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AFIT/GCE/ENG/01M-02 

Abstract 

Mobile networks take the communication concept one step further than wireless 

networks. In these networks, all nodes in the network are assumed to be mobile. These 

networks are also called mobile ad hoc networks, due to their mobility and random 

configurations. Ad hoc networking is a relatively new concept; consequently, many 

researches are in progress focusing on each level of the network stack of ad hoc 

networks. 

This research focuses on the routing of time-sensitive data in ad hoc networks. A 

routing protocol named Ad hoc On-demand Distance Vectoring (AODV), which has been 

developed by Internet Engineering Task Force (IETF) for ad hoc networks, has been 

studied. Taking this protocol as a point of departure, a new routing protocol named as 

Real Time Routing Protocol (RTRP) was developed while considering the characteristics 

of time-sensitive data. These two routing protocols have been modeled using OPNET, a 

discrete-event network simulation tool, and simulations were run to compare the 

performances of these protocols. 

It has been discovered that, for lightly loaded networks the protocols performed 

very similarly. However, when the network load was increased, RTRP began to 

outperform AODV significantly. For some cases, RTRP delivered more than twice the 

number of packets that AODV delivered. Taking these results into account, some 

properties that a real-time routing protocol should have are proposed. 

Xll 



ROUTING OF TIME-SENSITIVE DATA IN MOBILE AD-HOC 
NETWORKS 

1    INTRODUCTION 

"Everything that can be invented has been invented." 

Letter to President W. McKinley from U.S. Patent Office, 1899 

1.1   Introduction 

It was not long ago, only a hundred years, when a letter containing above words 

was sent to the President of the United States. From most people's point of view, these 

words reflected the reality at that time; however, time has shown that these people 

mispredicted what was coming in the following hundred years. 

The advances in technology have far exceeded even the most imaginative 

person's predictions in twentieth century. Before this century, there had already been 

enormous technological advances that helped the human race to advance to the industrial 

age from the agricultural societies of the middle Ages. However, these advances are not 

as significant as the inventions that have been made in the twentieth century. Through the 

introduction of the transistor, electronics has entered almost every field of daily life in 

this century. Consequently, with the help of electronics and miniaturization, we have 

crossed the threshold of information age. 

Today, in almost every device that people use, there is some kind of electronic 

circuitry. From electronic engine controls in vehicles to digital circuits in the televisions, 



electronics have become part of daily life. Perhaps the most impressive use of electronics 

in the twentieth century is in computers. Since the introduction of computers, the 

manufacturing industry has become widely dependent on these devices. Manufacturing 

lines are now utilizing the computers in almost every control system. Furthermore, with 

the development of cheaper and more capable processors, personal computers are 

available to the average user. Today, it is estimated that 61% of households in the US 

owns at least one personal computer. 

As the number of computers increases, the need to connect these computers rises. 

As a result of this need, local area networks (LANs) have been widely installed 

throughout the world. Today, with Ethernet cards priced less than $40, local area 

networks have been available even to ordinary households. Furthermore, the evolution of 

the Internet from a military and academic to a worldwide network has made 

communication and dissemination of information much easier than ever before. 

Another impressive area that integrated electronics has found its way into is 

communications. Again, with the introduction of integrated electronics, means of 

communicating have evolved impressively. Today's communication tools are far more 

advanced than could be imagined two decades ago. Besides the wired networks such as 

telephone and cable television, the wireless communication era was born with the 

development of highly reliable, miniature, solid-state radio frequency hardware in the 

1970s [Rap96]. The number of cellular phone users grew from 25,000 in 1984 to about 

16 million in 1994, and since then, wireless services have been experiencing customer 

growth rates well in excess of 50% per year [Rap96]. 



As wireless technologies become more affordable, researchers have been 

integrating computer and wireless technologies into wireless networks. Wireless 

computer networks have become an area that considerable research effort has been 

directed. These networks have many benefits for all types of users. With the development 

of the Wireless LAN MAC protocol by IEEE in 1997, IEEE 802.11 [IEEE99], new 

products that utilize wireless technology have begun to appear on the market. 

1.2 Research Objectives 

With the emerging interest in wireless computer networks, researchers working in 

this field of study have been developing many routing protocols to make these networks 

perform more efficiently. Each of these routing protocols approaches the problem of 

routing with a different philosophy. However, since it is a relatively new research area, 

there are not many simulation studies that analyze the performance of these networks, 

even with the non-time sensitive loads. This is especially true for ad hoc networks. 

The objectives of this research are two-fold. The first objective of this research is 

to accomplish a performance analysis of routing protocols for mobile ad hoc networks 

that are used to carry time-sensitive voice data. The metrics that are used to measure the 

performance of the wireless networks are slightly different than the performance metrics 

that are used in wired networks. In accordance with this, this study performs an analysis 

of the packet delivery ratio of ad hoc networks within the time constraints of real time 

data while trying to maximize the load that is introduced to the network. This analysis is 

conducted using simulation. 

To accomplish this task, routing protocols needed to be implemented in the 

simulation environment. The first routing protocol that has been implemented is the Ad 



Hoc on Demand Routing Protocol (AODV) which has been developed by the Internet 

Engineering Task Force (IETF). Taking the unique characteristics of time sensitive data 

into account, a new routing protocol named Real Time routing Protocol (RTRP) was 

developed using AODV as the point of departure. The simulations were designed in 

OPNET, a discrete event simulation tool. 

The second objective of this research was to improve the understanding of mobile 

ad hoc networks. 

1.3 Organization of the Document 

The first chapter makes a brief introduction into the computer and communication 

networks. The research goals and the organization of this document were also given in 

this chapter. 

The second chapter presents an overview of different approaches taken in routing 

in mobile ad hoc networks. Short overviews of the routing protocols that demonstrate 

these different approaches have also been given in this chapter. These routing protocols 

have been organized in two categories: table-driven and on-demand driven. Also, brief 

descriptions of the constraints that are associated with the mobile wireless networks are 

given in this chapter. 

The third chapter is devoted to methodology. This chapter outlines the system 

under test (SUT), component under study (CUS), factors, and parameters of the system. 

The design of experiments, as well as the workload that is introduced to the system is 

also presented in this chapter. 



Chapter four contains a brief description of the 802.11 Wireless LAN protocol 

that was developed by the IEEE. This chapter also gives brief information about the 

implementations of this protocol, as well as AODV and RTRP in OPNET. 

The fifth chapter presents the results of simulation runs that were accomplished 

for the purposes of this research. A performance comparison of the two protocols is 

performed and the results are presented in this chapter. 

Chapter six contains the conclusions drawn from the results of the research. 

Furthermore, this chapter presents the recommendations for future work that should be 

accomplished for further analysis of mobile ad hoc networks. 



2    LITERATURE SURVEY 

2.1   Introduction 

Since the first demonstration of radio's ability to provide continuous contact with 

the ships sailing in the English Channel in 1897 [Rap96], wireless communication 

methods have evolved. Especially with the emergence of the integrated circuits in 1970s, 

the wireless communication industry has grown by orders of magnitude. 

Wireless networks are communication networks in which some of the nodes are 

mobile. These nodes connect to the network by utilizing radio frequency (RF), infrared 

(IR), or laser technologies. There are two types of wireless networks. The first type is 

infrastructure wireless networks. These networks have routers and gateways as stationary 

components to which mobile nodes within the network connect. Mobile nodes connect to 

the nearest base station whose communication radius covers the area that the nodes are 

in. When a mobile node moves out of the coverage area of a base station, it is handed of 

to a new base station that covers the area that the node is now in. Cellular phone 

technology is a typical example of an infrastructure network. 

The second type of wireless network is the ad hoc network. In this type of 

network, all nodes in the network are mobile as before; however, there are no wired or 

stationary parts of the network. Figure 1 shows an example to ad hoc networks with three 

nodes. Additionally, in ad hoc networks there are no dedicated routers or gateways. 

Instead, all of the nodes that participate in the network have the responsibility of acting as 



a router and forwarding packets to their destination addresses as needed. Due to their 

mobility, ad hoc networks have continuously changing topologies. Consequently, routing 

becomes a major player in the performance of these networks. 

I 

Figure 1. An Ad Hoc Network 

Ad hoc networks are a relatively new concept. Therefore, routing packets within 

the network is still an open research area [TLGOO]. There have been, however, some 

studies on the development of the protocols for ad hoc networks. In this chapter, an 

overview of the protocols that are developed for ad hoc networks and a short comparison 

of these protocols are presented. 



2.2 Ad Hoc Protocols 

Since ad hoc networks have unique characteristics, the routing algorithms 

developed for wired networks cannot be readily adapted to run efficiently in them. The 

characteristics of ad hoc networks include relatively low bandwidth, high bit error rate, 

and the need for low power consumption. In order to overcome these problems, new 

protocols have been developed for ad hoc networks. Each of these protocols deals with 

the above limitations using different approaches. 

The routing protocols that are developed to date can be categorized as, (a) table- 

driven protocols, or (b) source-initiated-on-demand-driven protocols. These two types of 

protocols have different philosophies in the way they handle the establishment and the 

maintenance of the routes in a network. The particular routing protocols that fall in these 

two categories are: 

1. Table Driven Protocols 

> Destination Sequenced Distance Vectoring Routing Protocol 

> Wireless Routing Protocol 

> Cluster-head Gateway Switch Routing Protocol 

2. Source-Initiated-On-Demand Driven Routing Protocols 

> Dynamic Source Routing Protocol 

> Ad Hoc On-demand Distance Vectoring Protocol 

> Temporarily Ordered Routing Algorithm Protocol 

> Zone Routing Protocol 

> Associativity Based Routing Protocol 

> Signal Strength Routing Protocol 



Each category of the routing protocols will be examined in the following sections. 

2.2.1   Table Driven Routing Protocols 

The table driven routing protocols are similar to the connectionless approach of 

forwarding packets used in wired networks. These protocols try to maintain the consistent 

and up-to-date routing information about each node in the network. Typically, these 

protocols require all nodes to keep tables to maintain state information about existing 

routes in the network. The area where these routing protocols differ is the number and the 

structure of the routing tables and the different methodologies they use during the 

changes in the network structure [RT99]. 

2.2.1.1   Destination-Sequenced Distance Vectoring Protocol 

Destination-Sequenced Distance Vectoring (DSDV) Protocol is based on the 

classical Bellman-Ford algorithm [PB94]. It requires every node in the network to 

maintain a routing table with all possible destinations and the number of hops to that 

destination recorded. Updates to the routing tables are periodically transmitted 

throughout the network in order to maintain consistency. Each route in the network is 

tagged with a sequence number. Additionally, a next hop field is used to determine the 

next hop for each route in the table. 

Since DSDV does not assume mobile nodes have synchronized clocks, it uses 

sequence numbers to determine the freshness of the routes. Each node in the network 

advertises a monotonically increasing sequence number periodically. Nodes that receive 

this transmission update their route entries for this node. DSDV also requires each node 

to broadcast updates to the routing tables. As a result, when a neighboring node hears an 

advertising node's update transmission, it updates routing table entries accordingly. 



When a neighboring node determines that its link to a node has been broken, it 

broadcasts a sequence number greater than the broken link's sequence number with an 

infinite metric. Nodes that are routing packets through this node will update their table 

entries with the infinite distance metric and not use that link anymore. 

The DSDV routing protocol guarantees the loop-freedom property because of the 

changes made to the Bellman-Ford algorithm [PB94]. If the sequence numbers are the 

same for different routes, DSDV uses the shortest path approach when choosing a route. 

The shortest path is defined based on the number of hops in the route. 

2.2.1.2   Wireless Routing Protocol 

The Wireless Routing Protocol (WRP) [MGA96] is also a table based distance- 

vector routing protocol. Each node in the network maintains four tables to perform the 

routing. These tables are as follows: 

1. Distance table 

2. Routing table 

3. Link-cost table and 

4. Message retransmission list (MRL). 

In its distance table, a node S keeps track of the distances to every destination 

node via the neighboring node, N, the downstream neighbor of node N. The routing table 

of S contains the distance to each destination node from node S, the predecessor and the 

successor of node S on this path, and a tag to identify if the entry is a simple path, a loop, 

or invalid. The upstream and downstream nodes are kept to check the link consistency 

and loop freedom property of the routes. The link-cost table is used to keep the costs of 

10 



the links to the neighboring nodes with the number of time-outs  since the last 

communication with the nodes. 

Nodes in a wireless network inform each other about links they have via update 

messages. These messages are transmitted periodically or in the event of a change of the 

state of a link. Update messages are broadcast among only neighboring nodes. Neighbors 

that receive these update messages update their table entries accordingly. 

Nodes in the network become aware of their neighbors by these update messages. 

If a node does not have any change in its links' states, it broadcasts a hello message after 

a time-out period to ensure connectivity. 

MRL is used to keep track of the acknowledgements for the update messages 

received from the neighboring nodes. Each entry in the MRL has a sequence number of 

the update message, a retransmission counter, and an ack-required flag for each of the 

neighbors of the node. MRL keeps track of the update messages and the neighbors that 

need to acknowledge these updates. 

2.2.1.3   Cluster-head Gateway Switch Routing Protocol 

The Cluster-head Gateway Switch Routing Protocol (CGSR) [CWLG97] is based 

on the DSDV routing protocol. In this protocol, the nodes are grouped into clusters, and a 

node within a cluster is chosen as the cluster-head. Gateways are nodes that can receive 

from two or more cluster-heads at the same time. Figure 2 illustrates an ad hoc network 

that is grouped into three clusters, and operation of the CGSR is demonstrated as well. 

When a node has a packet to transmit, the packet is first passed to the cluster-head 

of the node. Next, the cluster-head sends the packet either to the cluster-head of the 

destination or to a cluster-head on the way via a gateway to the other cluster-head. When 
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the packet arrives at the destination node's cluster-head, it passes the packet to the 

destination node. 

Cluster-heads are chosen when a node goes offline or out of the transmission 

range of any other node. Each node in the network keeps a routing table similar to the 

DSDV. Additionally, each node also has a table in which the cluster-heads of the possible 

destination nodes are kept. Table updates are transmitted similar to the DSDV. 

Cluster 

QJ   Gateway 

Source 

{_) Destination 

Figure 2 Operation of CGSR in an Ad Hoc Network 

2.2.2  Source-Initiated On-Demand Driven Routing Protocols 

The table driven approach tries to keep track of all the possible routes in the 

network, whether they are needed or not. Source-initiated on demand driven routing, on 

the other hand, is a conceptually different approach. This type of routing creates routes 

when they are needed. When a node decides to send a packet to a destination, it will 

initially check its existing routes to determine if an existing route already exists. If there 
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is not a route to the destination, then a route discovery process is initiated. This discovery 

process is terminated when a route is found or when it is determined that the destination 

is unreachable. When a route is discovered, the route will be maintained by some means 

of route maintenance policy depending on the protocol. These routes are kept until the 

routes are no longer needed or the link is broken. 

2.2.2.1   Dynamic Source Routing 

Dynamic Source Routing (DSR) [JM96] [BJM99] is a protocol developed by the 

Monarch Project at Carnegie Mellon University. DSR is an on-demand routing protocol 

that uses the concept of source routing. In the source routing approach, a packet that is 

sent to a destination carries the information about the nodes it will pass through within 

the packet itself. That is, the source node explicitly determines the route. 

The DSR protocol uses two mechanisms to perform routing. The first mechanism 

is the route discovery process that is initiated when a route to a destination is needed. 

Second mechanism is the route maintenance process that is initiated after a route is 

established. 

There are four data structures that DSR implements. These data structures are: 

1. Route Cache, 

2. Route Request Table, 

3. Send Buffer, and 

4. Retransmission Buffer. 

All routing information is saved in the route cache. The route cache is updated 

upon receiving a route request (RREQ) or a route reply (RREP) message. The route 
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cache is logically indexed by the destination addresses. For any destination, DSR allows 

more than one route entry in the route cache. 

The route request table is used to keep track of forwarded or originated RREQ 

packets. This table is indexed by the destination address and contains the following 

information: time of attempt, remaining time before next attempt, and the time to live 

(TTL) field from the IP header. 

A send buffer is used to hold packets that are waiting for route discovery. A 

retransmission buffer holds packets that have been transmitted and waiting for 

acknowledgement. 

When a node needs to send a packet, it initially checks its route cache to see if 

there is an unexpired route to the destination. If there is, the node puts the route 

information in the packet and sends it via this route. If there is not any current route in the 

route cache, the source node initiates a route discovery process by broadcasting a RREQ 

packet. The RREQ packet contains the address of the source node, address of the 

destination node and a unique sequence number. Upon receiving the packet, the 

neighboring nodes check to see if they have a route to the destination in their own route 

caches. If they do not have any route to the destination, they add their address in the 

packet's route record and broadcast it. In order to limit of propagation of a RREQ packet, 

the nodes also put the RREQ packet's information in the RREQ tables. As a result, if the 

nodes receive other copies of the packet, they will ignore it. 

If any of the intermediate nodes have a route to the destination, then a RREP 

packet is created. If the RREP packet is sent by an intermediate node, the node combines 

the route information from its route cache with the route record field of the RREQ packet. 
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Depending on the implementation of DSR, there are different ways a RREP message is 

sent to the source node. If the implementation supports bi-directional links, then the route 

that the packet took to this point is reversed. If the links are asymmetrical, a new route 

discovery process is initiated if the source node of the RREP message does not have a 

current link to the source of the RREQ message. 

Route maintenance is accomplished using route error (RERR) and 

acknowledgement packets. When a node determines that its link to a node has been 

broken, it broadcasts a RERR message. Nodes receiving this message will check their 

route caches and update their links. Also, acknowledgement packets are used to make 

sure that the route links are operating correctly. In addition to acknowledge packets, DSR 

uses passive acknowledgement, as well. A node assumes that the reception of a packet is 

acknowledged if it hears the receiving node transmitting it to the next node on the route. 

2.2.2.2   Ad Hoc On Demand Distance Vectoring Routing Protocol 

The ad hoc on demand distance vectoring (AODV) [PR99] [PRDOO] is a routing 

protocol that is built on DSDV and DSR. AODV borrows the route maintenance and 

route discovery approach from DSR and hop-by-hop routing and sequence numbers from 

DSDV. 

AODV has three types of messages that are used in the route discovery and route 

maintenance processes. These messages are route requests (RREQ), route replies 

(RREP), and route errors (RERR). These message types are similar to the DSR message 

types. AODV also has a multicast capable version that has some additional message types 

used for multicasting. 
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In AODV, in addition to the routing table, a retransmission buffer may be 

implemented to hold the packets waiting for an acknowledgement. This table becomes 

necessary when the implementation is using a MAC protocol that does not have a link 

layer acknowledge notification. If the implementation is using IEEE 802.11 as the MAC 

layer protocol, then an acknowledge process is not required by the routing protocol since 

IEEE 802.11 has link layer acknowledgement. 

Source 
estination 

Source 

Destination 

a) Propagation of RREQs b) Propagation of RREPs 

Figure 3 AODV Route Discovery Process 

AODV borrows sequence number usage from DSDV. A sequence number field is 

created for each route entry in the routing table. The source node broadcasts these 

sequence numbers in a monotonically increasing manner, as in DSDV. 

Figure 3 gives an illustration of route discovery process in AODV. When a node 

has a packet to transmit, it initially checks its routing table. If there is not a route entry in 

the table or the route has expired, it broadcasts a RREQ message. The RREQ message 

contains a broadcast ID, which is incremented individually within each node and 
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becomes a unique ID of the RREQ message combined with the source node address, the 

sequence number of the source and, if known, the sequence number of the last route to 

the destination. If no destination sequence number is available, then zero is used instead. 

The receiving nodes forward the packet until it arrives either to the destination or to a 

node that has a fresh route to the destination. During the forwarding process, each 

intermediate node in the route records the source address, broadcast id and the reception 

time of the packet into a broadcast record list. If further copies of the same RREQ packet 

are received, they are discarded. When the packet arrives to a node with a fresh route to 

the destination, it creates a RREP message and sends it to the neighboring node that the 

packet has arrived from. As the RREP message is routed back, every node on the reverse 

path updates their routing tables to set a forward route to the destination via the node that 

the RREP message has arrived from. Because the RREP message is transmitted back on 

the same path, AODV supports the use of only symmetric links. 

During a link failure, a RERR message is sent back to the source node. If route is 

failed because of the source node's movement, the source node reinitiates the route 

discovery process if the route is still needed. 

As an additional feature, AODV makes use of the hello messages to assure the 

connectivity. Also, like DSR, AODV passively listens the neighboring nodes for routing 

table updates. 

2.2.2.3   Temporally Ordered Routing Algorithm 

Temporally ordered routing algorithm (TORA) [PC97] [PC99] is a distributed 

routing algorithm that makes use of link reversal. Its distinctive properties are the quick 

discovery of routes, multiple routes to a destination and localization of messages. To 
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achieve the localization of messages that are caused by topological changes in the 

network, all nodes keep information about the neighboring nodes. 

There are three mechanisms that are used in TORA to create and maintain routes. 

These are route creation, route maintenance, and route erasure. 

Source 
H = 3 

H = 2 

H=l 

H = 0 

Destination 

Figure 4 TORA Height Metric 

During the creation of a route, a height metric is used by the nodes to create a 

directed acyclic graph. The destination node becomes the root of the tree and the links are 

created upwards or downwards depending on the height of the neighboring nodes. Figure 

4 illustrates the use of the height metric. It is simply the distance from the destination 

node. 

A copy of TORA is run on each of the nodes in the network. When a node needs a 

route to send packets, it broadcasts a query (QRY) message containing the address of the 

destination node. Initially, the source node sets its height to null. The packet propagates 

through the network until it arrives either to the destination or to a node that has a route to 
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the destination. The final recipient of the QRY message replies back with an update 

(UPD) message including its height relative to the destination node. As the packet is 

routed back to the source node, each intermediate node sets its height greater than the 

previous node. This approach ends up creating a directed link from the source to the 

destination node. 

When a link is broken, the node at the end of this link transmits an UPD packet 

with a height which is greater than its neighboring nodes. Consequently, the link is 

reversed to adapt the new height of the node. When a node discovers a network partition, 

it transmits a clear message and invalid routes are removed from the network. 

An important aspect of TORA is the requirement for synchronization between 

nodes. This synchronization may be accomplished through an external clock, such as 

GPS. Also, the synchronization requirement has the potential for oscillations if the 

coordinating sets of nodes concurrently delete routes, build new routes or discover 

partitions in the network. 

2.2.2.4   Zone Routing Protocol 

The zone routing protocol (ZRP) [Haa97] is a hybrid protocol that uses both a 

reactive and a proactive approach in building routes. A zone is defined to be the 

collection of nodes that are at most R nodes away from a node. ZRP uses a proactive 

approach for communication within this zone and a reactive approach for communication 

with nodes that are out of the zone. 

For intra-zone communication, each node keeps the routing information to each 

destination node. This is implemented by DSDV protocol. When an intra-zone packet is 
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sent, the packet is flagged to stay within the zone. Changes in the topology of the network 

or the link state trigger the broadcasting of update packets. 

Inter-zone communication, on the other hand, is implemented by a modified DSR 

protocol. When a node needs a route to a destination node out of its own zone, it 

broadcasts a RREQ message to the nodes that are on the border of its own zone. If the 

nodes on the border have a route to the desired destination, they reply with a RREP 

message, otherwise, they broadcast the request to the nodes that are on other zones' 

border. 

2.2.2.5   Associativity Based Routing 

The associativity based routing protocol (ABR) [Toh96] uses a totally different 

approach for routing. In ABR protocol, the stability of the mobile nodes is chosen as the 

main metric and routes are chosen accordingly. ABR provides loop-free operation and 

packet duplication is prevented. 

The main goal of ABR is providing long-lived routes. In order to establish this 

goal, each node in the network broadcasts a beacon periodically. Neighboring nodes that 

receive this beacon update the associativity of the node, increasing the dependability of 

the node. When a node moves out of the reception area of the other node, since its 

beacons are not received, its associativity is eventually reset. 

ABR has three mechanisms to provide routing. These mechanisms are route 

discovery, route reconstruction, and route deletion. When a node needs a route to a 

destination it sends a broadcast query (BQ) message. Intermediate nodes receiving the 

packet add their address and associativity to the packet and delete the upstream 

neighbor's associativity. When a packet arrives at the destination, the destination node is 
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able to check the packets coming along different routes and choose the route with the 

highest associativity. Consequently, a reply message is sent along the route with highest 

associativity. 

2.2.2.6   Signal Stability Routing 

Signal stability routing (SSR)[DRWT97] uses yet a different metric than the other 

routing protocols. In this protocol, routes are selected depending on the strength of their 

connection. SSR consists of two different cooperating protocols. These are the dynamic 

routing protocol (DRP) and the static routing protocol (SRP). 

DRP is responsible for maintaining the signal stability table (SST) and the routing 

table. Nodes participating in the network broadcast periodic beacons. These beacons are 

used to measure the signal strength of the transmitting node and are kept in the SST. DRP 

is also responsible for reception of all packets. After processing these packets, DRP 

passes the packets to SRP. 

SRP checks the packet to see if the destination is the receiving node. If the 

receiving node is the destination, SRP passes the packet to higher layers in the network 

stack, otherwise, it checks its routing table to see if it has a route to the destination. If 

there is a route in the table, the packet is forwarded along this route; otherwise, SRP 

initiates a route discovery process. A route request packet is broadcast through the 

network and is forwarded only if it was received on a strong channel. If there is no route 

that can be established over strong channels to the destination, the source node initiates 

another route request process after a certain time-out period; this time accepting routes 

containing weak channels. 
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2.3 Comparison of the Routing Protocols 

2.3.1        Table-driven Routing Protocols 

The first protocol examined was the DSDV protocol. The DSDV protocol is 

based on the classical Bellman-Ford algorithm and guarantees a single, loop-free route to 

the destination by always selecting the shortest path. However, since the routing protocol 

requires all the nodes to have state information of the network at all times, periodic 

updates must be done to the routing tables. These updates increase the overhead that is 

introduced to the network. In order to decrease the amount of the overhead, two types of 

mechanisms are developed for updates. The first type is called a "full-dump" where a 

node broadcasts its routing table completely. The second type is "incremental" updates 

where only changes are broadcast. Even though the use of incremental updates decrease 

the amount of the overhead associated, it still consumes bandwidth in DSDV. This 

feature of the DSDV makes it inefficient for larger networks since the overhead grows as 

O (n2) [RT99]. 

WRP has a different approach than DSDV. The first difference is the number of 

tables that must be maintained. WRP requires each node maintain 4 tables that may lead 

to a memory problem when the network becomes large enough. In addition to this 

disadvantage, WRP utilizes "hello" messages to ensure the freshness of the links when no 

traffic is received for a certain period of time. These messages both consume bandwidth 

and power, which may become a problem if the nodes are running on battery power. 

CGSR has DSDV as the underlying scheme. As a result, it inherits the benefits 

and disadvantages of this protocol. Additionally, the cluster-head election process 

increases the overhead that is introduced into the network. Furthermore, since cluster- 
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heads and gateways are used extensively in routing, these nodes may become the 

bottlenecks of the system. Finally, utilizing a cluster-head table increases memory 

consumption. 

To summarize all table-driven routing protocols, it can be said that each protocol 

has the same communication complexity since all nodes in the network are affected by 

route changes. Finally, messages that are needed to maintain the state information of the 

network consume a certain amount of bandwidth in table-driven protocol based networks. 

2.3.2       Source-Initiated on Demand Routing Protocols 

The DSR and the AODV routing protocols share some common features. AODV 

borrows route discovery and route maintenance methods from DSR. However, the 

overhead that is associated with DSR is higher than the overhead in AODV since DSR 

uses source routing where AODV uses hop-by-hop routing. Packets in DSR carry all the 

routing information, whereas they only carry next node information in AODV. When the 

network becomes large enough, this feature may decrease the throughput of the network 

significantly. 

An important feature of DSR is that more than one route may be maintained to a 

destination. This feature allows the source node to use remaining routes, if any, during a 

link failure. As a result, the time and bandwidth consumption for a new route discovery 

process can be avoided. However, if the broken link is the only route available, a route 

discovery process must be initiated which consumes the same amount of bandwidth as 

AODV. 

As in DSR, TORA also allows multiple routes between the source and the 

destination. The major feature that distinguishes TORA from the rest of the routing 
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protocols is the construction of a directed acyclic graph. TORA also utilizes a multicast 

capability. The major disadvantage of this routing protocol is the dependency of the 

nodes to an external clock, such as GPS, for synchronization. If an external clock is not 

available, TORA cannot be implemented. 

SSR and ABR take different approaches than the rest of the routing protocols. 

ABR is a protocol that is based on the associativity of the nodes where SSR is based on 

the signal strength. In order to determine associativity of the nodes, each node in the 

network broadcasts periodic beacons. These beacons consume bandwidth as well as 

power. One of the disadvantages of SSR is the fact that only the destination can respond 

with a route reply packet. 

2.4 Summary 

The major difference between the two classes of mobile network routing 

protocols is their approach to maintaining routes. Table-driven routing protocols require 

all nodes keep state information of the network and maintain routes whether they are 

needed or not. This approach has the advantage of using a route without any delay 

whenever it is needed. However, this availability comes at the cost of bandwidth for 

periodic updates. 

On, the other side, on-demand routing protocols do not require periodic updates to 

maintain the state information of the network. A route is discovered as it is needed. This 

feature reduces bandwidth consumption for maintenance of state information. However, 

if there is no route in the cache to a destination, packets have to wait until a route is 

discovered. This causes an initial delay depending on the network size. 
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Another difference among the routing protocols is the method used for 

addressing. CGSR uses a hierarchical addressing scheme where the others use flat 

addressing. Hierarchical addressing is an advantage in large scale networks. However, as 

in CGSR, hierarchical addressing can increase the load on some nodes such as cluster- 

heads or gateways. Flat addressing is easier and simple to use. However, when the 

network size increases, it may cause some problems such as memory requirements for the 

storage of the routes and the number of broadcast messages in case of a link failure 

[BCSR]. 
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3   OBJECTIVES AND METHODOLOGY 

3.1 Overview 

In this chapter, the methodology that is used in this research is presented. The 

effect of the research methodology on the outcome of the research cannot be 

underestimated. As a result, in order to perform a complete analysis and to avoid 

common mistakes; the following methodology is used [Jai91]: 

1. State the goals of the study and define system boundaries, 

2. List the system services and possible outcomes, 

3. Select performance metrics, 

4. List system and workload parameters, 

5. Select factors and their values, 

6. Select evaluation techniques, 

7. Select the workload, and 

8. Design the experiments. 

3.2 Objectives and System Boundaries 

The objective of this research is to improve the performance of an ad hoc packet 

data network that is transporting time sensitive data. The aspects of performance that are 
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studied in this research are the packet delivery ratio and the throughput of the network. 

Component Under Study (CUS) 

Application Layer 

Presentation Layer 

Session Layer 

Transport Layer 

Network Layer 

Data Link Layer 

Physical Layer 

Figure 5. OSI Reference Model 

To achieve this objective, a routing protocol is introduced specifically designed for this 

purpose. 

The system under test (SUT) is the ad hoc network. This system consists of two or 

more mobile nodes. Using the OSI network model as a reference, the component under 

study is the network layer since routing protocol lies in this layer, as shown in figure 4. 

Routing protocols that have been designed for ad hoc networks were briefly 

discussed in Chapter 2. All of these routing protocols assume that the ad hoc network is 

being used to transport non real-time data or data is not time sensitive. As a result, the 

performance of these protocols with respect to real-time data is degraded since these 

protocols do not consider the unique requirements of real-time. Using AODV as the point 

of departure, a routing protocol named as Real Time Routing Protocol (RTRP) was 
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developed specifically for time sensitive data and simulations were run for both AODV 

and RTRP. The results of these simulation runs were statistically analyzed to reach a final 

conclusion. 

The two protocols' performance was tested using the same network. Additionally, 

since the routing protocol was implemented in the network layer of the OSI model, the 

same data link and physical layers were used throughout the simulations. For the data 

link layer, the IEEE 802.11 MAC protocol [IEEE99] was used. However, since the data 

link layers and the network layers are closely related with each other [BCSR], some 

additions are made to the data link layer for both RTRP and ADOV. The IEEE 802.11 

MAC protocol and the changes that are made to this protocol are discussed in Chapter 4. 

3.3 System Services 

The service that is provided by the system is the on-time delivery of the real-time 

data that is introduced to the network. There are three possible outcomes of this service: 

on-time delivery, late-delivery and no-delivery. Delivery is considered on-time delivery if 

the packet arrives before the deadline, and it is assumed to be a no-delivery if the packet 

is dropped due to a missed deadline. Although the system is designed to drop the aged 

packets at every hop, it is still possible that a packet can miss the deadline due to 

transmission and propagation delays. This leads to a late-delivery. 

3.4 Performance Metrics 

3.4.1   Missed Deadline Fraction 
Missed Deadline Fraction is among the important metrics in networks where the 

load is time-sensitive. For this research, missed deadline is measured by dividing the 
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number of dropped or discarded packets by the total number of packets sent. For AODV, 

the number of dropped or discarded packets represents the packets that reach their 

destination after their deadlines. For RTRP, this number includes both the packets that 

are dropped en-route to their destination and the packets that are discarded at their 

destination due to a missed deadline. 

3.4.2 Mean End-to-End Delay 

Mean end-to-end (ETE) delay is another metric that is used to measure the 

performance of a network. However, for real-time systems this metric becomes of 

secondary importance because of the time sensitivity of data. The packets in a real time 

system are not delivered to their destinations once they miss their deadlines. As a result, 

mean ETE delay is not an adequate measure of performance. For this research ETE delay 

is reported only to have the ability of comparing the system with other systems. 

3.4.3 Packet Delivery Fraction 

Packet delivery fraction is the most important performance metric for a mobile ad 

hoc network that transports time sensitive data. In such a network, there are many reasons 

that a packet cannot be delivered to its destination. First, the mobility of the nodes can 

make the establishment of a route to a destination impossible. Second, the packets can 

miss their deadlines due to the route establishment and/or medium access delays. 

Consequently, the packet delivery fraction, calculated as the number of packets delivered 

to their destination within their time-constraints divided by number of packets introduced 

to the system becomes the major performance metric in this research. 
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3.4.4   Routing Overhead 
Although it is not a measure of the performance of the networks, routing overhead 

is a measure of protocol efficiency. The routing overhead is calculated by dividing all the 

routing packets that are generated by network layer by data packets that reach their 

destinations. It is measured in packets. 

3.5    System and Workload Parameters 

The system and the workload characteristics that affect the performance of the 

network are called parameters [Jai91]. In accordance with this definition, the system 

parameters that affect the performance of the network are data rate, channel bit error rate, 

workload, network topology, and movement models, MAC layer parameters, routing 

protocols and parameters, number of total and source nodes and node speeds. 

3.5.1 Data Rate 
The IEEE 802.11b protocol specifies 4 different data rates: 1 Mbps, 2 Mbps, 5.5 

Mbps, and 11 Mbps [IEEE99]. The data rate chosen for this study is 2 Mbps for all of the 

simulation runs. The data rate of the channel has a direct effect on the performance of the 

network. However, for routing studies, choosing the data rate as a parameter rather than a 

factor is more appropriate. 

3.5.2 Channel Bit Error Rate 
The channel chosen for the simulation study is the ideal channel where the bit 

error rate is zero. Increasing the bit error rate will introduce additional packet losses to 

the system, however, this research focuses on the performance of the routing algorithm 

rather than lower layer functions. 
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3.5.3 Workload 

The workload that is chosen for this research is voice data. Each source node 

introduces packetized voice data to the network in accordance with the parameters 

described in the following subsections. 

3.5.4 Network Topology and Movement Models 

The nodes are designed to move randomly within a 300 m x 900 m area. The 

trajectories that the nodes move along within an area are generated randomly before the 

simulation runs starting from random locations. The distance between the nodes and the 

movement models described above allows dynamic changes in the routes since the 

receiving node positions change dynamically. No pause times are added to the movement 

models at each hop to make the scenarios challenging for the protocols. 

3.5.5 MAC Layer Parameters 

The MAC layer parameters have a significant role on the performance of the 

routing algorithm that is implemented in the network. For this research, the IEEE 802.11 

MAC layer specification for DSSS is used as the MAC layer parameters. The most 

important parameters that affect the performance are given below. 

Slot time:        20 us 

SIFS time:       10 y& 

DIFS time:      50 |^s (calculated as described in 802.11 specification) 

MAC processing delay: 0 us 

Cwmin: 31        (minimum value for contention window) 

Cwmax: 1023    (maximum value for contention window) 
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Retry Limit:    9 

3.5.6 Routing Protocols and Parameters 

The two routing protocols that are used in this research are AODV and RTRP. 

The authors of AODV specification [PRDOO] have suggested some default values for the 

protocol. The default values are used to the maximum extend possible. The parameters 

and their values are given in Chapter 4 for both of the routing protocols with a brief 

description of each parameter. 

3.5.7 Number of Total and Source Nodes 

The total number of nodes that participate in the networks are 30. The number of 

source nodes varies between 5 and 15. 

3.6    System Factors 

The factors that were chosen to be varied are number of source nodes, speeds of 

the nodes and the routing protocols. 

Number of Source Nodes 

Node Speeds 

Routing Protocols 

5, 10 and 15 

7.2 km/h, 36 km/h, 72 km/h 

AODV, RTRP 

Table 1. System Factors 

3.6.1   Number of Source Nodes 
Not all of the nodes that are participating in the network are considered as source 

nodes. The three different numbers of source nodes are 5, 10, and 15. These numbers are 
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chosen to determine the characteristics of the model developed under lightly loaded, 

medium loaded and heavily loaded situations. 

3.6.2 Node Speeds 
The nodes are classified into three categories based on their speeds: slow nodes, 

medium speed nodes, and fast nodes. Slow nodes are designed to move at a speed of 7.2 

km/h to represent the slow moving vehicles that are in heavy traffic. Medium speed 

nodes are designed to move at a speed of 36 km/h representing vehicles moving within a 

city. Finally, fast nodes are selected to move at a speed of 72 km/h to represent fast 

moving vehicles. All nodes in the network are designed to move on random trajectories. 

3.6.3 Routing Protocols 
The routing protocols are also considered as a factor since two different routing 

protocols were used for the simulations designed for the purposed of this research. The 

details of the implementations of the protocols are given in Chapter 4. 

3.7    Evaluation Technique 

The evaluation technique chosen for this research is simulation. There are three 

evaluation techniques described in [Jai91]: analytical, simulation, and direct 

measurement. Since there is no system that has the properties described above at present, 

direct measurement technique is unavailable for this research. Also, constructing such a 

network for the research done becomes unacceptably expensive. Second, since a 

comparison is done between two different routing protocols, the analytical evaluation 

technique becomes computationally infeasible. As a result, simulation technique becomes 

the most suitable evaluation technique for this study. 

33 



For simulation modeling, OPNET was chosen. The model developed is a discrete 

time model. The simulation results were analyzed statistically to determine the 

confidence intervals and ANOVA tables. 

3.8    Workload 

The workload selected for this study is a synthetic workload that simulates real- 

time voice data. There are many coding techniques that are widely implemented to 

improve the performance in cellular and speech-based communication systems [Rap96]. 

Most of these coding techniques require 32 Kbps or lower data rates for two-way 

communications. For this research, a 32 Kbps data rate is used as the load introduced by 

each source node. It should be noted that 32 Kbps data is the load introduced by a source 

node to the network. Since most of the routes that the packets are forwarded over have at 

least two hops, the load introduced to the wireless channel as data is greater than this 

amount. 

There are many methods used in modeling sources for two-way conversations. 

The most common technique is defining the voice source as a two-state finite machine 

with ON and OFF states. For this research voice sources are modeled as bursty data 

sources with ON and OFF states; typical values that are used for the duration of the states 

are exponentially distributed with means of 1.0 second for ON state and 1.35 seconds for 

OFF state. Each source simulates a voice source that has a 32 Kbps data rate sampled at 

every 20 msec by generating data packets according to a constant distribution with a 

mean of 20 msec. Each packet is 80 bytes long and is assumed to contain 20 msec voice 

data. 
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The destinations for the data packets are chosen randomly at the start of each 

burst. That is, when a source switches to ON state, it randomly chooses a destination, and 

the packets are sent to that destination until the node switches back to OFF state. 

3.9 Design of Experiments 

Among the various design techniques for experiments described in [Jai91], the 

full factorial design technique with replication is selected as the experimental design. 

This design technique requires the largest number of simulations, however, it is the most 

comprehensive one and gives the fullest description of the system under the situations 

described. Since the levels for each factor are at maximum three, the number of 

simulations that this technique introduces becomes reasonable. For this research, 54 

different simulation runs were accomplished. 

3.10 Summary of the Developed Model 

This section summarizes each of the steps described above in tables. 

Objective: To improve the real-time performance of ad hoc networks 

Performance Metrics: 1.        Missed Deadline Fraction 

2. Mean End-to-End Delay 

3. Packet Delivery Fraction 

4. Routing Overhead 

Evaluation Technique:         Discrete-Event Simulation using OPNET 

System under test: Ad hoc mobile network consisting of 30 nodes with 5,10, 

and 20 source nodes. 

Component under study:     Routing Protocol in Network Layer. 
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Channel Data Rate 2Mbps 

Channel Bit Error Rate Errorless 

Transmission Range 250 meters 

Network Topology Three types of speeds for nodes: 

• Slow-7.2 km/h 

• Medium-36 km/h 

• Fast-72 km/h 

Two types of motion for nodes: 

• Circular (randomly moving in an area) 

• Linear (passing through an area) 

MAC Layer Parameters Slot time 20 (is 

SIFS time 10 us 

DIFS time 50 jos 

MAC processing delay 0 p,s 

Cwmin 31 

Cwmax 1023 

Routing Protocol Parameters Given in Chapter 4 

Table 1. System Parameters 
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3.10.1 Number of Source Nodes 

3.10.2 Load Introduced 

Routing Protocols 

5,10 and 15 nodes 

32 Kbps for the online period of a typical 

source node generated by a constant 

distribution with 20 msec. mean. 

Exponentially distributed ON and OFF 

periods with means of 1.0 and 1.35 seconds 

respectively. 

1.   AODV 

2.   RTRP 

Table 2. Workload Characteristics 

3.11    Summary 

This chapter presents the methodology used in this research. Section 3.2 gives the 

system boundaries and the objectives. System services and performance metrics are given 

in sections 3.3 and 3.4 respectively. In section 3.5, system and workload parameters are 

given, followed by system factors in section 3.6. The evaluation technique is given in 3.7. 

The workload characteristics are defined in section 3.8. Finally the design of experiments 

is given in 3.9. 
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4   DESCRIPTION OF IMPLEMENTED MODELS 

4.1 Introduction 

This chapter presents an overview of the IEEE 802.11b Wireless LAN protocol and 

the changes that were made to it. More detailed information on this MAC protocol can be 

found in [IEEE99]. Following this short description, the AODV implementation and 

RTRP implementation have been given. The model validations are given in Appendix A. 

Additionally, the routing parameters that are used in the simulation runs are presented. 

4.2 802.11 b Medium Access Control Layer Operation 

4.2.1   Basic Operation 

The basic channel access technique that is specified in 802.11b is the Distributed 

Coordination Function (DCF), a Carrier Sense Multiple Access with Collision Avoidance 

(CSMA/CA) technique. This coordination function is the only coordination function that 

needs to be implemented in Independent Basic Service Sets (IBSS), in other words, ad 

hoc networks. Before looking at how the access mechanism works, a brief description of 

the timing intervals is given. 

The 802.11 DCF implements three different time intervals for frame exchanges. 

The first one is called Short Inter-Frame Spacing (SIFS), the shortest time period used in 

this DCF. SIFS is used between the transmissions of frames when two nodes are in a 

frame exchange sequence. The second one is named as Distributed Inter Frame Spacing 

(DIFS). DIFS period is longer than SIFS and is used when a node is trying to start a 

frame exchange sequence or after unsuccessful transmissions. The last and the longest 
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time interval is the Extended Inter Frame Space (EIFS). EIFS is used instead of DIFS 

when the station senses a collision on the channel. 

Another feature of the 802.11b is the introduction of a virtual carrier sensing 

mechanism, named the Network Allocation Vector (NAV). The NAV is used as an 

additional way of sensing the channel in addition to the physical carrier sensing. When a 

node needs to access the channel, both mechanisms must indicate the channel is empty 

before the transmission can start. 

To avoid a problem known as the hidden terminal problem, 802.11 DCF 

introduces RTS/CTS packet exchange sequence before transmission of any data packet. 

The RTS/CTS packets carry the information about the duration needed to transmit the 

upcoming data packets. The nodes that receive either RTS or CTS packets use this 

duration information to track channel allocation by updating their NAVs. The protocol 

does not mandate the use of this packet exchange. That is, it can be used for each packet 

or not, or a threshold may be set to use RTS/CTS exchange for larger packets. 

Immediate access when 
medium is free >= DIFS 

DIFS 

/Süsy medium 

DIFS 
-c=- 

PIFS 

SIFS 
a—(M 

Contention window 

l / /Back-off window f j f Next Frame 

Defer access 
-ta ■ c=» 

Slot time 

Select Slot and Decrement Backoff as 
0=3 as medium is idle 

Figure 6. Basic Medium Access Scheme 
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The operation of the DCF access procedure is given in figure 6. When a node has 

a packet to transmit, it first senses the channel both physically and virtually. The channel 

is physically idle if there is no station transmitting at that time. The channel is virtually 

idle if NAV does not indicate that the channel is reserved for any other node. If the 

channel is determined to be idle using both mechanisms, the node waits for DIFS period 

before accessing the channel. If the channel stays idle for this period, then the source 

node sends an RTS packet to the destination, if this feature is enabled. 

If the channel becomes busy within this DIFS time, or if it was already busy, the 

node must defer until the medium becomes idle. To defer, it calls the back-off procedure 

and waits for a time period determined by the back-off procedure. A random number of 

slots are specified by this procedure depending on the number of the transmission 

attempts for the current packet. A back-off timer is set to this value and the timer is 

decremented by one for each slot that the channel stays idle. However, if there is any 

activity in the channel within a time slot, then the back-off timer is suspended and is not 

decremented for that slot. When the back-off timer expires, the node is allowed to 

transmit. 

If the transmission is unsuccessful at the end of the back-off, the node waits for 

DIFS period and another random back-off time is selected within the exponentially 

increased range of contention window value. 

When the RTS packet is transmitted successfully, the receiving node is expected 

to send a CTS packet after a SIFS period of time. CTS frame is sent only if the receiving 

node's NAV value indicates that the channel is idle. Otherwise, the recipient should not 
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send CTS frame. If the source node does not receive CTS frame before its timer expires, 

then it assumes that the transmission is unsuccessful and call its back-off procedure for a 

retransmission attempt if the retransmission limit is not reached. If the source node 

receives the CTS packet, it sends the data packet after a SIFS period. The destination 

node will send an ACK packet to indicate the reception of the data packet. 

Neighboring nodes that hear the RTS or CTS frames update their NAV values 

after the successful reception of these frames. In Figure 7, the operation of the NAV is 

presented. The nodes that are represented by "other" in the figure are neighboring nodes 

that hear either the RTS or the CTS frames. The NAV value above the "other" line 

belongs to nodes that hear the RTS packet, and the NAV value below the "other" line 

represents the NAV values of the nodes that receive CTS packet. NAV values are only 

updated if the new NAV value is greater than the existing one and the frame's recipient 

address is not the node itself. The following figure gives the operation of the NAV value. 
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Figure 7. The Management of the NAV Value 
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4.2.2  Implementation Details 

The 802.11b model provided within the standard OPNET models is used. This 

model provides the basic access technique that is described in the protocol. Additionally, 

this model also supports the fragmentation and defragmentation of data packets. Since 

this research is not focused on the performance of the MAC layer, the fragmentation 

feature of the model is disabled. 

A link failure notification feature is added to the MAC layer to provide feedback 

to the routing protocol. That is, when the MAC layer reaches the retransmission limit for 

a packet, it notifies the network layer before dropping the packet. 

Furthermore, packets that are sent from the network layer are prioritized in the 

queue before transmission attempts. Routing packets are given higher priority than data 

packets to minimize the delays that are associated with the route discovery process. 

The MAC model that is used in the RTRP node model has the added feature of 

dropping aged packets before the transmission is started. When a node gains access to the 

channel, the deadlines of data packets are checked to see whether they have been 

exceeded or not. If the deadlines have been exceeded, the MAC layer discards the packet. 

Otherwise, the transmission is started. 

The standard model that is supplied with OPNET only sends a packet to the upper 

layer if its destination is that station. This has been changed for this research. The MAC 

layer sends all data packets (routing packets are also considered as data packets by the 

MAC layer) to the upper layer regardless of their destination. The routing protocols use 

this feature to update or create the routes as described in the following section. 
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4.3    Implementation of AODV 

4.3.1   Routing Parameters 

AODV has been implemented in accordance with the specifications of the 

protocol given in [PRDOO]. This reference is a draft in progress. As a result, future 

specifications of this routing protocol may be different than the version used in this 

research. 

There are many parameters that may affect the performance of the routing 

protocol. The major parameters that are used in this research for AODV are: 

• Active Route Time Out: This parameter is used to determine the time that a 

route expires. When a new route is created or a route is used for forwarding data, 

the end of life for that route is set to current time plus active route time out. It is 

set to 3 seconds. 

• Broadcast Record Time: When a broadcast packet is received for the first 

time, it is recorded to broadcast record list and the record is kept until current time 

plus broadcast record time. If any other copies of this packet are received, then the 

time is updated in the same manner. Its value for this research is 2 seconds. 

• Net Diameter: This number determines the maximum number of hops that 

a route can have. It is set to 10 for this research. 

• Node Traversal Time: This is a conservative estimate of the traversal time of 

single hop. It includes the queuing delay, medium access delay at MAC, 

transmission and propagation delays, and processing delay. It is set to 2 msec. 

• RREQ Retries: This is the maximum number of retries for broadcasting 

RREQS to establish a route. Its value is set to 6. 
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. TTL Start, TTL Increment, TTL Threshold: The AODV model used in 

this research uses an expanding ring search technique to avoid flooding the 

network by RREQ packets. The TTL field of the RREQ packet is set to current 

time + TTL Start * 2 * Node Traversal Time when it is transmitted for the first 

time. For retransmission attempts, this field is set to current time + (TTL Start + 

number of retires + TTL Increment) * 2 * node traversal time. If the TTL 

threshold is reached, then the node uses current time + TTL Threshold * 2 * Node 

Traversal time. The values for TTL start, TTL increment and TTL Threshold are 

3, 2, and 7 respectively. 

4.3.2  Operation of the Protocol Model 

When a data packet is received from the upper layer, the model first checks its 

route table to see if there is a route to this destination. If there is a route that is active, the 

packet is forwarded using this route. On the other hand, if there is no route to the 

destination, or the route is no longer active, the protocol broadcasts a RREQ message and 

sets the destination address as broadcast address (defined as -9999 in the model). 

When a node receives a packet, the first thing it does is check the type of the 

packet and extracts the appropriate fields from the packet. Next, the routing protocol 

creates or updates reverse routes to the source node of the packet, as well as to the 

transmitting station if it is different than the source node. This procedure is applied to all 

packets that are forwarded by the lower layer regardless of the destination address. If the 

node has sent any RREQ packets for routes to the source and the transmitting stations, the 

protocol model avoids further retransmissions. Furthermore, if there are any data packets 
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waiting for a route discovery, they are also checked and data packets that are waiting for 

this source and transmitting nodes are sent to MAC layer for transmission. 

After creating or updating the routes to the source and transmitting nodes, the 

packet is processed only if it is a broadcast packet or is sent to this node. For the RREQ 

packets, the time-to-live (TTL) field of the packet is checked to see if the packet has 

exceeded its TTL. If the packet has not exceeded this limit and is received for the first 

time, the node checks if it has a route to the destination or the destination is itself. In 

either case, the protocol model creates a RREP and unicasts it (sets the recipient address) 

to the node the packet was received from. Also, the RREQ packet's source address and 

broadcast ID is recorded in a list to avoid processing multiple copies of the packet. 

If there is no route to the destination, the RREQ packet is broadcasted if the TTL 

is not exceeded. The node sets the transmitting address to its node address and increases 

the hop count field by one before transmission. 

If the received packet is a RERR packet, the node updates the routes to each of 

the unreachable destinations listed in the RERR packet. If any of these routes has a 

precursor node that forwards packets using this route, this node also creates a RERR 

packet and broadcasts this packet after placing the unreachable destinations that have 

precursors. 

When a node receives a RREP packet, the node consults its route table and 

forwards the packet using the route to the source address. If the node itself is the source, 

it simply destroys the packet since the route to the destination is already created when the 

packet is received. 
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If a node receives a data packet whose destination is not itself, it forwards the 

packet using the route to the destination. If there is no route to the destination, the node 

creates a RERR and broadcasts it after putting the destination address of the data packet 

in the RERR packet as unreachable. If it is the destination, then the packet is forwarded to 

higher layers. 

When the protocol receives a notification from the MAC layer, it updates the 

route to the destination node as invalid. If there are any nodes that are using this route for 

forwarding packets, the node creates a RERR and broadcasts this packet after setting the 

destination address as unreachable. 

The AODV specification given in [PRDOO] proposes some additional 

mechanisms such as local repair and mechanisms for maintaining local connectivity. 

These two mechanisms are not implemented for the purposes of this research. 

4.4    Implementation Of RTRP 

RTRP has been built taking AODV as a point of departure. The basic mechanisms 

and packets formats between AODV and RTRP are similar. However, the following 

changes have been made to compensate for the time-sensitive data in RTRP. 

The RREQ packet format that is used in RTRP is similar to that of AODV. The 

AODV RREQ packet format includes only source and the transmitting address of the 

packet. When an intermediate node receives a RREQ packet, it creates reverse routes to 

the source and the transmitting nodes only. This has been changed in RTRP. In RTRP, 

RREQ packets include the addresses and the sequence numbers of all the nodes that a 

RREQ packet travels through. As a result, a node receiving a RREQ packet can create 

routes to all the nodes between itself and the source node. This will increase the benefit 
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that is gained from the RREQ packets. When a node creates a RREQ packet, it puts its 

address, sequence number, and hop count in the packet. The next node receiving this 

packet extracts this information, and creates a reverse route. If this node needs to 

rebroadcast this packet, it increases the hop count of source node by one, adds its address, 

sequence number and hop count to the packet. This continues until the packet reaches the 

destination. 

The RREP packets also have the feature described above. When a destination (or 

a node with a fresh route to the destination) creates a RREP packet, the node addresses 

and the sequence numbers are placed in the RREP along with the hop counts by each 

node on the way back to the source. 

The most prominent change that is made to the RTRP is the deadline check of the 

data packets in three places. In any of these checks, if the data packet is found to exceed 

the deadline, it is dropped and the missed deadline statistics is updated. When a node 

receives a data packet from the upper layers, the packet is forwarded to lower layers if a 

route to the destination exists. If there is no route to the destination, then the packet is 

queued and a route discovery sequence is initiated. When a route is discovered, the data 

packets that are waiting for this route are extracted and their deadlines are checked 

against the current time. This is the first place that stale packets are dropped. The second 

check is done when the packet is in MAC layer and the packet is removed from the queue 

for transmission. Finally, the receiving nodes check packet deadlines before processing 

them. The deadlines are set to be 200 milliseconds for all the simulation runs. 
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5   SIMULATION RESULTS 

5.1    Overview 

This chapter presents results obtained from the simulation runs. The simulation 

results are organized based on the performance metrics. The confidence intervals that are 

given for the results are for a 90% confidence level throughout this chapter. Section 5.2 

gives the simulation results for packet delivery fraction. Section 5.3 gives results for 

missed deadline fraction. Section 5.4 gives the results for routing overhead. The results 

for mean ETE delay are given in Section 5.5. Finally, results are summarized in section 

5.6. 

For packet delivery ratio, the number of source nodes is the primary factor that 

explains the major amount of the variation by 84%. This can be observed from the 

graphics that presents the packet delivery fraction results for 5, 10 and 15 nodes. This is 

not an unexpected situation since by increasing the number of source nodes, the load that 

is introduced to the network is also increased. Additionally, an increase in the number of 

sources means an increase in the number of channel attempts, which results in more 

collisions and delays in the wireless medium. 

For the missed deadline fraction, number of sources is still the primary factor that 

affects the outputs with a percentage of 38%. The second important factor is the routing 
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protocols with an explained percentage of 28%. The effect of the number of sources is 

obvious because of the reasons listed above. The effect of the routing protocols, however, 

is due to the fact that RTRP drops the aged packets en-route where AODV transports 

these packets regardless of their deadlines. This feature of RTRP accounts for a less busy 

wireless medium, thus resulting in lower missed deadline ratio than AODV. 

For routing overhead, the most important factor that affects the results obtained is 

the number of source nodes with a percentage of about 77%. Routing protocols, on the 

other hand, account for only the 6% of the variation. Combined with the number of 

source nodes, routing protocols account for another 10% of the variation. 

For mean ETE delay, the percentages of the variation explained are not different 

much than the other factors. Number of source nodes accounts for approximately 70% of 

the variation. Routing protocols explains the 14% where node speeds accounts for a 

percentage of less than 1%. Combined with the number of sources, routing protocols 

account for another 8 percent of the variation. 

It is clear that the number of source nodes is the most prominent factor that affects 

the performance of the networks. This is not very surprising since the number of source 

nodes also represents the load that is increased to the network. Each source node 

introduces the network an average 32 Kbps load. With 5, 10, and 15 sources, the load that 

is introduced to the network is about 160 Kbps, 320 Kbps, and 480 Kbps respectively for 

the time periods that all nodes are in ON state. It should be noted that this is only the user 

data that is introduced to the network. Considering that most of the routes in the network 

have more than two hops, the actual load that is introduced to the wireless medium as 

user data is higher than this amount. In addition to the data packets introduced to the 
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network, a total of three packets, an RTS, CTS, and an ACK are transmitted for each one 

of the data packets for every hop due to the properties of the 802.11 protocol. 

Furthermore, for scenarios where the node mobility is relatively higher, the routing 

packets consume a significant amount of bandwidth, making the medium even more 

congested. These details make it clear why the number of source nodes accounts for most 

of the variation in the results. 

The following sections summarize the results for each factor individually. 

5.2    Packet Delivery Fraction 

5.2.1   5 Sources 

Packet delivery fractions for 5 source nodes are summarized in Figure 8. For 

lightly loaded networks, packet delivery fractions of both of the protocols are close to 

each other. When the node speeds are increased, these fractions tend to decrease slightly. 

The major decrease in the packet delivery fraction is when the node speeds are increased 

to 32 km/h from 7.2 km/h for both protocols. RTRP tends to deliver packets with a 

slightly higher ratio at all three speeds. However, there is not a significant difference to 

reach to a conclusion. 

When the nodes are set to slower speeds, AODV provides a packet delivery 

fraction between 0.9809 and 0.9873 with a mean of 0.9841 with 90% confidence interval. 

RTRP, on the other hand, provides a packet delivery fraction between 0.988 and 0.995 

with a mean of 0.9914 with the same confidence interval. 
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Figure 8. Packet Delivery Fraction for 5 Sources 

5.2.2   10 Sources 

Figure 9 gives the packet delivery fraction for 10 source nodes for both protocols. 

When compared to the 5 sources, packet delivery fraction decreases significantly for 10 

source nodes for both protocols. Both protocols deliver approximately the same amount 

of packets when the node speeds are set to slow. However, RTRP's packet delivery ratio 

increases significantly when the node speeds are increased to 36 km/h. 

When the node speeds are increased to 72 km/h, packet delivery fractions 

continue to decrease slightly. AODV tends to have a higher packet delivery fraction than 

RTRP when the node speeds are 72 km/h. However, the difference is not significant to 

reach a conclusion. 

For 10 source nodes at slow speed, AODV provides a packet delivery fraction 

between 0.7983 and 0.9221 with a mean of 0.8602 where RTRP provides a mean ratio 

between 0.8575 and 0.9560 with a mean of 0.9067. For medium speed, these intervals 
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become 0.5654 and 0.7498 with a mean of 0.6576 for AODV and 0.9882 and 0.9925 with 

a mean of 0.9903 for RTRP. Finally, AODV provides a delivery ratio between 0.5243 

and 0.7292 with a mean of 0.6267 where RTRP gives a confidence interval of 0.5248 and 

0.6136 with a mean of 0.5692. 

For 10 source nodes, the protocols give close results for packet delivery fraction 

except 10 sources. The increase in RTRP's packet delivery fraction for 10 source nodes, 

on the other hand, is due to the trajectory patterns that are used in these experiments. For 

a larger number of samples with different trajectory sets, the packet delivery fraction 

results are expected to have less difference for protocols. 

The similarity among the results of the protocols for 10 source nodes is not 

unexpected. RTRP has the same basic mechanisms that AODV has for establishing and 

maintaining the routes. The differences between the protocols, however, are most obvious 

for the experiments where the number of source nodes is set to 15. These results are 

presented in the next Section. 
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5.2.3   15 Sources 

Figure 10 summarizes the packet delivery fraction for 15 source nodes. When the 

number of sources is increased to 15 sources, RTRP begins to significantly outperform 

AODV in packet delivery fraction significantly. The node speeds are not as significant as 

they are in 5 and 10 source nodes for 15 sources. RTRP has a delivery ratio of more than 

200% compared to AODV at all speeds. 

For slow node speeds, AODV has a 90% confidence interval of 0.1088 to 0.1658 

with a mean of 0.1373 and RTRP has a 90%confidence interval of 0.3338 to 0.4509 with 

a mean of 0.3924. For medium speeds, these intervals become 0.0740 to 0.16 27 for 

AODV and 0.3488 to 0.5033 for RTRP. Finally, for 15 sources 0.081 to 0.1097 

confidence interval for AODV and 0.3697 to 0.3990 for RTRP are observed. 

As it is clear from the results, when the network begins to get congested, the 

optimizations done to RTRP begin to create a difference in the packet delivery ratio. 
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5.3    Missed Deadline Fraction 

Missed deadline fraction and the packet delivery fractions seem to be two factors 

that sum up to 1. This would be the case if the network layer was the only layer that the 

packets are dropped. In this research, however, this is not the case. In addition to the 

packet losses in the network layer, the MAC layer and the physical layer are the other 

two layers that the packets are dropped. As a result, for the purposes of this research, the 

missed deadline fraction represents the ratio of the packets that are dropped or discarded 

by network layer due to the missed deadlines. 

5.3.1 5 Sources 

Missed deadline fractions are summarized in Figure 11 for 5 sources. Since 

almost all of the packets are delivered to their destinations with 5 sources, missed 

deadline fraction tends to be very small for 5 sources, less than 1% at all cases. When the 

node speed is set to 72 km/h, AODV tends to deliver packets after the deadline slightly. 

However, there is not a significant difference between the protocols for 5 source nodes as 

it can be observed from Figure 10. 

5.3.2 10 Sources 

Figure 12 gives the missed deadline fraction for the routing protocols for 10 

source nodes. When the node speeds are 7.2 km/h, missed deadline ratio is almost the 

same between the protocols. However, when the node speeds are increased to 32 km/h 

and later to 72 km/h, RTRP tends to have a lower missed deadline ratio than AODV. This 

observation points out to the fact that RTRP is losing more packets than AODV in lower 
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layers due to collisions or retransmission limits with 10 sources and when the mobility is 

higher. 
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When the node speeds are set to 7.2 km/h, AODV has a missed deadline fraction 

with a mean of 0.05913 where RTRP has a mean missed deadline fraction of 0.0343. The 

difference between the routing protocols increases when the node speeds are increased to 

32 km/h. At this speed, AODV has a mean of 0.1317 and RTRP has a mean of 0.0132. 

Finally, the difference decreases when the node speed is set to 72 km/h where AODV has 

a mean missed deadline fraction of 0.1129 and RTRP has a mean fraction of 0.0606. 

5.3.3   15 Sources 

Missed deadline fraction is summarized in Figure 13 for 15 sources scenario. 

AODV has a significantly higher missed deadline fraction than RTRP when the source 

nodes are increased to a total of 15. This is due to the fact that RTRP drops the aged 

packets en-route to their destination, decreasing the load significantly where AODV 

delivers the packets to the destinations regardless of the deadlines. As a result, RTRP has 

a lower fraction than AODV. It should be noted that when the packet delivery fraction 

and the missed deadline fraction are examined together, AODV is losing more packets in 

lower layers than RTRP due to the collisions occurring in the busier wireless medium 

For slow speeds the difference between the protocols is at maximum for 15 source 

nodes. AODV has a mean missed deadline fraction of 0.3041 where RTRP has a mean of 

0.0514. Form medium speed, AODV has a mean of 0.2274 where RTRP has a mean of 

0.0628. Finally, for node speeds around 72 km/h, AODV has a missed deadline of 01989 

and RTRP has a mean of 0.0527. 
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5.4    Routing Overhead 

5.4.1   5 Sources 

Routing overhead is given for 5 sources in Figure 14. Since the nodes are almost 

stationary for slow speeds, the routing overhead is relatively less than higher speeds. For 

7.2 km/h, AODV has a mean overhead of 0.4021 where RTRP has a mean overhead of 

0.3421. When the node speeds are increased to 36 km/h, the increment in the overhead is 

has a steeper angle than the increment from 36 km/h to 72 km/h. This is expected because 

the increment in the speed of the nodes is 5 times from slow to medium and 2 times from 

medium to fast. RTRP has a slightly lower routing overhead than AODV due to the fact 

that RTRP RREQ and RREP packets carry the addresses of all the nodes that they travel 

through where these packets in AODV carry only the addresses of the source and the 

transmitting stations' addresses. 
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Figure 14. Routing Overheads for 5 Source Nodes 

5.4.2   10 Sources 

Routing Overhead is given in Figure 15 for 10 source nodes. When the nodes are 

set to a slow speed, both protocols tend to have a routing overhead around 0.8 , with 

AODV having slightly higher routing overhead than RTRP. When the node speeds are 

increased, routing overhead for RTRP reaches to a value of 2.8, and the routing overhead 

for AODV reaches to a value of 2 for 72 km/h. 

AODV has a lower routing overhead than RTRP for the node speeds around 72 

km/h. This result is an unexpected result since RTRP outperforms AODV much or less in 

every other experiment. However, for mobile nodes, the trajectories of the nodes also 

play a major role on the reception of the nodes. As a result, it is estimated that these 

results are because of the trajectories of the nodes, and increasing the sample size should 

result in similar ratios between overhead fractions to results of other experiments. 
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Figure 15. Routing Overhead for 10 Source Nodes 

5.4.3   15 Sources 

Figure 16 summarizes the routing overhead for the protocols with 15 sources. As 

shown in the Figure 15, AODV has a significantly higher routing overhead than RTRP 

between 2 to 3 three times for all three speeds. This is an expected result. Since RTRP 

drops aged packets en-route to their destinations, the wireless medium is not congested 

with aged packets as it is in AODV. As a result, the routing packets are propagated 

through the network more easily than they are propagated in AODV. 
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5.5    Average ETE Delay 

The mean ETE delay does not imply a lot about the performances the routing 

protocols as stated earlier. However, the results are given in order to have the ability to 

compare the results with other protocols. 

Average ETE delay is given in Figure 17 for the protocols for 5 sources. This 

metric does not represent much about the performances of the protocols since the 

deadline cannot be exceeded as the average ETE delay. For 5 sources, both of the 

protocols have very low ETE delay which are not significantly different than each other. 

The mean ETE delays average around 5 msec, for both protocols. 
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Figure 17. Average ETE Delay for 5 source Nodes 

The ETE delay for 10 source nodes are given in Figure 18. The mean ETE delays 

increases for both protocols when the source number is increased from 5 to 10. AODV 

has a slightly higher ETE delay than RTRP for all experiments with 10 source nodes. 

However, the difference is not significant enough to claim that one protocol outperforms 

the other. For 10 source nodes, the speeds of the nodes do not affect the ETE delay 

significantly. 

The average ETE delay is given in Figure 19 for 15 sources. RTRP has a lower 

delay than AODV as in other experiments with different speeds. For 15 sources, again, 

the node speeds does not play a significant role and explains less than 1% of the variation 

in ANOVA tables. 

The reason for having such low ETE delays is the network diameter. With all the 

nodes scattered in a 900 m x 1500 m area, the routes are relatively short. Also, having a 

relatively small network limits the number of hops that a route can have to a maximum of 

5. As a result ,the queuing (medium access) and transmission delays are relatively small. 
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5.6    Summary 

Due to the fact that RTRP has basic mechanisms in common with AODV, AODV 

and RTRP do not have significant differences when the number of nodes in the network 

is low. However, when the number of source nodes increases, RTRP's packet delivery 

fraction tends to be higher than AODV due to the fact that RTRP drops the aged packets 

en-route, easing the load on the wireless medium. 

When the number of source nodes is low and the node speeds are also slow, 

RTRP and AODV have approximately the same routing overheads. However, the routing 

overhead remains lower for RTRP for higher source number scenarios. When the 

network starts to get congested, AODV's routing overhead increases significantly. This is 

because of the fact that AODV tries to route the aged packets to their destinations where 

RTRP drops these packets on the intermediate nodes. Since the RREQ packets have their 

TTL fields set, these packets also get aged, and are not propagated in the network, similar 

to RREQ packets in RTRP. This leads to more retries for route discoveries as well as 

more routing packets broadcast for AODV. Another reason for the difference in the 

routing overheads is the fact that RTRP RREQ and RREP packets carry more 

information than the RREQ and RREP packets in AODV, affecting the number of routing 

packets needed. 

As a summary, it can be stated that RTRP has better performance for higher load 

situations than AODV. 
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6   SUMMARY AND RECOMMANDATIONS 

This research has focused on the routing process in ad hoc networks. The selected 

workload was time-sensitive data. Taking into account the deadline characteristic of time- 

sensitive data, a routing protocol has been developed, named RTRP taking AODV as the 

point of departure. 

Simulation results showed that, for lower network loads, the routing protocols 

performed similarly, although RTRP had slightly better performance than AODV in most 

experiments. However, when the network load was increased, AODV began to perform 

significantly worse than RTRP. This is due to the fact that RTRP was designed to drop 

the aged packets en-route to the destination, whereas AODV tries to forward these 

packets regardless of their deadlines, congesting the medium with useless packets. 

Additionally, combined with the above, the design of RREQ and RREP packets in RTRP 

decreased the overhead associated with route discovery process, thus keeping the medium 

less busy and decreasing delays that are associated with route discovery. 

6.1    Summary 

Chapter 1 provided an explanation of the problem that was studied, and presented 

a brief overview of the objectives of this research and the document organization. In 

Chapter 2, different approaches that were taken in routing in ad hoc networks have been 
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presented. Also in this Chapter, the benefits and disadvantages of the protocols having 

different philosophies have been given. Following, a comparison of these routing 

protocols presented. 

In Chapter 3, the methodology that has been followed throughout the research has 

been provided. The details of the objectives, system boundaries, performance metrics, 

system factors, evaluation technique, workload characteristics and design of experiments 

were given in the subsections of this chapter. 

Chapter 4 presented a brief overview of the 802.11 wireless LAN specification's 

DCF, the basic channel access mechanism. Following this description, the details of 

implementations of 802.11, AODV and RTRP were presented. The differences between 

AODV and RTRP and the services that were provided by 802.11 implementation were 

also discussed in this chapter. The link failure notification and RTS/CTS packet exchange 

sequence were presented among the services provided by 802.11. The aged packet 

discarding mechanism and differences in RREQ and RREP packets were given as the 

major differences between the routing protocols. 

Chapter 5 presented results of the simulation runs. The results were organized 

under performance metrics and were briefly discussed in this chapter. Additionally, the 

reasons that lye behind the results were explored. 

Chapter 6 gives a summary of the research done and the paper organization. Also 

in Section 6.2, future recommendations for the studies that will be done in the same 

research area have been given. 

Finally, the appendices provide the results obtained from the simulation runs. In 

appendix A, validation of the models that were used in the simulations is presented. In 
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appendix B, the results are presented in tabular form, among with the confidence 

intervals and ANOVA tables for the performance metrics. 

6.2    Future Recommendations 

This research has been accomplished using a relatively small network size. Also, 

the scenarios that the experimental design contained were limited due to many reasons. 

Taking these facts into account, the following are recommended as future research. 

1. Increase the network size to observe the performance of the protocol in routing 

scenarios with relatively longer routes. 

2. Study the performance of RTRP in the networks where telemetry data is used as 

the workload. 

3. Study the performance of RTRP using different network topologies other than 

random trajectories. 

4. Study the performance of RTRP without using RTS/CTS frame exchange feature 

of 802.11. 
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APPENDIX A. MODEL VALIDATION 

This chapter presents the validation of the models. Section Al gives the validation 

of 802.11 model. Section A2 presents the validation of AODV. 

A.1.  Validation of the 802.11 MAC Model 

The model has been validated against the results given in [BF096]. Figure 20 shows 

the saturation throughputs for the model developed and the results from [BF096]. The 

model has been validated for 5, 10, 15 and 20 source nodes and for different contention 

window values. The differences between results are less than 3% for all the source nodes. 

Figure 21 gives the throughputs of both the model and [BF096] under different loads. 

The throughputs are measured for 5 and 10 source nodes only. The results are close to 

each other for 5 and 10 sources and the difference is less than 3% for both number of 

sources under different loading conditions. 
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A.2.  Validation of the AODV Model 

The AODV model that is used in this research is validated using the results from 

[DPROO]. The validation has been accomplished for 10 and 20 sources. The node speeds 

are 0 km/h for stationary results and a random speed between 0 and 20 m/h for no pause 

results. The nodes do not pause once they reach a waypoint on their trajectories. 

Figure 22 presents the packet delivery ratio for both the model developed and 

[DPROO]. When the number of sources is 10 and the nodes are stationary, both models 

deliver 100% of the packets without any loss. For 10 sources no pause scenario, the 

delivery ratios drop about 2% for the model and 3% for [DPR00]. However the 

difference between the models is not significant. 

For 20 sources, the differences are still insignificant for both scenarios. The 

differences for packet delivery ratio do not exceed 2% for any scenarios validated. 

Figure 23 gives the results for routing overheads for both the model and [DPR00]. 

For stationary scenarios, the routing overhead is close to zero. This is expected since once 

the routes are established, AODV does not play any role in forwarding process of the 

packets. Consequently, the routing overhead remains close to zero for both models. 

A.3.  Summary 

This appendix presents the results of the validation of the models. Section A.l gives 

the validation results for 802.11 model used in this research. Section A.2 presents the 

results of validation of AODV against the results presented in [DPR00]. 

69 



Packet Delivery Fraction 

1   T 

0.95 

.=      0.9 

0.85 
■ MODEL 

D[DPR00] 

10 sources      10 sources no      20 sources      20 sources no 
stationary pause stationary pause 

Number of Sources 

Figure 22. Packet Delivery Fraction for AODV Validation 

Routing Overhead 

2 
■ MODEL 

1.8 

■o 16 

(0 
O   1.4 

- a [DPR00] 

°> 1.2 

i   1 
K

  0.8 
"O 
0) 
N  0.6 1 1 
1  0.4 

|  0.2 1 - 1 
10 sources 10 sources no         20 sources 20 sources no 

stationary pause                stationary 

Number of Sources 
pause 

Figure 23. Routing Overheads for AODV Validation 

70 



APPENDIX B. SIMULATION RESULTS 

This section presents the results obtained from simulation runs. Additionally, the 

ANOVA tables for the performance metrics are presented in this section. 

B.1.  Simulation Results 

This section presents the results obtained from simulation runs. Each experiment is 

has three replications. The confidence intervals for the results of the experiments are also 

given following the table. 

Packet Delivery Ratio 

AODV RTRP 

slow medium fast slow medium fast yi... 

5 Sources 

0.9876 0.9588 0.9449 0.9879 0.9611 0.9556 

17.3462 
0.9809 0.9479 0.9498 0.9912 0.9548 0.9519 

0.9839 0.9463 0.9387 0.9951 0.9536 0.9562 

10 Sources 

0.8473 0.547 0.7299 0.9406 0.9914 0.6176 

13.8324 
0.8025 0.7286 0.6356 0.847 0.9877 0.5243 

0.9309 0.6972 0.5147 0.9326 0.9919 0.5656 

15 Sources 

0.1462 0.0781 0.1127 0.3507 0.5109 0.4018 

4.6606 
0.1038 0.1696 0.0879 0.4632 0.4185 0.3788 

0.1619 0.1074 0.0847 0.3632 0.3488 0.3724 

BC totals y.jk. 5.945 5.1809 4.9989 6.8715 7.1187 5.7242 35.8392 

V.J.. 16.1248 19.7144 

Table 3. Simulation Results for Packet Delivery Fraction 
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Level STD DEV 90% Cl mean upper bnd lower bnd 

1 0.925390645 0.878803076 8.05305 8.931853076 7.174246924 

2 0.006802206 0.006459757 0.951 0.957459757 0.944540243 

3 0.005562673 0.005282628 0.944466667 0.949749294 0.939184039 

4 0.003604164 0.003422717 0.9914 0.994822717 0.987977283 

5 0.004028647 0.00382583 0.9565 0.96032583 0.95267417 

6 0.002328805 0.002211565 0.954566667 0.956778231 0.952355102 

7 0.065169727 0.061888843 0.860233333 0.922122177 0.79834449 

8 0.0970606 0.092174212 0.6576 0.749774212 0.565425788 

9 0.107873645 0.102442889 0.626733333 0.729176223 0.524290444 

10 0.051885001 0.049272919 0.906733333 0.956006253 0.857460414 

11 0.002294196 0.002178697 0.990333333 0.992512031 0.988154636 

12 0.046752148 0.044398473 0.569166667 0.61356514 0.524768194 

13 0.030055116 0.028542031 0.1373 0.165842031 0.108757969 

14 0.046725404 0.044373075 0.118366667 0.162739742 0.073993592 

15 0.015325795 0.014554238 0.0951 0.109654238 0.080545762 

16 0.061661036 0.058556792 0.392366667 0.450923459 0.333809874 

17 0.081314472 0.077220802 0.426066667 0.503287469 0.348845864 

18 0.01546135 0.014682968 0.384333333 0.399016302 0.369650365 

Table 4. 90% Confidence Intervals for Packet Delivery Fraction Results 

Missed Deadline Fraction 

AODV RTRP 

slow medium fast slow medium fast yi... 

5 Sources 

0.0032 0.0061 0.1037 0.0063 0.0164 0.0168 

0.4204 
0.0053 0.0149 0.0078 0.0037 0.0183 0.0202 

0.0049 0.0126 0.1417 0.0008 0.0219 0.0158 

10 Sources 

0.0694 0.1695 0.0925 0.0487 0.013 0.0567 

1.2354 
0.0807 0.1093 0.1385 0.0508 0.0171 0.0644 

0.0273 0.1164 0.1076 0.0033 0.0096 0.0606 

15 Sources 

0.3107 0.2026 0.2068 0.0497 0.0776 0.0577 

2.69236 
0.2925 0.2353 0.1862 0.051 0.0568 0.0502 

0.3092 0.2444 0.2038 0.0536 0.0541 0.05016 

BC totals y.jk. 1.1032 1.1111 1.1886 0.2679 0.2848 0.39256 4.34816 

V.J.. 3.4029 0.94526 

Table 5. Simulation Results for Missed Deadline Fraction 
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Level STD DEV 90% Cl mean upper bnd lower bnd 
1 0.001115 0.001059 0.004467 0.005526 0.003408 

2 0.004564 0.004334 0.0112 0.015534 0.006866 

3 0.069005 0.065531 0.0844 0.149931 0.018869 

4 0.002751 0.002613 0.0036 0.006213 0.000987 

5 0.002793 0.002653 0.018867 0.021519 0.016214 

6 0.002307 0.00219 0.0176 0.01979 0.01541 

7 0.028141 0.026725 0.059133 0.085858 0.032409 

8 0.032899 0.031243 0.131733 0.162976 0.100491 

9 0.023448 0.022267 0.112867 0.135134 0.090599 

10 0.026838 0.025487 0.034267 0.059754 0.008779 

11 0.003755 0.003566 0.013233 0.0168 0.009667 

12 0.00385 0.003656 0.060567 0.064223 0.05691 

13 0.010103 0.009594 0.304133 0.313727 0.294539 

14 0.021982 0.020876 0.227433 0.248309 0.206558 

15 0.011129 0.010569 0.198933 0.209502 0.188365 

16 0.001986 0.001886 0.051433 0.053319 0.049548 

17 0.012859 0.012212 0.062833 0.075045 0.050621 

18 0.004342 0.004123 0.052687 0.05681 0.048564 

Table 6. 90% Confidence Intervals for Missed Deadline Fraction Results 

Routing Overhead 

AODV RTRP 

slow medium fast slow medium fast yi... 

5 Sources 

0.3928 0.6953 0.8196 0.3737 0.6267 0.6699 

10.5512 
0.4145 0.6897 0.7748 0.3422 0.6683 0.6177 

0.399 0.7501 0.809 0.3104 0.5605 0.637 

10 Sources 

0.9322 3.018 1.7791 0.4834 0.2045 2.6843 

26.0469 
1.1503 1.7021 2.3453 1.0286 0.2015 2.6196 

0.6081 1.871 1.9921 0.5691 0.2013 2.6564 

15 Sources 

10.3319 15.0775 9.112 6.5564 3.4044 4.5231 

154.9059 
14.1075 8.3919 11.4815 5.5498 6.8584 6.5756 

9.1597 12.0267 12.5754 7.4777 6.5626 5.1338 

BC totals y.jk. 37.496 44.2223 41.6888 22.6913 19.2882 26.1174 191.504 

v.J.. 123.4071 68.0969 

Table 7. Simulation Results for Routing Overhead 
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Level STD DEV 90% Cl mean upper bnd lower bnd 

1 0.011177209 0.010614507 0.4021 0.412714507 0.391485493 

2 0.033373043 0.031692921 0.7117 0.743392921 0.680007079 

3 0.023413102 0.0222344 0.801133333 0.823367733 0.778898933 

4 0.031650118 0.030056735 0.3421 0.372156735 0.312043265 

5 0.054365798 0.051628824 0.6185 0.670128824 0.566871176 

6 0.026393623 0.025064871 0.641533333 0.666598204 0.616468462 

7 0.27282145 0.259086615 0.896866667 1.155953281 0.637780052 

8 0.71597591 0.67993105 2.197033333 2.876964383 1.517102284 

9 0.285978344 0.271581143 2.038833333 2.310414476 1.767252191 

10 0.293180201 0.278420431 0.6937 0.972120431 0.415279569 

11 0.001792577 0.001702332 0.202433333 0.204135666 0.200731001 

12 0.032451862 0.030818116 2.653433333 2.684251449 2.622615218 

13 2.585534537 2.45536922 11.1997 13.65506922 8.74433078 

14 3.347048427 3.178545701 11.83203333 15.01057903 8.653487632 

15 1.77041836 1.681288989 11.0563 12.73758899 9.375011011 

16 0.964264457 0.915719838 6.527966667 7.443686505 5.612246828 

17 1.914499102 1.818116177 5.608466667 7.426582844 3.790350489 

18 1.05392109 1.000862826 5.410833333 6.41169616 4.409970507 

Table 8. 90% Confidence Intervals for Routing Overhead Results 

Average ETE Delay 

AODV RTRP 

slow medium fast slow medium fast yi... 

5 Sources 

3.56 4.8 6.32 4.19 4.19 5.15 

84.92 
4.12 4.37 5.95 3.27 4.62 6.06 

4.49 4.73 5.26 3.07 5.34 5.43 

10 Sources 

13.9 21.9 11.9 7.7 3.17 12.5 

199.08 
13.5 12 15.6 10.1 3.11 12 

10 14.5 15.1 8.2 2.7 11.2 

15 Sources 

29.3 25.7 23.2 16 15.9 14.9 

371.7 
27 26.8 23.4 13.9 13.8 14.8 

26.7 28.2 27 15.5 14.7 14.9 

BC totals y.jk. 132.57 143 133.73 81.93 67.53 96.94 655.7 

v.J.. 409.3 246.4 

Table 9. Simulation Results for ETE Delay 
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Level STD DEV 90% Cl mean upper bnd lower bnd 

1 0.468223593 0.444651496 4.056666667 4.501318162 3.612015171 

0.2307235 0.21910803   4.633333333  4.852441364  4.414225303 

10 

11 
12 

13 
14 
15 
16 
17 
18 

0.537990087 

0.597327381 

0.581062246 

0.466082968 

2.145538006 

5.148138822 

2.00748599 

1.266227994 

0.255799401 

0.655743852 

1.42243922 

1.252996409 

2.138535324 

1.096965511 

1.053565375 

0.057735027 

0.510905687 

0.567255724 

0.551809435 

0.442618638 

2.037523732 

4.888962582 

1.906421763 

1.202481421 

0.242921518 

0.622731295 

1.350828398 

1.189915962 

2.030873592 

1.041740234 

1.00052502 

0.054828433 

5.843333333 

3.51 

4.716666667 

5.546666667 

12.46666667 

16.13333333 

14.2 

8.666666667 

2.993333333 

11.9 

27.66666667 

26.9 

24.53333333 

15.13333333 

14.8 

14.86666667 

6.354239021 

4.077255724 

5.268476102 

5.989285304 

14.5041904 

21.02229592 

16.10642176 

9.869148087 

3.236254851 

12.5227313 

29.01749507 

28.08991596 

26.56420693 

16.17507357 

15.80052502 

14.9214951 

5.332427646 

2.942744276 

4.164857231 

5.104048029 

10.42914293 

11.24437075 

12.29357824 
7.464185246 
2.750411815 
11.2772687 
26.31583827 

25.71008404 

22.50245974 

14.0915931 

13.79947498 
14.81183823 

Table 10. 90% Confidence Intervals for Mean ETE Delay Results 

B.2.  ANOVA Tables 

index factor level 
A Number of Sources 3 
B Routing Protocols 2 
C Node Speed 3 
n Number of Replications 3 

Table 11. Enumeration of Factors 

Source of Variation SS DF MS Fo Ftable Sign.? % 

A 4.76654 2 2.38327 968.6906 2.46 Yes 83.9796 

B 0.238615 1 0.238615 96.98625 2.85 Yes 4.20406 

C 0.132127 2 0.066064 26.85181 2.46 Yes 2.327889 

AB 0.176333 2 0.088166 35.83563 2.46 Yes 3.106732 

AC 0.148942 4 0.037236 15.13458 2.11 Yes 2.624153 

BC 0.046914 2 0.023457 9.534236 2.46 Yes 0.82656 

ABC 0.077788 4 0.019447 7.904323 2.11 Yes 1.370514 

Error 0.088571 36 0.00246 1.560491 

TOTAL 5.675831 53 

SSR 5.587259813 RA2 0.984395091 

Table 12. ANOVA Table for Packet Delivery Fraction 
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Source of Variation SS DF MS Fo Ftable Sign.? % 

A 0.147199253 2 0.073599627 149.2716 2.46 Yes 38.05631 

B 0.111851748 1 0.111851748 226.8529 2.85 Yes 28.91771 

C 0.001464102 2 0.000732051 1.484714 2.46Yes 0.378523 

AB 0.067883397 2 0.033941699 68.83908 2.46Yes 17.5503 

AC 0.018995521 4 0.00474888 9.631473 2.11 Yes 4.911027 

BC 4.70003E-05 2 2.35001 E-05 0.047662 2.46 Yes 0.012151 

ABC 0.021602151 4 0.005400538 10.95314 2.11 Yes 5.584934 

Error 0.017750108 36 0.000493059 4.589042 

TOTAL 0.386793281 53 

SSR 0.369043173 RA2 0.954109576 

Table 13. ANOVA Table for Missed Deadline Fraction 

Source of Variation SS DF MS Fo Ftable Sign.? % 

A 697.834 2 348.917 228.463 2.46Yes 76.88713 

B 56.65219 1 56.65219 37.09458 2.85Yes 6.24192 

C 1.621191 2 0.810596 0.53076 2.46Yes 0.178622 

AB 81.44842 2 40.72421 26.6653 2.46Yes 8.973961 

AC 7.876082 4 1.96902 1.28927 2.11 Yes 0.867784 

BC 3.53431 2 1.767155 1.157093 2.46 Yes 0.389409 

ABC 3.661628 4 0.915407 0.599388 2.11 Yes 0.403437 

Error 54.98051 36 1.527236 6.057735 

TOTAL 907.6084 53 

SSR 852.6278588 RA2 0.939422652 

Table 14. ANOVA Table For Routing Overhead 

Source of Variation SS DF MS Fo Ftable Sign.? % 

A 2316.166 2 1158.083 423.7548 2.46 Yes 68.97857 

B 491.415 1 491.415 179.814 2.85 Yes 14.63501 

C 12.64536 2 6.32268 2.313536 2.46 Yes 0.376596 

AB 282.2076 2 141.1038 51.63139 2.46 Yes 8.404528 

AC 46.02545 4 11.50636 4.210301 2.11 Yes 1.370701 

BC 42.67581 2 21.33791 7.807767 2.46 Yes 1.270944 

ABC 68.28502 4 17.07126 6.246555 2.11 Yes 2.033621 

Error 98.38467 36 2.732907 2.93003 

TOTAL 3357.804 53 

SSR 3259.41977 RA2 0.970699703 

Table 15. ANOVA Table for Average ETE Delay 
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B.3.  Paired Observation Comparisons 

PAIRED OBSERVATIONS 
-0.0003 -0.0023 -0.0107 Mean: -0.132948 
-0.0103 -0.0069 -0.0021 Var: 0.026281 
-0.0112 -0.0073 -0.0175 90% Cl 0.040995 
-0.0933 -0.4444 0.1123 LB -0.173943 
-0.0445 -0.2591 0.1113 UB -0.091953 
-0.0017 -0.2947 -0.0509 Diff? YES 
-0.2045 -0.4328 -0.2891 
-0.3594 -0.2489 -0.2909 
-0.2013 -0.2414 -0.2877 

Table 16. Comparison of Protocols for Packet Delivery Fraction 

PAIRED OBSERVATIONS 
-0.0031 -0.0103 0.0869 Mean: 0.091024 
0.0016 -0.0034 -0.0124 Var: 0.007507 
0.0041 -0.0093 0.1259 90% Cl 0.02191 
0.0207 0.1565 0.0358 LB 0.069114 
0.0299 0.0922 0.0741 UB 0.112933 
0.024 0.1068 0.047 Diff? YES 
0.261 0.125 0.1491 
0.2415 0.1785 0.136 
0.2556 0.1903 0.15364 

Table 17. Comparison of Protocols for Missed Deadline Fraction 

PAIRED OBSERVATIONS 
0.0191 0.0686 0.1497 Mean: 2.048526 
0.0723 0.0214 0.1571 Var: 10.02409 
0.0886 0.1896 0.172 90% Cl 0.800638 
0.4488 2.8135 -0.9052 LB 1.247888 
0.1217 1.5006 -0.2743 UB 2.849163 
0.039 1.6697 -0.6643 Diff? YES 

3.7755 11.6731 4.5889 
8.5577 1.5335 4.9059 
1.682 5.4641 7.4416 

Table 18. Comparison of Routing Protocols for Routing Overhead 
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PAIRED OBSERVATIONS 
-0.63 0.61 1.17  Mean: 6.033333 
0.85 -0.25 -0.11   Var: 33.9949 
1.42 -0.61 -0.17  90% Cl 1.474417 

6.2 18.73 -0.6  LB 4.558916 
3.4 8.89 3.6  UB 7.50775 
1.8 11.8 3.9  Diff? YES 

13.3 9.8 8.3 
13.1 13 8.6 
11.2 13.5 12.1 

Table 19. Comparison of Routing Protocols for Average ETE Delay 
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