limits 

Value of k Percentage of Data 
Within Control Limits 

Average Number of Data 
Points Before Normally 
Detecting Out of Control Data 

1 68.26% 3.15 
2 95.44% 21.93 
3 99.73% 370.37 
4 99.99366% 15772.87 
5 99.9999426% 1742160.28 

One of the drawbacks of using an x-bar chart is the assumption of independent data. This 

means that the x-bar chart only looks at the current sample and does consider historic data. 

Despite this limitation, there are ways to account for historic data and data trends. One way to 

account for historic data is to use a method called "run rules." Run rules are a series of rules that 

use a "run" of data samples to determine if a process is in control. These rules allow the x-bar 

chart to not only look at the current data point, but also look at historic data points. The Western 

Electric Company first developed a set of run rules, which include these four rules: 

1 sample beyond 3 standard deviations 

2 out of 3 samples in a row beyond 2 standard deviations 

4 out of 5 samples in a row beyond 1 standard deviation 

8 samples in a row on the same side of the center line 

If any of these four rules are met, then the process is considered to be out of control. These four 

rules assume an x-bar chart using a standard three-sigma standard deviation. When the criteria 

for any of these four rules are met, then the process is considered to be out of control. However, 

Western Electric decided to include four additional rules, which are 

6 samples in a row either increasing or decreasing 

15 samples in a row within 1 standard deviation of the center line 

14 samples in a row alternating up and down 

8 samples in a row with no sample within 1 standard deviation of the center line 
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These eight rules make up what are now called the Western Electric run rules. Although they do 

not take into account all of the previous data points, they do look at some of the historic data to 

make a decision if the process is in control or not. 

The x-bar chart has been used in past research in numerous ways. Air Mobility Command 

wanted to know if there were an unusually high number of departure delays. Liu (1997) used x- 

bar charts to monitor the average delay time for departing aircraft over a 13-month period.   Using 

an x-bar chart, they found that a significant number of departures were late. Using this 

information, they knew to look for assignable causes for these delays, which they then fixed. In 

another instance, x-bar charts were used to determine a patient's risk of liver disease based upon 

the patient's work environment. Richardson (1996) used x-bar charts to monitor three different 

environmental factors that were present in patient's workplaces. He wanted to know if increased 

levels of these environmental factors would indicate an increased risk of liver disease.   He 

tracked these factors and found that certain levels did increase the patient's risk of liver disease. 

2.4.3.       R-Charts and S-Charts 

Often, it is not a mean shift that affects the stability of a process, but an increase in the 

variability of a process. A variability increase can affect the process by increasing the number of 

products that do not meet the required specification. One method of tracking the process 

variability is the R-chart. An R-chart tracks the range of each sample and signals an out of 

control process when the range is too large.   An example of an R-chart is shown in Figure 2-5. 
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Figure 2-5: Example of an R-chart with an Upper Control Limit 

Like the x-bar chart, the R-chart requires that the data is derived from a normal 

distribution. The range of the sample is calculated by taking the difference between the largest 

and the smallest value, shown by Equation 2-2. 

where 

/? = X     — X i max       ■A- min 

Ri =    Range of sample i 

Xmax = Largest data point in sample 

X™ = Smallest data point in sample 

(2-2) 

The control chart monitors the range of each sample. If the sample range is too great, then the 

conclusion is that the process is out of control. To calculate the control limits and the centerline, 

use Equation 2-3 to find the mean of all the ranges. 
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where 

rn = number of samples. 

R = grand mean of all ranges 

To find the control limits, we use the assumption of normality to find the standard relationship 

between the range and the standard deviation. This relationship is often called the relative range, 

and is defined as W = R/a.   Using the standard deviation of W, we can estimate the standard 

deviation of R as oR = d3a, where d3 is a function of the sample size n (Montgomery, 1997). 

Thus, the control limits and the center line are defined by Equation 2-4. 

CL = R (2-4) 

LCL = R-3d3 — 3d2 

Simplifying these control limits by letting D4 = 1 + 3*(d3/d2) and D3 = 1 - 3*(d3/d2), we define the 

control limits by Equation 2-5. 

UCL = D~R 

CL = R (2-5) 

LCL = D3R 
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Similar to an R-chart is the S-chart. The S-chart also measures the variability of the 

process, but uses the standard deviation of each sample, versus the range as used by the R- 

chart. Although the R-chart is easier to calculate than the S-chart, the S-chart has two distinct 

benefits over the R-chart. The first benefit is that the S-chart is a more accurate representation of 

process variability than the R-chart. This is especially true for sample sizes greater than ten. The 

second benefit of an S-chart is that it is better suited for control charts with variable sample sizes. 

An example of an S-chart is in Figure 2-6: 
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Figure 2-6: Example of an S-Chart with Upper and Lower Control Limits 

The sample standard deviation is calculated by taking the square root of the sample 

variance, which is defined by Equation 2-6. 
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where 

s2 = -a  (2-e; 

X| = mean of sample I 

x = grand mean of all samples 

n = number of samples 

As with the R-chart, the mean standard deviation is simply the average of all sample standard 

deviations. The control limits are again based upon the relationship between a and S. For this 

control chart, S=c4o, where c4 is a constant based upon the sample size. Also, the standard 

deviation of S is OyJ\ - c\ . Therefore, the control limits for an S chart in terms of the sample 

variance are defined by Equation 2-7. 

UCL^S+3—J\-c2 

CL=S (2-7) 

ZCL = S-3—Jl-c4
2 

cA 

where 

S = average of all standard deviations 

Again, simplifying the control limits such that B3 =1 ^/l - c1  and B4 = 1H ^/l - c4 , the 

control limits are defined by Equation 2-8. 

c4 c4 
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UCL = B4S 

CL = S 

LCL = B3S 

(2-8) 

2.4.4.       Variable Charts for Variable Sample Size 

There are few differences between variable charts with constant sample sizes and those 

with variable sample sizes. The biggest difference is that the control limits for variable sample 

size control charts are not constant. Since the variance is defined as  la1/, as the sample size 
V  /n 

changes, so will the process variance. In order to account for changing sample size, the control 

limits will differ for each sample. An example of a variable sample size x-bar chart is shown in 

Figure 2-7: 
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Figure 2-7: Example of an X-bar Chart With Variable Sample Sizes 
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In addition to the changing control limits, the grand mean is no longer calculated by a simple 

average of the sample means. Rather, the sample size of each sample must be taken into 

account. This is done by taking the product of each sample mean and sample size, adding them 

all together, and dividing it by the sum of all sample sizes. The calculation for the grand mean is 

defined by Equation 2-9. 

V 

m   

m 

2", 
1=1 

(2-9) 

where 

m = number of samples 

ni = sample size of sample i 

xt = mean of sample i 

The standard deviation of a variable sample size control chart is defined by Equation 2-10. 

S = 

m 

I>,-1)S,2 

1=1 
in 

2-.- 
i=i 

m 

1/2 

(2-10) 

where 

m = number of samples 

ni = sample size of i 

Sf = variance of sample i 
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The control limits for a variable sample size chart are based upon the size of each sample. 

These control limits are defined by Equation 2-11. 

UCL = jii + A3'S 

CL = fj, (2-11) 

LCL = ß-A3S 

where 

|x = grand mean 

S = standard deviation 

A3 is a relational constant as defined by Equation 2-12. 

4 = 
4QI-D 
4n-3 

■Jn 
(2-12) 

where 

n = sample size 

k = number of standard deviations between mean and control limit 

However, these types of charts do have their limitations. The first limitation is that these 

charts do not work for autocorrelated data. This is due to the fact that these charts assume that 

each data point is independent of previous data points. Therefore, time series and correlated 

data decrease the accuracy of the x-bar chart. The second limitation is that the control chart is 

built upon data that is assumed to be in control. Since the control limits are based upon the 

standard deviation of the initial data set, if this data set is not in control, then the control limits are 
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wider than they should be. Building control limits on data that is not in control in turn decreases 

the accuracy of the control chart. 

2.4.5.       The Cumulative-Sum (CUSUM) Charts 

Although the x-bar and R charts are effective tools in determining process control, they 

have two drawbacks. First, these charts are not as effective in detecting smaller shifts, such as a 

0.5a or 1.0o shift. It takes much longer for an x-bar or an R chart to detect the mean shift, if at 

all. The second drawback of an x-bar or an R chart is that these charts typically do not take into 

account previous data points, except in the case of using run rules. A cumulative sum (CUSUM) 

chart is able to look at historic data to determine if the data trend shows a shift in the data. The 

CUSUM chart was first developed by Page (1954) and is widely used to monitor the mean of a 

process. It is better than the standard Shewhart chart in that it is able to detect small deviations 

from the mean (Reynolds, 1990). 

The basic purpose of a CUSUM chart is to track the distance between the actual data 

point and the grand mean. Then, by keeping a cumulative sum of these distances, we can 

determine if there is a change in the process mean, as this sum will continue getting larger or 

smaller. These cumulative sum statistics are called the upper cumulative sum (C,+ ) and the 

lower cumulative sum (C,r). They are defined by Equation 2-13. 

C; = max[0,*,. -(^0 +K) + CU] 

C: = max[0, (jU0 - K) - *,. + C:_, ] 

where 

X| = the current data point 

Ho = the grand mean 

K = slack value. 
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However, we do not want the cumulative sums to be too sensitive such that they sum even the 

smallest deviations from the mean. This is why we include a slack value K. Any deviation that is 

smaller than the slack value is not added to the cumulative sums. It important to select the right 

value for K, since a large value of K will allow for large shifts in the mean without detection, 

whereas a small value of K will increase the frequency of false alarms. Normally, K is selected to 

be equal to 0.5c. 

Since both the upper and lower cumulative sums are positive numbers, there is only one 

control limit. This control limit is simply the product of the multiplier (H) and the standard 

deviation, or CL = Ha. It is how large the cumulative sum must increase before indicating that the 

process is out of control. The standard value of H is set to five, thus, most CUSUM control limits 

are set to five standard deviations. An example of a CUSUM chart is shown in Figure 2-8. 

-Actual data set 

Center Line 

Out of control 

^Control Limit 

HJpper cumulative sum 

Lower cumulative sum 

Figure 2-8: Example of a CUSUM Chart 

The actual data set has a small mean shift, which occurs at sample eleven. The following 

points all are above the center line, but not enough to signal on a traditional Shewhart chart. 
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However, it takes four samples for the CUSUM chart to signal. This is an example of how this 

type of control chart is an effective method of detecting smaller mean shifts. 

2.4.6.       The Exponentially Weighted Moving Average (EWMA) Charts 

The exponentially weighted moving average chart is similar to the CUSUM chart in that it 

can detect smaller shifts in the process mean. It also takes into account historic data. This chart 

tracks the exponentially weighted moving average, which is defined by Equation 2-14. 

z,=^x/+(l-A)z/_, (2-14) 

where 

X| = data point at period i 

Zj.i = moving average at time i-1 

X = EWMA weight 

Lambda (X) is a weight given to the current data point. Since the value of the moving average is 

a linear combination of the current data point and the previous moving average, a larger value of 

X gives more weight to the current data point. The value of X can be between zero and one, but 

is most often chosen between 0.05 and 0.3. The initial value of z (i.e. Zo) is set to the grand mean 

(u). Therefore, the current moving average is a linear combination of the current data point and 

the previous moving average. Since every moving average statistic is a linear combination of the 

previous moving average, the current moving average is a linear combination of all previous data 

points. An example of an EWMA chart is shown in Figure 2-9. 
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Figure 2-9: An Example of an EWMA Control Chart 

The control limits and center line are defined by Equation 2-15. 

where 

UCL = tu0 + La A       „  [1 - (1 - A)2' ] 
(2-A)' 

CL = p0 

Ho = grand mean 

a = standard deviation 

i = sample number 

I = EWMA weight 

L = number of standard deviations from the center-line. 

(2-15) 
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2.5.       Autocorrelated Data 

Autocorrelation is a measure of the tendency of neighboring observations from a time- 

series to vary linearly together rather than independently (Zalewski, 1995). Autocorrelation can 

lead to false conclusions if it is not accounted for during analysis. One method of determining 

autocorrelated data is to use the Durbin-Watson test for autocorrelation. Equation 2-16 shows 

this hypothesis test. 

0   H (2-16) 
Ha:p*0 

where p is a measure of the correlation between data points 

The larger the value of p, the more autocorrelated the data set is. The Durbin-Watson test 

statistic is the D-statistic, which is calculated by using an ordinary least squares fit and finding the 

residual et, which is defined in Equation 2-17. 

et=Yt-Yt (2-17) 

where 

et = the error term or the residual 

Yt = the current data point 

Y = the estimate of the current data point 

The D-statistic is calculated by Equation 2-18. 
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5>,-e,-,)2 

D = ^  (2-18) 

where 

n = number of samples 

et~ error term of sample at time t 

The smaller the D-statistic is, the more likely the data is autocorrelated. A low value of et - eM 

indicates that adjacent error terms tend to be the same magnitude, which is a sign of positive 

autocorrelation. 

Another method of detecting autocorrelation is to look at the correlation between data sets 

at different lag periods. A high correlation coefficient indicates that there exists a high level of 

autocorrelation between the data sets at those lag periods. For example, a high correlation 

coefficient between the data sets one lag apart indicates that the data is highly correlated with the 

previous time period. By looking at the correlation coefficients of different lag periods, we hope to 

determine the number of lags needed such that there is no autocorrelation. 

2.5.1.       Control Charts for Autocorrelated Data 

The presence of autocorrelated data affects the reliability of the traditional control chart. 

The most common result is the increase in the false alarm rate. This means that the control chart 

will signal that the process is out of control much more often. Most of these signals will not have 

assignable causes; rather, they are induced by the autocorrelative structure of the data 

(Mastrangelo and Montgomery, 1991). 

The general solution to the problem of autocorrelation is to fit an appropriate time series 

model and apply a control chart to the residuals. One of the most common time series models to 
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use with an autocorrelated data set is a first order autoregressive model, or an AR(1) model. It 

assumes that each data point is defined by Equation 2-19. 

Xt = l; + <$>Xt.1+et (2-19) 

To find the values of % and <]), use a least squares linear fit on the data set. The residuals (et) 

should now be independent and normally distributed. 

Another method is to use a moving centerline EWMA chart. This uses the value of the 

moving average Z to determine control limits for the actual data. To determine the control limits 

for Xt, calculate the value of ZM using equation 2-14. This value of Zu becomes the center line 

for Xt. Thus, the control limits are calculated using Equation 2-20 

UCLt =zM+3(T 

C£,=z,_i (2-2°) 
LCLt =z,_i+3<7 

Thus the center line and control limits change according to the previous moving average. 

An example of this type of control chart is shown in Figure 2-10 
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Figure 2-10: Example of a Moving Centerline EWMA Chart 

However, these charts are not effective when used to classify pilot mental workload. 

These charts do not signal during periods of high workloads. Instead, they signal when there 

appears to be a change in the workload level. Figure 2-11 shows actual heart beat interval data. 

Notice that the chart does not signal very often. However, those signals indicate changes to the 

workload level. 
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Figure 2-11: Moving Centerline EWMA Chart Using Heart Beat Interval for Pilot 1, Day 1 

A simple way to use an EWMA chart with autocorrelated data is to let A^1 - 0, where 9 is 

found using a first-order integrated moving average model, shown in Equation 2-21. 

Xt = XM + et - Ben (2-21) 

This is only an approximation, and assumes that the first-order integrated moving average is the 

underlying time series function. It also assumes that the data is positively autocorrelated, and 

that the process mean does not drift too quickly. 
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3. Traditional Control Charts 

3.1. Overview 

This chapter looks at the use of different control charts as classifiers of pilot mental 

workload. The first control chart we use to identify pilot mental workload is the standard x-bar 

chart. We use this chart because it is relatively simple to build and to interpret (Montgomery, 

1997). We find that the most challenging part of building the control chart is the conversion of the 

data set. This involves collecting the raw data and grouping it into samples. There is also a 

variable that has a high level of autocorrelation. Since standard Shewhart charts assume 

independent data, we address this problem by trying several other control charts. Once we build 

these control charts, we also vary the control limits to maximize the classification accuracy. 

Finally, we examine whether a combination of the seven control charts may improve the 

classification accuracy. 

3.2. Data Collection and Conversion 

The data sets used for this research consist of 151 different psychophysiological features. 

These features were monitored and recorded for one pilot during a forty-four-minute flight. The 

flight was split into twenty-two, two-minute segments, each of which was classified as "high" or 

"low" workload. Of the twenty-two flight segments, 58% of them were classified by the pilot as 

low workload, and 42% of the segments were classified as high workload. Figure 3-1 shows the 

actual workload level across all twenty-two segments. 
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Figure 3-1: Pilot Mental Workload Level Across All Twenty-Two Segments 

Data were collected for ten different pilots on two different days, with each pilot flying the same 

route on each day. This research effort uses the flight data for pilot 1 and pilot 4 across two 

separate days, for a total of four different data sets. Each data set contains the brain activity, 

cardiac, respiratory, and ocular measurements that were recorded during the flight. For cardiac 

measures, the data set contains the time between heartbeats. For respiratory measurements, 

the data set contains the time between breaths, and the minimum and maximum amplitude of the 

breath. For ocular measurements, the data set has time between blinks, the amplitude of the 

blink, and the duration of the blink. 

3.2.1.       Developing Synchronized Data Set 

One of the classification schemes we are using is a combination of the different 

psychophysiological features. However, heartbeats, eye blinks, and breaths do not occur at the 

same time, and therefore there can be no comparison between individual events. Rather, the 

comparison between features must be within a given time period (i.e. what are these features 

doing in the first minute of flight?). We must sample the data such that the duration of each 
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sample is constant. However, constant time duration means that the size of each sample will be 

different. 

The program that compiles the raw data, generates the synchronized data set, and puts 

the data into a spreadsheet is a Microsoft Excel macro. The macro reads in the data for each 

psychophysiological feature and separates the data into samples, each with the same time 

interval. One of the considerations in building this data set is how to determine the length of the 

time interval. It has to be long enough so that on the average, there are more than two data 

points per sample. This requirement provides a measure of the data variability, which is critical in 

building the control limits. Of the average arrival times of heartbeats, breaths, and blinks, we find 

that the most infrequent feature to occur are eye blinks, which have an average inter-arrival time 

of roughly 4.7 seconds. To ensure that a majority of the samples have at least two eye blinks, the 

minimum time interval must be at least 9.4 seconds. However, a larger time interval decreases 

the response time of the classifier, so we want to keep this time interval as short as possible. For 

this research effort, we are using a time interval of ten seconds. Although taking samples at such 

a short time interval decreases the accuracy of the estimate of the process variation, a longer 

time interval delays the response time of the classifier. The decreased response time affects its 

utility when used with the automated system. 

For each sample, the macro calculates the sample size (n), the sample mean (X), the 

sample standard deviation (S), and the appropriate value for A3. The value for A3 is dependent 

upon sample size, and is used to calculate the control limits. 

3.3.        Classification Accuracies 

For each classifier, we generate three classification statistics to compare the utility of one 

classifier against other classifiers, both past and present. The three statistics are misidentification 

rate, false alarm rate, and overall classification rate. A misidentification rate is defined as the 

proportion of high workload samples that are classified as low workload. This is calculated by 
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taking the number of misidentified high workload samples and dividing by the total number of high 

workload samples. The false alarm rate is defined as the proportion of low workload samples that 

are classified as high workload. This is calculated by taking the number of misidentified low 

workload samples and dividing it by the total number of low workload samples. 

An easier way to look at these two statistics is to think of them as type I and type II errors. 

Since a control chart is a series of hypothesis tests, we define the null hypothesis test as u.=Ho, or 

in simpler terms "the workload is low."  By this definition, a type I error would be defined as 

"classifying workload as high when the workload is actually low." This is the same definition as a 

false alarm rate. A type II error would be defined as "classifying workload as low when the 

workload is actually high." This is how we define the misidentification rate. 

The overall classification accuracy is the percentage of the samples that are correctly 

identified. Using the same hypothesis test defined in the previous paragraph, this is defined as 

the combination of "classifying workload as high when the workload is actually high," and 

"classifying workload as low when the workload is actually low." To calculate this accuracy, take 

the sum of the number of correctly identified low and high workload samples and divide the sum 

by the total number of samples. This is a very important metric, as this allows us to compare our 

SPC classifiers against multivariate discriminant classifiers. The classifiers that East (2000) built 

had classification accuracies between 74% and 97% when used to classify workload for same 

pilot on the same day. The classification accuracies varied depending upon the type of classifier 

used and the data set. The results from her research are shown in Table 3-1 
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Table 3-1: Summary of Classification Accuracies Using Multivariate Discriminant Classifiers 

Data Set Initial SAS SNR Factor 
Analysis 

Factor 
Analysis 

Pilot 1, Day 1 78.50% 
(151 vars) 

82.51% 
(34 vars) 

81.79% 
(14 vars) 

77.79% 
(10 vars) 

74.07% 
(6 vars) 

Pilot 1, Day 2 75.52% 
(151 vars) 

78.51% 
(71 vars) 

77.16% 
(17 vars) 

75.15% 
(13 vars) 

Pilot 4, Day 1 96.72% 
(146 vars) 

97.46% 
(79 vars) 

91.78% 
(5 vars) 

90.41% 
(3 vars) 

Pilot 4, Day 2 86.91% 
(151 vars) 

90.50% 
(62 vars) 

85.76% 
(5 vars) 

85.92% 
(3 vars) 

SPC classifiers must have this level of classification accuracy if they are to be considered 

comparable classifiers to multivariate discriminant classifiers. Also, each classifier has a 

minimum classification accuracy that can be obtained by simply classifying all segments as low 

workload. This results in a false alarm rate of 0% and a misidentification rate of 100%. Since 

58% of the segments are classified as low workload, this classifier will result in a classification 

accuracy of 58%. We will call this the naive classifier, as it requires no effort or analysis to 

achieve this level of classification accuracy. The classification accuracy of the naive classifier is 

significant for two reasons. First, several of the control charts do not produce a signal. This chart 

can be considered a naive classifier, because it classifies every segment as low workload. The 

second significance is that several of these control charts will actually produce a classification 

accuracy of less than 58%. Since a naive classifier would produce better results, a control chart 

that has a classification accuracy of less than 58% is considered to be insignificant and is thrown 

out. 

3.4.        Initial data analysis 

3.4.1.      Autocorrelation of the Data Set 

Before starting the analysis of the data, we checked to see if any of the 

psychophysiological features had autocorrelated data. We expect to see some degree of 
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autocorrelation among the inter-arrival times of the different factors. These include the heart beat 

interval, the breath interval, and the blink interval. To determine if any of the factors were indeed 

autocorrelated, we looked at the correlation of the data at lag 1 of all seven features for both 

pilots on both days. The results are shown in Table 3-2. 

Table 3-2: Correlation of Seven Features at Lag 1 for Both Pilots, Both Days 

Data Set Heart 
Beat Int 

Breath 
Int 

Breath 
Min 

Breath 
Max 

Blink 
Int 

Blink 
Amp 

Blink 
Dur 

Pilot 1, Day 1 .953 .276 .207 .351 .236 .028 .039 
Pilot 1, Day 2 .963 .117 .235 .274 .195 .383 -.002 
Pilot 4, Day 1 .984 .204 .138 .325 .149 .338 .042 
Pilot 4, Day 2 .952 .230 0 -.011 .093 .327 .040 

The only factor that shows significant signs of autocorrelation is heart beat interval. This is also 

the only psychophysiological feature that was highly correlated across all four data sets. 

Although it is not surprising that the heart beat interval was highly autocorrelated, we did not 

expect the low levels of correlation with the breath interval and blink interval. This analysis also 

shows that the breath maximum amplitude and blink amplitude may be autocorrelated as well. 

However, the level of correlation at lag 1 is not significant for these features. It was also found 

that these features are not autocorrelated across all four data sets. For this research, we assume 

that these features are not autocorrelated. We decided that the best way to deal with the 

autocorrelated data is to build an EWMA chart, since this chart accounts for data trends. We will 

use standard x-bar charts on the other six non-correlated features. 

3.4.2.       Finding the Low Data Set 

One of the assumptions of a control chart is that the mean and control limits are defined 

by data that is in control. If we use control charts to tell the difference between low and high 

workload segments, then low workload segments are defined as in-control and high workload 
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segments are defined as out-of-control. Since the data set contains segments that are classified 

as both high and low workload, building the control chart using the entire data set would produce 

inaccurate control limits. The solution is to establish a subset of the data that consists of only low 

workload segments. We call this subset the baseline of the data set. From this baseline, we 

calculate estimates of the mean and standard deviation, which are important when building 

different control charts. This estimate is specific to that feature for that pilot on that day. This is 

important because when we apply different classifiers to this data set, we change different 

variables, but the estimates of the mean and standard deviation do not change. 

However, the transitions between low and high workload segments are not instantaneous. 

During some of the segments classified as low workload, the pilot may start to show signs of high 

workload. This is because the pilot is either gearing up for these anticipated mental demands or 

the body is still recovering from a previous one. There should also be enough data points to 

generate a statistically significant baseline data set. This baseline should have at least thirty 

samples to produce an accurate estimate of the mean and standard deviation (Montgomery, 

1997). Finally, the baseline data set should be collected at the beginning of the flight. Since the 

baseline determines the appropriate levels for the control limits, the control charts do not start 

monitoring the psychophysiological features until after the baseline is complete. 

The predetermined flight path showed that the first eight segments of flight (first sixteen 

minutes) are all considered low workload. However, since the ninth segment is classified as high 

workload, the eighth segment may start to show signs of building up to the high workload 

segments. Since each sample is ten seconds long, at least three flight segments are needed to 

generate thirty samples. The baseline data set needed to be between the first three and first 

seven segments of the flight as the baseline. To determine which segments to use as the 

baseline, we took several psychophysiological features from the Pilot 1, Day 1 data set, and built 

an x-bar chart. For each x-bar chart, we change the control limits based upon the estimates of 

the mean and standard deviation generated from the baseline samples. We chose the first four 
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segments (first eight minutes of flight) as the baseline, because it had the highest classification 

accuracies across the different features. 

3.4.3.       Classifying Pilot Mental Workload Across Different Pilots and Days 

When we take a classifier and test it against other pilots and days, we take the estimates 

of the mean and standard deviation for that data set and keep it constant for all classifiers. Since 

the estimates of the mean and standard deviation do not change, what does change are certain 

control chart variables. These variables are used to determine the distance between the control 

limits and the center line. This distance is in terms of the standard deviation of the process, and 

these variables determine how many standard deviations there are between the center line and 

each control limit. As the multiplier increases, the distance between the center line and the 

control limits also increases. To use a classifier to classify mental workload for other pilots or 

days, we use the multiplier of the classifier with the estimates of the mean and standard deviation 

of the data set to classify. 

3.5.        X-bar Charts for Non-correlated Data 

For the each of the six non-autocorrelated features, we will build a standard x-bar chart, 

using the data set we separated into ten second intervals. Since the data set had variable 

sample sizes, we calculate the mean and standard deviation using Equations 2-9 and 2-10 on the 

first eight minutes of flight. Initially, we built the x-bar charts using the typical three-sigma control 

limits. We found that these x-bar charts produced low false alarm rates, but generated high 

misidentification rates, which results in marginal classification accuracies. For Pilot 1, Day 1, the 

x-bar chart that used inter-blink interval as the sole psychophysiological feature yielded the 

highest classification accuracy. However, this classification accuracy was only 63.3%, which is 

lower than the 74% classification accuracy produced by the worst multivariate classifier (East, 
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2000). The classification accuracies using single psychophysiological features with x-bar charts 

are shown in Table 3-3. 

Table 3-3: False Alarm Rates, Misidentification Rates, and Classification Accuracies for Pilot 1, 
Day 1 Based Upon Single Feature X-bar Charts with Three-Sigma Control Limits 

Feature 
False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 3.27% 7.21% 59.09% 
Breath Min Amp 13.73% 9.91% 54.17% 
Breath Max Amp 3.92% 4.50% 57.58% 
Blink Interval 22.88% 25.23% 55.30% 
Blink Amplitude 5.23% 9.01% 58.71% 
Blink Duration 5.23% 7.21% 57.95% 

None of these six control charts produces a classification accuracy over 60%. We build the same 

six control charts using the other three data sets, and found similar results. The results from all 

four data sets are shown in Appendix A. 

Since none of these six control charts produced adequate classification accuracies, we 

rebuilt each x-bar chart but allowed the value of k to change. Changing the value of k changes 

the control limits, which impacts the classification accuracy. For each control chart, we changed 

the value of k to optimize the classification accuracy. The classification accuracies using single 

psychophysiological features with variable control limit x-bar charts are shown in Table 3-4. 

Table 3-4: False Alarm Rates, Misidentification Rates, and Classification Accuracies for Pilot 1, 
Day 1 Based Upon Single Feature X-bar Charts with Variable-Sigma Control Limits 

Feature 
Value 
ofk 

False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 1.6 3.27% 84.68% 62.50% 
Breath Min Amp 3.0 13.73% 9.91% 54.17% 
Breath Max Amp 3.0 3.92% 4.50% 57.58% 
Blink Interval 5.0 16.99% 74.77% 58.71% 
Blink Amplitude 9.0 30.72% 18.92% 74.20% 
Blink Duration 2.5 38.56% 9.01% 73.86% 
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We found that the classification accuracies improve for four of the six of the x-bar charts. The 

most significant improvements are found using blink amplitude and blink duration x-bar charts. 

The classification accuracy of these two charts improved to over 73%, which is very comparable 

to previous classifiers. The results from the other three data sets are in Appendix B 

Again, we build the same control charts for the other three data sets. For each data set, 

we maximize the classification accuracy for each psychophysiological feature by changing the 

value of k. We find that the classification accuracies for the other three data sets are very similar 

to ones generated from pilot 1, day 1. The only x-bar chart that that produces decent levels of 

classification accuracies across all four data sets was one used with blink duration. This x-bar 

chart has classification accuracies that exceeded 68% across all four data sets. The 

classification accuracy using blink duration with an x-bar chart is shown in Table 3-5. 

Table 3-5: Classification Accuracies of X-bar Charts Using Blink Duration as the Sole Feature 

Data Set 
Value 
of k 

False 
Alarm Rate 

Misidentification of 
High Workload Rate 

Classification 
Accuracy 

Pilot 1, Day 1 2.5 38.56% 9.01% 73.86% 
Pilot 1, Day 2 1.0 37.75% 22.73% 68.58% 
Pilot 4, Day 1 1.3 16.77% 35.19% 75.67% 
Pilot 4, Day 2 1.3 17.42% 30.28% 77.27% 

An x-bar chart using blink duration may be a good classifier of pilot mental workload. However, 

ocular measurements are good indicators of visual information processing. Although some 

instances of high mental workload is a result of high visual demands, there are instances where 

high mental workload is a result of other types of Stressors. It may be during these instances 

where this control chart fails to accurately classify pilot mental workload. 

3.6. EWMA Control Charts for Autocorrelated Data 

X- bar charts do not work with autocorrelated data, so we use a different type of control 

chart to monitor heart beat interval data. One control chart that works well with autocorrelated 
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data is an EWMA chart (Mastrangelo and Montgomery, 1991). To build this chart, we converted 

the mean of each sample to a Z statistic, which is defined by Equation 2-16. To build the control 

limits for the EWMA chart, we choose typical values for L To provide an estimate of X, we use 

Equation 2-21 to find an estimate of 9. We estimate X to be 1-0. The results of using an EWMA 

chart across all four data sets are shown in Table 3-6. 

Table 3-6: False Alarm Rate, Misidentification Rate, and Classification Accuracy for a Standard 
Three Sigma EWMA Chart for All Four Data Sets 

Data Set 
False Alarm 
Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Pilot 1, Day1 45.75% 32.43% 59.85% 
Pilot 1, Day 2 23.84% 60.91% 60.54% 
Pilot 4, Day 1 27.10% 12.96% 78.71% 
Pilot 4, Day 2 37.42% 0.92% 77.65% 

Although the EWMA chart has marginal results for both pilot 1 data sets, the same chart for both 

pilot 4 data sets attain classification accuracies over 77%. We also maximize the classification 

accuracy by changing the values for L. Again, we find that the classification accuracy for pilot 1 

was still low, but the classification accuracy for pilot 4 was over 81% on both days. The results of 

this analysis are shown in Table 3-7. 

Table 3-7: False Alarm Rate, Misidentification Rate, and Classification Accuracy for a Variable- 
Sigma EWMA Chart for All Four Data Sets 

Data Set Value 
ofL 

Value of A False 
Alarm 
Rate 

Misidentification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Pilot 1, Day 1 9.1 0.0271 45.10% 33.33% 59.85% 
Pilot 1, Day 2 5.5 0.0202 36.42% 43.64% 60.54% 
Pilot 4, Day 1 7.1 0.0501 16.13% 21.20% 81.75% 
Pilot 4, Day 2 7.1 0.0662 21.94% 8.26% 83.71% 
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Even though the EWMA chart using Pilot 4 data produces good classification accuracies, there is 

no evidence that this control chart is an accurate method of classifying mental workload for all 

pilots. We know that using an EWMA chart with cardiac features using pilot 1 data would only 

result in a classification accuracy of 60.54% at best. Therefore, EWMA charts do not seem to 

work across pilots. 

3.7.        Monitoring Multiple Control Charts 

For each of the four data sets, we use the EWMA chart for heart rate with the other six x- 

bar charts to see if a combination of these seven control charts could improve the accuracy of the 

classifier. The control charts with variable-sigma control limits has better classification accuracies 

than standard three-sigma control charts, so we use these control charts only. We look at 120 

possible combinations of the seven control charts to determine if there is a combination that 

provided significant improvement to the current classifier. Each combination included anywhere 

between two and seven control charts. We assume that for there to be a signal, all the control 

charts must signal during the same segment. We found that of the 120 different combinations of 

control charts, ninety-three of them did not signal at all. Therefore, these classifiers have the 

same classification accuracy as the generic classifier (0% false alarm rate, 100% misidentification 

rate). Of the remaining twenty-seven, none of the combined control charts has a classification 

accuracy greater than 63.3%. The only promising classifier was a combination of all seven 

different control charts. 

This combination of control charts can be considered as series of binomial random 

variables (i.e. of the seven control charts, x control charts signaled). For each sample, we count 

the number of control charts that signals a high workload. High workload is signaled if a certain 

number of control charts signal in the same sample period. We vary the number of control chart 

needed to signal for a high workload to optimize the classification accuracy. The result of this 

analysis is in Table 3-8. 
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Table 3-8: False Alarm Rates, Misidentification Rates, and Classification Accuracies for Pilot 1, 
Day 1 Based Upon Number of Charts Signaling 

Number of Charts to 
Produce a Signal 

False 
Alarm Rate 

Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 signals 37.25% 78.38% 45.45% 
2 of 7 signals 18.95% 79.28% 55.68% 
3 of 7 signals 18.30% 79.28% 56.06% 
4 of 7 signals 18.30% 97.30% 48.48% 
5 of 7 signals 5.88% 100% 54.55% 
6 of 7 signals 0.65% 100% 57.58% 
7 of 7 signals 0% 100% 57.95% 

We found that the classification accuracies decrease when using multiple control charts. Similar 

results are found using the other three data sets. Using a combination of x-bar and EWMA charts 

proved to be less accurate than a control chart for individual features. 

3.8.        Cumulative Sum (CUSUM) Charts 

Since x-bar charts did not provide the desired classification accuracy, we use a different 

type of control chart. A cumulative sum (CUSUM) chart might work better, since it has some 

advantages over x-bar charts. The first advantage is that it is able to detect smaller mean shifts. 

Also, the time between the actual mean shift and when the control chart signals is reduced. This 

means that a CUSUM chart should be able to detect high workload periods quicker, thus reducing 

the misidentification rate. The second advantage is that a CUSUM chart looks at historic data, 

whereas an x-bar chart assumes independent samples. The classification of high mental 

workload may be better classified using data trends or data runs, rather than independent data 

samples. 

Although there has been work done using variable-size samples for Shewhart charts, 

there is little research in the realm of a variable-size CUSUM chart. Most of the research in this 

area deals with the use of varying the sample size (Annadei et al, 1995) or sample interval 

(Reynolds et al, 1990) to improve the accuracy and performance of the CUSUM chart. However, 

the assumption with these methods is that it allows the analyst to adjust the sample size based 
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upon past results. It does not address the issue of data that has naturally varying sample size, as 

in the case with our data set. Therefore, we have to try a different method to resolve the problem 

of multiple sample size. 

The method we chose to calculate the mean and standard deviation is to use the same 

method for calculating a mean and standard deviation as a variable size Shewhart chart. Thus, 

for this CUSUM chart, we calculate the mean using Equation 2-9 and the standard deviation with 

Equation 2-10. We also use the same first four segments as the data set as the baseline. 

3.8.1.       Traditional CUSUM Charts 

Using the same synchronized data set used with the Shewhart charts, we build seven 

CUSUM charts for each data set to determine the effectiveness of the CUSUM chart. We build 

these control charts using the values of k = 0.5a and H= 5, which are typical for CUSUM charts. 

Using the standard value for H, we found that the control charts did not have very high 

classification accuracies. Therefore, we optimize the classification accuracy for each individual 

psychophysiological feature by adjusting the value of H. The results of this analysis are shown in 

Table 3-9. 

Table 3-9: False Alarm Rates, Misidentlfication Rates, and Classification Accuracies for Pilot 1, 
Day 1 Using CUSUM Charts 

Feature Value 
ofH 

False 
Alarm 
Rate 

Misidentification 
of High 
Workload Rate 

Classification 
Accuracy 

Heart Beat Interval 53 36.60% 0% 78.79% 
Breath Interval 0.3 3.92% 83.78% 62.50% 
Breath Min Amp 40 0% 100% 58.02% 
Breath Max Amp 70 0% 100% 58.02% 
Blink Interval 3.1 12.42% 75.68% 60.98% 
Blink Amplitude 350 0% 100% 58.02% 
Blink Duration 50 0% 100% 58.02% 
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By building the control charts in this method, we found that there was a big improvement over 

traditional Shewhart charts in terms of classification accuracy.   In fact, the use of heart beat 

interval alone had better classification accuracies than previous classifiers. We found this to be 

true across all four data sets. These results are shown in Table 3-10. 

Table 3-10: Results of Using a CUSUM Chart with Heart Beat Interval Across Both Pilots, Both 
Days 

Data Set Value of 
H 

False 
Alarm 
Rate 

Misidentification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Pilot 1, Day 1 53 36.60% 0% 78.79% 
Pilot 1, Day 2 53 3.95% 24.55% 87.40% 
Pilot 4, Day 1 48 38.06% 0% 77.57% 
Pilot 4, Day 2 17 38.06% 0% 77.65% 

3.8.2.       Combination of CUSUM Charts 

As with the Shewhart charts, we looked to see if using multiple CUSUM charts could improve the 

classification accuracy. The results are shown in Table 3-11. 

Table 3-11: False Alarm Rates, Misidentification Rates, and Classification Accuracy of Pilot 1, 
Day 1 Based Upon Number of Charts Signaling 

Number of Charts to 
Produce a Signal 

False 
Alarm Rate 

Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 60.78% 24.32% 54.55% 
2 of 7 8.50% 90.99% 56.82% 
3 of 7 0% 100% 57.95% 
4 of 7 0% 100% 57.95% 
5 of 7 0% 100% 57.95% 
6 of 7 0% 100% 57.95% 
7 of 7 0% 100% 57.95% 

We found that combining the CUSUM charts actually diminishes the classification accuracy. We 

found similar results when combining the seven CUSUM charts for the other four data sets. It 

49 



appears that the combination of control charts increases the error rates, rather than the 

classification accuracies. Therefore, it may be more beneficial to look individual 

psychophysiological features rather than a combination of them. 

3.9.        Testing the Classifiers Across Pilots and Days 

Although we found several classifiers that had high classification accuracies for the same 

day and same pilot, the next step is to determine if these classifiers can retain these high 

classification accuracies across the different data sets. To apply the control charts across the 

different data sets, we take the values of K or H (difference between the center line and the 

control limits) and use them to rebuild the control limits for the other data sets. However, we still 

use the value of the mean and standard deviation specific to that data set. These numbers are 

calculated using the first four segments of flight, which we established as the baseline. 

3.9.1.       CUSUM Chart Using Heart Beat Interval 

The first control chart we test was the CUSUM chart using heart beat interval. The value 

of H was specific to the classifying data set, but the mean and standard deviation were specific to 

the data set being classified. The result of this analysis is in Table 3-12. 

Table 3-12: Classification Accuracy Using Heart Beat Interval as a Classifiers Across Different 
Pilots and Different Days 

Data Set 

Pilot 1, Day 1  788 

Classification 
Accuracy 
Against Pilot 
1, Dayl 

jovo. 

Classification 
Accuracy 
Against Pilot 
1,Day2 
85.6% 

Pilot 1, Day 2 
Pilot 4, Day 1 
Pilot 4, Day 2 

77.8% 
65.2% 
58.0% 

36.4%| 
75.4% 
76.1% 

Classification 
Accuracy 
Against Pilot 
4, Day 1 
73.1% 
73.9% 
76.1% 
67.4% 

Classification 
Accuracy 
Against Pilot 
4, Day 2 
75.4% 
74.6% 
75.4% 
76.9% 
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We found that the classification accuracy decreases when applied to the other data sets. 

However, the Pilot 1 classifiers maintained a high classification accuracy across all four data sets. 

In both cases, the classification accuracy remained above 73%. This is a big improvement over 

past classifiers in that the classification accuracy does not decrease significantly when applied to 

different pilots and days. 

3.9.2.      X-bar Chart Using Blink Duration 

The second control chart we found had decent classification accuracies across the 

different data sets was an x-bar chart using blink duration as the primary classifier. To apply the 

classifier, we changed the value of K, but kept the value of the mean and standard deviation 

specific to the data sets. The result of the analysis is in Table 3-13. 

Table 3-13: Classification Accuracy of Using Blink Duration as a Classifier Across Different Pilots 
and Different Days 

Data Set Classification 
Accuracy Against 
Pilot 1, Day 1 

Classification 
Accuracy Against 
Pilot 1, Day 2 

Classification 
Accuracy Against 
Pilot 4, Day 1 

Classification 
Accuracy Against 
Pilot 4, Day 2 

Pilot 1, Day 1 '.73»B%-    . 65.90% 65.80% 72.35% 
Pilot 1, Day 2 68.56% ■ 68.58%; 75.29% 75.76% 
Pilot 4, Day 1 70.83% 68.58% 75 63% 77.27% 
Pilot 4, Day 2 70.83% 68.58% 75.63% 1 l.dl/Q 

We found that the classification accuracies did not significantly decrease when applied to 

other data sets. We found that the classifier for Pilot 4 seemed to work the best across the 

different data sets. These classifiers did not produce the same classification accuracies as 

previous classifiers when used to classify pilot mental workload for the same pilot on the same 

day. However, they maintain the classification accuracy when used to classify pilot mental 

workload for different pilots on different days. 
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3.70.      Summary 

We found that using traditional control charts for variables is not an effective classifier with 

regard to pilot workload. In only a few cases did these control charts work. However, what we 

did find is that the control charts classifiers produces high classification accuracies maintained a 

high level of classification accuracy across the different data sets. We found that what a control 

chart lacks in same day, same pilot accuracies it makes up for by being robust enough to classify 

across different pilots and different days. 

52 



4. Other Types of Control Charts 

4.1.        Overview 

Although several of the traditional control charts are acceptable classifiers of pilot mental 

workload, we want to make several modifications to the traditional control charts. One of the 

modifications we make is to modify the traditional cumulative sum (CUSUM) chart to include a 

ceiling. This ceiling limits the value of the cumulative sum statistics. This should make the 

CUSUM chart more sensitive to a change from high mental workload to low mental workload. 

Another change is to rebuild the data set so that the samples are of a fixed size, as opposed to 

samples that are of a fixed time interval. Since we found that control charts using singular 

psychophysiological features are more accurate, there is no need to keep the constant time 

interval. 

4.2.        Cumulative Sum (CUSUM) Charts With a Ceiling 

A CUSUM chart has several advantages over Shewhart charts. First, it is an effective 

method of detecting small changes in the process mean. It is very possible that the psychological 

differences between high and low workload segments are too small to be detected by an x-bar 

chart. A CUSUM chart is very effective in detecting shifts between one and two standard 

deviations (Reynolds et al, 1990). Also, a CUSUM chart might be very effective with dealing with 

the ramp up periods before and after high mental workload segments. Since the CUSUM is able 

to detect data trends, the ability to look at previous data points will help classify pilot workload. 

The misidentification rate of the best classifiers is much lower than the false alarm rate. 

Improvement to the classification accuracy requires minimizing the occurrence of this type I error. 

One of the reasons why the false alarm rate is larger than the misidentification rate is the CUSUM 

chart is unable to track the low workload periods between two separate high workload periods. 

During these high workload periods, the values of the cumulative sum statistics increases so 
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rapidly that it takes too long to come back down below the control limit and indicate the pilot has 

returned to a state of low mental workload. Often, by the time that the cumulative sum statistic 

decreases enough to cross the control limit again, the pilot begins another period of high mental 

workload. The result is a high occurrence of false alarms. A limit on the cumulative sum statistic 

would decrease the response time to a period of low workload. This decreases the occurrence of 

false alarms and increases the accuracy of the classifier. 

The biggest question with this type of control chart is to determine where the ceiling 

should be in relationship to the control limit. Since there has been no research in this area, we 

will try different distances for the ceiling height (c).  An example of the CUSUM chart with a 

ceiling is shown in Figure 4-1. 
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Figure 4-1: Example of a CUSUM Chart with a Ceiling 

We initially choose a value of c=10a for the ceiling height for all data sets. Since heart beat 

interval was the only psychophysiological feature to have significant classification accuracies, we 

only built modified CUSUM charts with this feature. The classification accuracies of the modified 
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CUSUM chart are compared to the results of a traditional CUSUM chart. The result of this are in 

Table 4-1. 

Table 4-1: Comparison of Traditional and Modified CUSUM Charts Using Heart Beat Interval 
Based Upon Classification Accuracy 

Data Set Traditional CUSUM 
Classification Accuracy 

Modified CUSUM 
Classification Accuracy 

Pilot 1, Day 1 78.79% 78.78% 
Pilot 1, Day 2 87.40% 87.40% 
Pilot 4, Day 1 77.57% 86.69% 
Pilot 4, Day 2 77.65% 77.65% 

In most cases the modified CUSUM chart did not increase the classification accuracy of 

the control chart. One possible conclusion is that the classification accuracy is sensitive to the 

value of c. To test this theory, we rebuild each CUSUM chart to maximize the classification 

accuracy, subject to both the value of H and c. We find that only in one of the four cases did the 

classification accuracy improve, and this improvement was very minimal. Therefore, the 

classification accuracy does not seem to be very sensitive to the ceiling height. 

The modified CUSUM charts are not as effective as we originally hoped it might be. This 

new modification to the CUSUM chart may need to be reworked before it can be a useful tool to 

classify pilot mental workload. Therefore, until we can make additional improvements to the 

modified CUSUM chart, using traditional CUSUM charts seems best. 

4.3.        CUSUM Charts with Fixed Sample Sizes 

We found that a CUSUM chart using heart beat interval is able to classify pilot mental 

workload. Therefore, we want to explore different variations on this classifier to improve the 

classification accuracy. The original data set uses a constant time interval but varies the sample 

size. However, there is no reason to keep this time interval if heart beat interval is not used in 

conjunction with any other psychophysiological feature. Since heart beat interval seems to be the 
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only significant psychophysiological feature when using a CUSUM chart, we can take a sample 

with a fixed number of heartbeats. We choose to use sample sizes of one, three, five, and ten 

heartbeats. We are able to use a sample size of one since a CUSUM chart can be used with 

individuals (Montgomery, 1997). Using the fixed sample size data set, we recalculate the 

classification accuracies of each of the CUSUM charts using heart beat interval. The results from 

Pilot 1, Day 1 are in Table 4-2. 

Table 4-2: False Alarm Rate, Misidentification Rates, and Classification Accuracies of Pilot 1, Day 
1 Data Using a Fixed Sample Size CUSUM Chart 

Sample 
Size 

Value 
ofH 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 76.4 39.33% 0% 77.52% 
3 21.5 39.28% 0% 77.57% 
5 15.3 39.28% 0% 77.48% 
10 7.7 39.26% 0% 77.59% 

We found similar results using the other three data sets. These results are in Appendix E. The 

classification accuracies found using fixed sample size CUSUM charts are similar to those 

attained using variable sample size CUSUM charts. One thing that we did find out was that the 

classification accuracy is not sensitive to sample size. 

Even though CUSUM charts with ceilings did not have the expected results with variable 

sample size CUSUM charts, using fixed sample sizes may improve this classification accuracy. 

The result from a CUSUM chart with a ceiling for pilot 1, day 1 is in Table 4-3. 

Table 4-3: False Alarm Rate, Misidentification Rate, and Classification Accuracy of a CUSUM 
Chart with a Ceiling for Pilot 1, Day 1 

Sample 
Size 

Value 
ofH 

Ceiling False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 76.4 21.1 33.64% 1.16% 80.28% 
3 21.5 21.5 33.58% 0.10% 80.40% 
5 15.3 22.0 33.40% 1.10% 80.42% 
10 7.7 22.5 33.06% 1.10% 80.66% 

56 



We found that the classification accuracy did improve somewhat over traditional CUSUM 

charts. The addition of a ceiling improves the classification accuracy for pilot 1, but is insignificant 

for pilot 4. We found that the classification accuracy of a fixed sample size CUSUM chart is very 

similar to the previous classifiers. Therefore, it may be practical to use a CUSUM chart for 

individuals. 

We also need to determine if fixed sample size CUSUM charts also improves the 

classification accuracies for different pilots and for different days. Since the sample size does not 

make a difference, we compare only the CUSUM chart for individuals. When we use each 

CUSUM classifier against other data sets, we find that the control charts maintain classification 

accuracies across different days. However, the classification accuracies decreased significantly 

when used to classify different pilots. The results from this comparison are in Table 4-4. 

Table 4-4: Classification Accuracies Across Pilots for a CUSUM Chart for Individuals 

Data Set 

Classification 
Accuracy 
Against Pilot 
1,Day1 

Classification 
Accuracy 
Against Pilot 
1, Day 2 

Classification 
Accuracy 
Against Pilot 
4, Day 1 

Classification 
Accuracy 
Against Pilot 
4, Day 2 

Pilot 1, Day 1 77.52% 71.38% 62.28% 73.37% 
Pilot 1, Day 2 75.54% to76.80% . 60.06% 72.52% 
Pilot 4, Day 1 72.26% 59.90% 77.52% 73.60% 
Pilot 4, Day 2 73.13% 59.90% 68.90% 77.20% 

We also rebuilt each CUSUM chart with a ceiling and applied them across the four data sets. 

Using the modified CUSUM charts, we found similar results to the traditional CUSUM charts. The 

results are in Table 4-5. 
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Table 4-5: Classification Accuracies Across Pilots for a CUSUM Charts with Ceilings for 
Individuals 

Data Set 

Classification 
Accuracy 
Against Pilot 
1 Dayl 

Classification 
Accuracy 
Against Pilot 
1,Day2 

Classification 
Accuracy 
Against Pilot 
4, Day 1 

Classification 
Accuracy 
Against Pilot 
4, Day 2 

In both cases, using fixed sample size maintains the classification accuracies when used to 

classify pilot mental workload for the same day. The classification accuracy decreases when 

used to classify mental workload for other pilots 

4.4.        Summary 

Modifications to the original control charts did not provide the improvement we had 

originally hoped. The CUSUM chart with a ceiling did not reduce the false alarm rate as originally 

thought. Changing the sample size of the original data set did not improve the classification 

accuracy. Often, these improvements actually decreased the classification accuracy of the 

control chart. Until we can change these modifications so that they improve the classification 

accuracy, traditional control charts are the best classifiers of pilot mental workload. 

58 



5. Conclusions 

5.1.        Effectiveness of Control Charts to Classify Pilot Workload 

The purpose of this research is to determine if using control charts on different 

psychophysiological features can classify pilot mental workload. Although many of the control 

charts we built did not work, we did find a couple of control charts that did. Across these four 

data sets, we found that a CUSUM chart using heart beat interval as the sole factor attained the 

best classification accuracies out of the seven features. When using this control chart, we found 

that the classification accuracies are lower than those attained by East, as shown in Table 5-1. 

Table 5-1: Comparison of SPC Classifiers Verses Multivariate Discriminant Classifiers Built by 
East for Same Pilot, Same Day Analysis 

Data Set SPC Classifier Best Multivariate Classifier 
Pilot 1, Day 1 78.79% 82.51% 
Pilot 1, Day 2 87.40% 78.51% 
Pilot 4, Day 1 77.57% 97.46% 
Pilot 4, Day 2 77.65% 90.58% 

Figure 5-1 shows how each of the four classifiers classified pilot workload across all twenty-two 

segments. It also shows the actual workload level as used by this research. 
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Figure 5-1: Classification of Pilot Workload for All Four Classifiers for All Segments 

We find that each of the classifiers were accurate up until segment eight, where the workload 

shifts from low to high for the first time.  Two of the classifiers were able to detect the shift in 

workload immediately, while the other two classifiers eventually detect the shift after a few 

minutes. Most of the errors occur after this initial shift, which indicates that the control charts are 

only able to detect the initial workload shift. This makes sense, as control charts are designed to 

detect a process that is out of control. In the case of pilot mental workload classification, the 

initial change from low to high workload is considered to be the first segment where the process 

is out of control. The control charts are effective because they are able to detect this initial 

change. However, because control charts are not designed to monitor processes after they are 

out of control, the accuracy of the control chart decreases significantly after the initial shift to high 

workload. 

The classifiers that we created did not have the classification accuracies as previous 

classifiers. However, there are two advantages to the SPC classifier. The SPC classifier is much 

simpler to implement, as it tracks only one feature, heart beat interval. It may be simpler and 

more cost effective to track only one feature. The second advantage the SPC classifier has over 
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multivariate discriminant classifiers is that control charts are robust enough to maintain 

classification accuracies across pilots and across days. Table 5-2 shows the comparisons of 

both classifiers across different pilots and different days. 

Table 5-2: Comparison of SPC and Multivariate Classifiers Across Different Pilots and Days 

Data 
Set 

Classifier 
Type 

Classification 
Accuracy 
Against Pilot 1, 
Day 1 

Classification 
Accuracy 
Against Pilot 1, 
Day 2 

Classification 
Accuracy 
Against Pilot 4, 
Day 1 

Classification 
Accuracy 
Against Pilot 4, 
Day 2 

Pilot 1 
Day 1 

SPC 78.79.%    -•.*:' 87.40% 75.29% 75.39% 
Multivariate 82 51%    :.".- 63.24% 47.43% 66.80% 

Pilot 1 
Day 2 

SPC 78.79% #87.40% 75.29% 75.39% 
Multivariate 64.43% 78.51% 48.22% 72.02% 

Pilot 4 
Day 1 

SPC 78.03% 83.97% 77.57%i , ■ 74.24% 
Multivariate 59.09% 59.09% 97.46%S.V- 60.87% 

Pilot 4 
Day 2 

SPC 57.95% 77.60% 68.82% 77.65% 
Multivariate 60.87% 61.86% 53.16% 190.58% 

Control charts have better classification accuracies across different pilots and days 

because we can use data set specific means and standard deviations as part of the classifier. 

We found that using multiple control charts did not increase the accuracy of the classifier as we 

had hoped. On the contraiy, using multiple control chart greatly decrease the classification 

accuracy of the classifier. Even the classifiers that use a combination of the most accurate 

control charts did not improve the classification accuracy of this classifier. Therefore, single- 

feature control charts are currently the best type of classifier we found from this research. 

5.2.        Recommendations 

5.2.1.       Use Different Psychophysiological Features 

The only psychophysiological features used in this research were cardiac, ocular, and 

respiratory measurements. We chose these features because they were found to be significant 

in past research. The other features that were found to be significant in past research were brain 

activity measurements. Since we know that control charts can classify pilot mental workload 
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using these three categories of features, it may be beneficial to use a control chart with brain 

activity measurements, which were found to be significant from past research.   Past research 

has also created different factors, which are linear combinations of physiological features. We 

may find that a control chart using one of these factors may produce even higher classification 

accuracies. 

5.2.2.       Reclassify the Data Set Workload 

One of the assumptions made during this research is that all 22 segments are classified 

correctly. It is possible that some of these segments are misclassified. This misclassification 

could account for some of the unexplained inaccuracies of the model, especially the high 

occurrence of false alarm rates found in the CUSUM chart classifiers. 

Another explanation is that the pilot may be in a period that is classified as low mental 

workload, but his psychophysiological features are consistently showing that he actually in a 

period of high mental workload. These misclassifications may occur for many reasons. One 

instance is when the pilot may start to show signs of high mental workload during the period prior 

to actually entering high workload. This can be attributed to anxiety or nervousness a pilot may 

experience before a mentally demanding task. Also, the pilot may know of an upcoming task, 

and mentally prepare for it. When this happens, the pilot shows signs of being in high mental 

workload before entering a period of high mental stress. A similar type of misclassification occurs 

during the segment right after completing a mentally challenging task. This is because the 

psychophysiological features need time to return to a period of low workload, even though the 

Stressor may be gone. It is possible that the pilot's features never return to normal during short 

low workload segments, due to the cool down period from the previous high workload segment, 

and then the ramp up to the next high workload segment. Most of the false alarms occurred 

during these warm-up and cool-down periods for different control charts and data sets. The high 

occurrence of these false alarms at the same time intervals suggests that these segments can be 

reclassified. 
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To test this theory, we rebuilt the data set by classifying the minute before and after each 

high workload segment as high instead of low. This accounts for ramp-up and cool-down periods 

where the pilot may still exhibit signs of high mental workload. We rebuilt the CUSUM chart using 

heart beat interval for pilot 1, day 1 and optimize the values of k based upon the classification 

accuracies. We found a substantial increase in the classification accuracies. The classification 

accuracy of using heart beat interval CUSUM chart (the best classifier we found using the original 

workload levels) increased from 78.79 to 90.2%. 

We apply the new workload classification to all four data sets. Using a CUSUM chart with 

heart beat interval, the classification accuracies for all four data sets were above 85%. The 

results from this are in Table 5-3. 

Table 5-3: False Alarm Rates, Misidentification Rates, and Classification Accuracies of Heart 
Beat Interval for Pilots 1 and 4 for Both Days 

Pilot Number 
and Day 

False 
Alarm Rate 

Misidentification of 
High Workload Rate 

Classification 
Accuracy 

Pilot 1, Day 1 22.2% 0% 90.2% 
Pilot 1, Day 2 22.2% 6.1% 86.7% 
Pilot 4, Day 1 23.1% 0% 89.8% 
Pilot 4, Day 2 22.2% 0% 90.2% 

These results show that the reclassified data set may be a more accurate representation of pilot 

workload.   We apply the four different classifiers against the other data sets to determine the 

classification accuracy across pilots and across days. We found that the classification accuracy 

across pilots and days did not diminish at all. The results from this analysis is in Table 5-4. 
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Table 5-4: Classification Accuracy Across Pilots and Days Using Heart Beat Interval as the 
Primary Classifier 

Classifier Pilot 1, Day 1 Pilot 1, Day 2 Pilot 4, Day 1 Pilot 4, Day 2 
Pilot 1, Day 1 
Heart Beat Interval 

90.2% 84.1% 83.3% 84.1% 

Pilot 1, Day 2 
Heart Beat Interval 

71.6% 86.7% 83.3% 88.3% 

Pilot 2, Day 1 
Heart Beat Interval 

75.0% 86.4% 89.8% 87.1% 

Pilot 2, Day 2 
Heart Beat Interval 

70.8% 81.1% 74.2% 90.2% 

5.2.3.       Using a Two-Hypothesis Test Control Chart 

The original hypothesis for a control chart is that "a process is in-control unless there is 

evidence to prove otherwise." In the case of pilot mental workload, that hypothesis translates to 

"a pilot is in a state of low workload, unless there is evidence to prove he is in a state of high 

mental workload." Every control chart built during this research effort uses the above hypothesis, 

which s applied to every data sample, regardless of workload level.  The addition of a second 

hypothesis may make future control charts more accurate. The second hypothesis would be "a 

process is out-of-control unless there is evidence to prove otherwise." In the case of pilot mental 

workload, that hypothesis translates to "a pilot is in a state of high workload, unless there is 

evidence to prove he or she is in a state of low mental workload." 

The choice of which hypothesis to use depends upon the current state of the pilot, as 

determined by the control chart. If the pilot is in a state of low mental workload, then the first 

hypothesis becomes the null hypothesis. A rejection of the null hypothesis test changes the 

mental workload from low to high. Then, the new null hypothesis changes to the second 

hypothesis. The change to the new hypothesis may require the construction of a new control 

chart using a different mean and standard deviation.   Figure 5-2 is an example of how this new 

type of control chart might look. 
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Figure 5-2: Example of a Two-Hypothesis Test Control Chart 

The difference between this type of control chart and a normal control chart is the method 

used to classify high workload. The control charts we built during this research watched for 

evidence of a shift from low to high workload only. The modified control chart would require that 

there be enough evidence to show that the pilot is in a state of low mental workload before 

resuming that hypothesis. Such a system should reduce the false alarm rate following an initial 

shift to high workload. 
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Appendix A 

False Alarm Rates, Misidentification Rates, and Classification Accuracies Based Upon 

Single Feature X-bar Charts with Three-Sigma Control Limits 

Data for Pilot 1, Day 1 

Feature False 
Alarm Rate 

Mis-identification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Breath Interval 3.3% 92.8% 59.1% 
Breath Min Amp 13.7% 90.1% 54.2% 
Breath Max Amp 3.9% 95.5% 57.6% 
Blink Interval 15.7% 65.8% 63.3% 
Blink Amplitude 5.2% 91.0% 58.7% 
Blink Duration 5.2% 92.8% 58.0% 

Data for F »Hot 1, Day 2 

Feature False 
Alarm Rate 

Mis-identification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Breath Interval 5.9% 92.8% 57.6% 
Breath Min Amp 0% 100% 58.0% 
Breath Max Amp 4.6% 94.6% 57.6% 
Blink Interval 11.1% 78.4% 60.7% 
Blink Amplitude 0% 100% 58.0% 
Blink Duration 2.6% 96.4% 58.0% 
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Data for Pilot 4, Day 1 

Feature False 
Alarm Rate 

Mis-identification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Breath Interval 13.1% 94.6% 42.7% 
Breath Min Amp 0% 100% 58.0% 
Breath Max Amp 14.3% 89.2% 54.2% 
Blink Interval 15.7% 88.3% 53.8% 
Blink Amplitude 1.3% 100% 57.2% 
Blink Duration 0% 100% 58.0% 

Data for Pilot 4, Day 2 

Feature False 
Alarm Rate 

Mis-identification 
of High Workload 
Rate 

Overall 
Classification 
Accuracy 

Breath Interval 5.2% 94.6% 57.2% 
Breath Min Amp 0% 100% 58.0% 
Breath Max Amp 0% 100% 58.0% 
Blink Interval 7.2% 87.6% 59.1% 
Blink Amplitude 0% 99.1% 58.0% 
Blink Duration 1.3% 100% 57.2% 
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Appendix B: 

False Alarm Rates, Misidentification Rates, and Classification Accuracies for Pilot 1, Day 1 

Based Upon Single Feature X-bar Charts with Variable Sigma Control Limits 

Pilot 1, Day 1 

Feature Value 
ofk 

False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 1.6 3.27% 84.68% 62.50% 
Breath Min Amp 20.0 11.76% 100% 51.14% 
Breath Max Amp 4.0 29.41% 65.77% 55.30% 
Blink Interval 5.0 16.99% 74.77% 58.71% 
Blink Amplitude 9.0 30.72% 18.92% 74.20% 
Blink Duration 2.5 38.56% 9.01% 73.86% 

Pilot 1, Day 2 

Feature Value 
ofk 

False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 0.7 17.88% 67.27% 61.30% 
Breath Min Amp 2.0 5.96% 100% 54.41% 
Breath Max Amp 4.0 5.96% 93.64% 57.09% 
Blink Interval 4.0 10.60% 78.18% 60.92% 
Blink Amplitude 3.0 29.14% 49.09% 62.45% 
Blink Duration 1.0 37.75% 22.73% 68.58% 
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Pilot 4, Day 1 

Feature Value 
ofk 

False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 6.0 10.97% 94.44% 54.75% 
Breath Min Amp 2.0 21.29% 100% 46.39% 
Breath Max Amp 20.0 21.29% 86.11% 52.09% 
Blink Interval 13.0 6.45% 93.52% 57.79% 
Blink Amplitude 4.0 15.48% 86.11% 53.51% 
Blink Duration 1.3 16.77% 35.19% 75.67% 

Pilot 4, Day 2 

Feature Value 
ofk 

False 
Alarm Rate 

Misidentification 
of High 
Workload Rate 

Overall 
Classification 
Accuracy 

Breath Interval 3.0 5.16% 94.50% 57.95% 
Breath Min Amp 4.0 5.81% 100% 55.30% 
Breath Max Amp 33.0 13.55% 82.57% 57.95% 
Blink Interval 2.0 7.74% 82.57% 61.36% 
Blink Amplitude 3.0 10.97% 86.24% 57.95% 
Blink Duration 1.3 17.42% 30.28% 77.27% 
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Appendix C: 

False Alarm Rates, Midentification Rates, and Classification Accuracies Based Upon 

Number of Charts Signaling 

Pilot 1, Day 1 

Number of Charts to 
Produce a Signal 

False Alarm Rate Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 signals 45.10% 66.67% 45.83% 
2 of 7 signals 14.38% 86.49% 55.30% 
3 of 7 signals  ki  

4 of 7 signals 
12.42% 89.19% 55.30% 

5 of 7 signals 
6 of 7 signals 

11.76% 96.40% 52.65% 
7.19% 100% 53.79% 

7 of 7 signals 
1.96% 100% 56.82% 
0% 100% 57.95% 

Pilot 1, Day 2 

Number of Charts to 
Produce a Signal 

False Alarm Rate Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 signals 32.24% 79.07% 48.09% 
2 of 7 signals 7.24% 93.64% 56.49% 
3 of 7 signals 5.92% 94.55% 56.87% 
4 of 7 signals 5.92% 96.36% 56.11% 
5 of 7 signals 1.32% 100% 57.25% 
6 of 7 signals 0% 100% 58.02% 
7 of 7 signals 0% 100% 58.02% 
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Pilot 4, Day 1 

Number of Charts to 
Produce a Signal 

False Alarm Rate Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 signals 39.35% 79.63% 44.11% 
2 of 7 signals 23.23% 86.11% 50.95% 
3 of 7 signals 21.29% 86.11% 52.09% 
4 of 7 signals 21.29% 87.04% 51.71% 
5 of 7 signals 12.23% 95.37% 53.61% 
6 of 7 signals 1.94% 99.07% 58.17% 
7 of 7 signals 0% 100% 58.94% 

Pilot 4, Day 2 

Number of Charts to 
Produce a Signal 

False Alarm Rate Misidentification of 
High Workload Rate 

Classification 
Accuracy 

1 of 7 signals 34.84% 76.15% 48.10% 
2 of 7 signals 5.81% 95.41% 57.20% 
3 of 7 signals 5.81% 96.33% 56.82% 
4 of 7 signals 5.81% 97.25% 56.44% 
5 of 7 signals 
6 of 7 signals 
7 of 7 signals 

3.87% 
0% 
0% 

99.08% 
100% 
100% 

56.82% 
58.71% 
58.71% 
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Appendix D: 

Results Using a Traditional CUSUM Chart 

Pilot 1, Day 1 

Feature Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

Heart Rate 53 36.60% 0% 78.79% 
Breath Interval 0.3 3.92% 83.78% 62.50% 
Breath Min Amp 40 0% 100% 58.02% 
Breath Max Amp 70 0% 100% 58.02% 
Blink Interval 3.1 12.42% 75.68% 60.98% 
Blink Amplitude 350 0% 100% 58.02% 
Blink Duration 50 0% 100% 58.02% 

Pilot 1, Day 2 

Feature Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

Heart Rate 53 3.95% 24.55% 87.40% 
Breath Interval 2 0% 100% 57.95% 
Breath Min Amp 3 0% 100% 57.95% 
Breath Max Amp 20 0% 100% 57.95% 
Blink Interval 2 1.97% 90.91% 60.59% 
Blink Amplitude 3 0% 100% 57.95% 
Blink Duration 80 0% 100% 57.95% 
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Pilot 4, Day 1 

Feature Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

Heart Rate 48 38.06% 0% 77.57% 
Breath Interval 5 0% 100% 58.94% 
Breath Min Amp 30 0% 100% 58.94% 
Breath Max Amp 10 0% 100% 58.94% 
Blink Interval 3 0% 100% 58.94% 
Blink Amplitude 10 0% 100% 58.94% 
Blink Duration 2 0% 100% 58.94% 

Pilot 4, Day 2 

Feature Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

Heart Rate 17 38.06% 0% 77.65% 
Breath Interval 4 0% 100% 58.71% 
Breath Min Amp 2 0% 100% 58.71% 
Breath Max Amp 2 0% 100% 58.71% 
Blink Interval 3 0% 100% 58.71% 
Blink Amplitude 3 0% 100% 58.71% 
Blink Duration 3 0% 100% 58.71% 

73 



Appendix E: 

CUSUM Charts Using Heart Beat Interval with Fixed Sample Sizes 

Traditional CUSUM Chart for Pilot 1, Day 1 

Sample 
Size 

Value 
ofH 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 76.4 39.33% 0% 77.52% 
3 21.5 39.28% 0% 77.57% 
5 15.3 39.28% 0% 77.48% 
10 7.7 39.26% 0% 77.59% 

CUSUM Chart with Ceiling for Pilot 1, Day 1 

Sample 
Size 

Value 
ofH 

Ceiling False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 76.4 21.1 33.64% 1.16% 80.28% 
3 21.5 21.5 33.58% 0.10% 80.40% 
5 15.3 22.0 33.40% 1.10% 80.42% 
10 7.7 22.5 33.06% 1.10% 80.66% 

Traditional CUSUM Chart for Pilot 1, Day 2 

Sample 
Size 

Value 
ofH 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 64.9 30.83% 12.71% 76.80% 
3 21.6 30.80% 12.78% 76.80% 
5 13.0 30.74% 12.62% 76.91% 
10 6.5 31.05% 13.37% 76.41% 

CUSUM Chart with Ceiling for Pilot 1, Day 2 

Sample 
Size 

Value 
ofH 

Ceiling False 
Alarm 
Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 64.9 35.5 26.57% 12.91% 79.18% 
3 21.6 36.0 26.57% 12.93% 79.19% 
5 13.0 38.0 26.58% 12.62% 79.31% 
10 6.5 39.0 27.08% 13.37% 78.71% 
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Traditional CUSUM Chart for Pilot 4, Day 1 

Sample 
Size 

Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 190.5 39.74% 0% 77.52% 
3 63.6 39.70% 0% 77.54% 
5 38.2 39.72% 0% 77.55% 
10 19.1 39.55% 0% 77.71% 

CUSUM Chart with Ceiling for Pilot 4, Day 1 

Sample 
Size 

Value 
of H 

Ceiling False 
Alarm 
Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 190.5 0.1 36.61% 0% 79.29% 
3 63.6 0.1 36.66% 0% 79.26% 
5 38.2 0.1 36.76% 0% 79.22% 
10 19.1 0.1 36.72% 0% 79.30% 

Traditional CUSUM Chart for Pilot 4, Day 2 

Sample 
Size 

Value 
of H 

False 
Alarm Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 125.5 41.74% 0% 77.20% 
3 42 41.72% 0% 77.22% 
5 25.4 41.62% 0% 77.31% 
10 12.8 41.52% 0% 77.40% 

CUSUM Chart with Ceiling for Pilot 4, Day 2 

Sample 
Size 

Value 
of H 

Ceiling False 
Alarm 
Rate 

Misidentification 
Rate 

Classification 
Accuracy 

1 125.5 0.01 41.46% 0% 77.35% 
3 42 0.01 41.41% 0% 77.39% 
5 25.4 0.01 41.45% 0% 77.40% 
10 12.8 0.01 41.52% 0% 77.40% 
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