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AFIT/GEE/ENV/OlM-05 

Abstract 

The amount of municipal solid waste discarded to landfills is continually 

increasing even with extensive recycling efforts. The need to understand the behavior of 

waste in landfills is increased due to the decreasing number of active landfills, 

communities concern to the potential hazards associated with landfills, and companies or 

installations with landfills on-site need to understand landfill behavior because they must 

comply with new legislation concerning design and detecting hazardous material 

movement of-site. 

This research is focused on increasing the understanding of landfill behavior by 

examining the effects of temperature in a landfill system. A system dynamics approach 

was used in this research to develop and build structure to produce landfill behavior. 

Two reference modes using gas generation and a basic microbial growth curve were used 

as verification mechanisms. Initial verification and validation were preformed in separate 

sections then added to Shelley's landfill model to verify that the additional temperature 

structure more accurately modeled landfill behavior. 

Results show that an equation responsive to temperature effects on microbial 

growth and death, more accurately depicts landfill behavior. Increased understanding of 

how heat is lost from a landfill will increase the usefulness of this model. An inclusive 

model will help landfill operator's build and manage landfills to optimize performance 

and biodegradation over the lifetime of a landfill. 

xiv 



A SYSTEM DYNAMICS APPROACH TO MODELING TEMPERATURE EFFECTS 

IN SOLID WASTE LANDFILLS 

I. Introduction 

Background 

Landfills are an important part of solid waste management with approximately 55 

percent of generated waste being disposed of in landfills (EPA, 1996). The number of 

active landfills in the United States has declined over the past two decades, putting an 

increased strain on existing landfills. Landfills have a number of concerns associated 

with their operation: (1) build-up of landfill gas can cause on-site explosions, (2) landfill 

gas increases greenhouse effects, (3) leachate isreleased into surrounding groundwater 

and surface waters, and (4) trace gases from hazardous materials escape into the 

atmosphere (Tchobanoglous et al., 1993: 370). 

The declining number of active landfills is partially attributed to the above 

concerns expressed by local communities. Communities have the "not in my backyard" 

mind frame which prevents many new landfills from being built. New ways need to be 

researched to expand the longevity of the existing landfills. According to Murphy, new 

efforts such as "exploring methods to enhance degradation rates of municipal solid waste, 

and subsequently mining landfills to recover mineral and landfill space" are becoming 

increasingly popular. 

One method to enhance biodegradation rates is to promote the onset of 

biodegradation. Landfill gases, which can be used as a metric to model the stages of 



waste degradation, has been the focus of numerous landfill studies. A benefit of 

promoting methane production is that it reduces the strength of leachate, thus reducing 

leachate treatment costs. A second benefit of enhancing degradation rates is revenue 

received from gas collection facilities. Regulations requiring landfills to collect landfill 

gases while giving tax incentives for using the collected gas to generate energy has led to 

a rise in gas collection facilities at landfills from approximately 75 facilities in 1984 to 

over 500 in 1998 (Barlaz, 1990: 557; Wheeler, 1998). A final benefit is that the landfill 

will be at a stable state once gas production is completed thereby reducing the cost of 

long-term maintenance (Barlaz, 1988:1-20). 

In order to make methane to energy facilities profitable it is necessary to obtain 

and keep a high methane gas production rate. Methane production is often limited by the 

size of the landfills and other parameters such as temperature, pH, moisture content, and 

substrate availability. These parameters will affect landfill processes throughout each 

stage of degradation and play an important role in determining the time spent in each 

stage. According to Rees and Grainger, temperature is one of the first parameters that 

can be changed resulting in significant changes in methane production (Barlaz, 1988: 56). 

Studies have shown that raising the temperature from 22-33°C can increase gas 

production as much as 70 percent (Verstraete, 1984). Hartz investigated short-term 

studies on temperature affects on methane generation from solid waste and concluded the 

optimal temperature was 41°C (1982: 629). 

The temperature of the refuse is affected by a number of factors. The temperature 

of the refuse at placement and subsequent solar radiation before coverage can impact the 

beginning of degradation. This initial temperature is also an important factor in microbial 



growth along with other factors such as moisture and density of the waste (Senior, 1990: 

99-100); a high temperature can create an unsuitable environment for the bacteria. 

Models have shown the growth rate for a microbial population to be optimum just before 

40°C, with the value going to zero as the temperature rises to 45°C (Zwietering, 1990: 

1096). 

Temperature losses in a landfill can be attributed to heat losses to the atmosphere 

and surrounding soil.   The thermodynamic properties of waste and soil such as specific 

heat and heat capacity and flow affect the amount of heat available for temperature gain. 

The type of soil, climate, and seasonal fluctuations in temperature can affect soil 

thermodynamic properties resulting in a change in heat loss or gain in the landfill. 

To effectively model landfill processes, a system dynamics approach has been 

utilized in the past by Colborn, Benter, and Eck, in which gas generation was used as a 

validation metric for the system's behavior. Colborn's model began the research by 

looking at the entire landfill system with respect to solid waste degradation (Colborn, 

1997). Benter added to the work by researching the effect of substrate availability for 

microorganisms (Benter, 1999). Eck's contribution consisted of incorporating the effects 

of moisture on the landfill system (Eck, 2000). The system dynamics model used in this 

study is an improved form of Colborn's and Benter's created by Shelley after review of 

their models. 

The current model has not been expanded to include temperature factors. In order 

to represent the landfill system fully, temperature effects on the system must be studied to 

show that the model will continue to demonstrate reasonable behavior patterns. 



Purpose Statement 

The purpose of this thesis is to model the effects of temperature on the 

degradation process in a landfill system. Understanding temperature effects on microbial 

processes will provide a clearer picture of the behavior of a landfill system. The finalized 

model will provide a means to explore landfill behavior, which will enable landfill 

managers to explore methods to optimize methane production, reduce leachate, decrease 

time for landfill management, or to optimize landfill space. 

Research Questions 

1. How does the internal landfill system effect temperature? 

2. What effects do external influences such as climate and seasonal variation have 

on waste degradation? 

3. How does the landfill temperature affect the microorganisms in the landfill and 

the byproducts formed from their activity? 

Scope/Limitations 

The current system model will be expanded to include temperature effects on 

microbial activity, degradation process, and gas generation. The model will investigate 

the source of heat generation in a landfill, how temperature influences the microbial 

processes, and how heat is lost/gained from a landfill. These items will be built and 

tested outside of Shelley's model to validate their behavior, and then added to the model 

to more accurately describe and represent landfill behavior. 

The exploration of what occurs at various levels in a landfill, along with the fact 

that solid waste composition varies in a landfill, complicates the research and values to be 

used in the model. Gas generation, more specifically methanogenesis, has been 



demonstrated to vary under psychrophilic, mesophilic, and thermophilic conditions 

(Senior, 1990: 99). Studies have been done looking at one specific microbial group, but 

there are other microbial populations that will influence the degradation process. The 

compounding nature of uncertain parameters will complicate validation of the model, 

thus the temperature structure of the model will be kept simple, until testing proves a 

more intricate structure is needed to represent temperature behavior in the landfill. 



II. Literature Review 

Biodegradation Sequences in a Landfill 

According to the Environmental Protection Agency (EPA) approximately 62 

percent of the waste discarded in landfills is biodegradable (EPA, 1996). This waste 

percentage is organic matter that can be broken down into simpler substances such as 

cellulose, hemicellulose, lignin, and volatile solids (Barlaz, 1988: 542). A typical 

breakdown of municipal solid waste (MSW) excluding waste that is recycled and ground 

up in garbage disposals is shown in Table 1. Considering the readily degradable 

percentages of organic matter from Table 1, 59.5 percent is obtained for waste that is 

degradable which corresponds with the EPA value. 

Component 
Organic Percentage Inorganic Percentage 

Food wastes 9.0 Glass 8.0 
Paper 14.0 Tin cans 6.0 
Cardboard 6.0 Aluminum 0.5 
Plastics 7.0 Other metal 3.0 
Textiles 2.0 Dirt, ash, etc. 3.0 
Rubber 0.5 
Leather 0.5 
Yard Wastes 18.5 
Wood 2.0 

TABLE 1. PERCENT BY WEIGHT BREAKDOWN OF RESIDENTIAL MSW IN THE UNITED STATES IN 1990 
(TCHOBANOGLOUSETAL., 1993: 52) 

It is important to know the types of waste going into a landfill in order to calculate 

the potential amount of energy that will be released during biodegradation. Knowing the 

quantity of the final products of biodegradation will aid in designing the correct gas and 

leachate collection systems. As the initial MSW composition is transformed into the end 

products, the waste must go through a series of degradation reactions. 



Aerobic Degradation 

Aerobic degradation occurs from the first placement of the waste in a landfill until 

the available oxygen is depleted. This process usually lasts around one week. Soluble 

sugars in the waste provide the energy for microbial activity; nitrate and oxygen are also 

consumed producing less complex sugars, heat energy, new bacteria and gases. A 

general equation that describes the aerobic transformation of waste is provided by 

(Tchobanoglous et al, 1993:677): 

Organic matter + 02 + nutrients      ► new cells + resistant organic matter + CO2 + H20 
+ NH3 + SO4"2 + ...+heat 

Limited studies have been undertaken to study aerobic degradation in landfills since the 

process lasts for such as short time period. Research has been accomplished to compare 

the benefits that might occur if waste was continuously left under aerobic conditions. An 

aerobic system was found to contain 2-3 times more organisms than in a similar 

anaerobic system with benefits of increased degradation rates and completion of 

degradation, elimination of the need to buffer leachate, and elimination of the need for a 

gas collection system since there was no formation of methane or hydrogen sulfide 

(Murphy and Stessel, 1994: 492). However, more monitoring of leachate levels would be 

required.   If landfill mangers could extend the aerobic degradation phase, the total time 

for managing the landfill site could decrease. 

Anaerobic Degradation 

More time and research focus has been given to the study of anaerobic 

degradation stages are well document by (Barlaz, Adeel, Tchobanoglous et al.). There 



are typically three stages to anaerobic degradation: (1) hydrolysis reduces complex 

polymers to alcohols, ketones, and acids; (2) acetogenesis (fermentation) converts these 

first stage end products to hydrogen, CO2, and acetate; and (3) methanogenesis reduces 

CO2, acetate, and methyl amines and converts these to methane and CO2 (Adeel, 

1994:694). A flow diagram of the anaerobic degradation process is shown in Figure 1. 

Complex Polymers 

Cellulose, other polysaccharides, proteins 

Hydrolytic Bacteria          Hydrolysis 

Monomers 

Fermentative Bacteria 

Sugars, amino acids 

Fermentation 

1 r 
1 r 

v 

H2 +CO2 Acetate Propionate 
Butyrate 

Acetogens Acetogenesis Fermentation 

Acetate Acetate H2 +CO2 

Methanogens                            w ^    Methanogens 1 r yr 

r Methanogenesis 

PH/ 

FIGURE 1. OVERALL PROCESS OF ANAEROBIC DECOMPOSITION (AFTER BARLAZ AND PALMISANO, 1996:38) 



A general equation that describes the anaerobic transformation of waste is also provided 

by Tchobanoglous et al. (1993:681): 

Organic matter + nutrients —►  new cells + resistant organic matter + CO2 + CH4 
+ NH3 + H2S+ ... +heat 

Hydrolysis. Hydrolytic microorganisms are responsible for the breakdown of 

waste to structural components. Lipids, polysaccharides, proteins, and nucleic acids are 

broken down to fatty acids, monosaccharides, amino acids, purines and pyrimidines, and 

simple aromatics (Tchobanoglous et al., 1993:680). Hydrolytic and fermentative 

microorganisms are responsible for further degradation of waste to carboxyl acids, carbon 

dioxide, and hydrogen. An important factor that affects the rest of waste degradation is 

the concentration of hydrogen in the system. If hydrogen is allowed to build-up, the 

formation of acetate, and ultimately, methane will be hindered for other compounds such 

as propionate, butyrate, ethanol, and lactate (Barlaz, 1988:5). 

Acetogenesis. Acetogens oxidize the products of hydrolysis to acetate, carbon 

dioxide and water. Acetate formation is important because it is one of the large pathways 

for the completion of degradation to methane and carbon dioxide. Acetogenesis relies on 

the methanogenesis process to consume hydrogen to achieve favorable conditions to form 

acetate. 



Methanogenesis. Methanogens utilize a limited number of substrates in the 

formation of methane. Recognized pathways for the formation of methane are 

(Tchobanoglous et al., 1993:680): 

4H2 + CO2 => CH4 + 2H2O 
4HCOOH => CH4+3C02 + 2H2O 
CHsCOOH => CH4 + CO2 
4CH30H => CH4 + CO2 + 2H2O 
4(CH3)3N +6H2O ^9CH4 + 3C02 + 4NH3 
4CO + 2H2O        => CH4 + 3C02 

Methanogens perform three important functions in the landfill (Zeikus, 1979: 61): 

1. Control of pH by the consumption of acetate. 

2. Regulation of flow of electrons by the consumption of hydrogen. This creates 
thermodynamically favorable conditions for the catabolism of alcohols and 
acids. 

3. Excretion of organic growth factors including vitamins and amino acids, 

which are used by other heterotrophic bacteria in the system. 

Landfill Gas as a Metric 

Since the degradation process of waste can be characterized and measured by the 

gas generated during the stages of aerobic and anaerobic degradation recent research has 

used methane gas generation as a metric. Landfill gas production has been well 

documented over the life span of a landfill. Gas production is described and broken 

down into distinct phases based on the gases produced during the biodegradation of 

waste. There are two widely accepted descriptions of the gas phases: the four-phase 

approach and the five-phase approach. The phases and description shown in Table 2 of 

landfill gas generation match up with the stages in aerobic and anaerobic degradation 

described above. 
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Four-Phase Five-Phase Phase Description Degradative Steps 
Aerobic Initial 

Adjustment 
Beginning of decomposition 
under Aerobic conditions; 02 
depleted; 
C02 produced (3-10 days). 

Aerobic Degradation 

— 
Transition 02 completely depleted; 

anaerobic 
Decompositions begins 

Begin Hydrolysis 
Begin Fermentation 

Anaerobic 
Acid 

Acid Anaerobic decomposition; 
organic acids accumulate; C02 
principal gas generated; H2 
also produced; pH decreases 
(10-50 days) 

Hydrolysis, 
Fermentation, Begin 
Acetogenesis and 
Methanogensis 

Accelerated 
Methane 

Methane 
Fermentation 

Rapid accumulation of 
methane; C02 also produced; 
organic acids consumed; pH 
increases (90 days to several 
years) 

Hydrolysis, 
Fermentation, 
Acetogenesis, 
Methanogensis 

Decelerated 
Methane 

Maturation Production of methane remains 
steady until organic matter is 
depleted (90 days to several 
years) 

Reduced Hydrolysis, 
Fermentation, 
Acetogenesis, and 
Methanogensis 

TABLE 2. SUMMARY OF LANDFILL GAS GENERATION PHASES AND DEGRADATION STEPS (AFTER COLBORN, 

1997:14-20) 

An important aspect of modeling a complex system such as a landfill is to have a 

metric by which to interpret experimental results. Researchers have used these phases to 

explain experimental observations. A base case condition has been proposed that shows 

the theoretical gas generation output of a landfill throughout its lifetime. Figure 2 shows 

the theoretical gas production of the five-phase model. This is the basic condition that 

this research will try to achieve and demonstrate in order to show confidence in the 

model and the proposed relationships. 

11 



IV 

Cft, 

Time 

FIGURE 2. GENERALIZED PHASES OF LANDFILL GAS GENERATION DURING DECOMPOSITION (AFTER 

TCHOBANOGLOUSETAL., 1993: 385; PALAMISANO AND BARLAZ, 1996:40) 

Microbial Dynamics 

Understanding internal reactions in a landfill is necessary to develop an accurate 

model of the landfill under dynamic conditions. A model must represent how the 

microbial populations will grow and die for the aerobic and anaerobic degradation 

processes. Three potential models for describing microbial growth are Blackman 

kinetics, Exponential growth and Monod kinetics. 

Blackman Model 

The Blackman equation recognizes that there is a maximum specific growth rate 

for a population under given conditions, which cannot be exceeded even if there is a 

greater substrate potential. The general equation is (Bazin, 1982:14). 
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**. = {E*2l.)x forS1<2K1 
dt       2    Kx 

 = jux forSi>2K! 
dt 

where u, = specific growth rate 
x= concentration of microorganism 
Si = concentration of substrate 

and Ki = half-saturation constant 

This model is good at representing experimental data but is discontinuous at Si = 2Ki. 

Monod Kinetics 

Monod kinetics relates microbial growth and substrate concentration based on 

enzyme kinetics. This model suggests that there is a single enzyme that limits the growth 

of a microbial population.   The general equation is (Bazin, 1982:14): 

dx     ,    Sl      c ^ 

dt Kx       ' 

This model is well understood because it follows Michaelis-Menten kinetics. 

Exponential Kinetics 

The exponential model falls between the others. The general equation is (Bazin, 

1982:16) 

«//(l-exp{-0.693l|4)* 
dt     r Kx 

This model seems to be able to represent experimental data more accurately and saturates 

more rapidly than the Monod model, but can be difficult to manipulate. 

These microbial models are representative of systems with one substrate. 

Systems with more than one substrate add increased complexity with a separate S and K 

value for each substrate. The models represent the growth of microorganisms at the basic 
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level and are affected by environmental factors of the system.   In a landfill system the 

factors that can manipulate microbial growth are pH, moisture content, substrate 

availability, temperature, and refuse density. 

Factors that Influence Temperature 

Temperature effects on methane production and microbial growth have been 

studied but rarely simulated in a model. Temperature is recognized as a first-tier variable 

in its role in anaerobic decomposition and has been found to have significant effects on 

interrelated metabolic processes of acidogenesis, solventogenesis, and methanogenesis 

(Kasil, 1989:31). A number of factors may influence the internal landfill temperature, 

such as initial refuse temperature, chemical heat given off through neutralization and 

microbiological interactions, exothermic microbial activity, specific surface area of 

refuse, availability of electron acceptors, solar radiation, and heat loss to surrounding soil 

and into the atmosphere (Senior, 1990:99). 

Microbial Growth 

Temperature may immediately affect microbial populations or slowly affect 

populations over an extended period of time. Landfill temperatures vary from initial 

refuse temperature to lethal temperature values for each microorganism population. This 

temperature range typically encompasses three of the four groups of microorganisms; 

psychrophiles, mesophiles, thermophiles. Figure 3 illustrates the temperature ranges for 

each group and the relative influence of temperature on growth rates. 
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FIGURE 3. RELATION OF TEMPERATURE TO GROWTH RATES (FROM BROCK AND OTHERS, 1994:333) 

The shape of the curve represents the effect of temperature from the minimum amount 

needed to begin growing to an optimal value for sustained growth and an extreme value 

where no growth can occur for that microorganism. Figure 4 illustrates this general 

description of the effect of temperature on growth rate. 

Growth 
rate 

.Enzyirnes and reactions 
occurring at maximal* v" 
possible rate .-       yHH 

Optimum 

Maximum 

Temperature 

FIGURE 4. EFFECT OF TEMPERATURE ON GROWTH RATE AND THE MOLECULAR CONSEQUENCES (AFTER 

BROCK AND OTHERS, 1994:333) 

One of the first industries in which temperature was studied as a function of 

microbial growth was in food processing. The temperature of chilled food is an 
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important variable for microbial safety in the production and distribution chain of food 

substances. The response of organisms plays a role in modeling the lag time, specific 

growth, and growth yield as a function of temperature (Zwietering, 1991:1094). A 

number of mathematical models were discussed with varying limitations. All of the 

models showed that the growth rate was similar to the shape illustrated in Figure 3, with 

initial growth beginning at 5°C, continued growth to an optimum rate at 35°C, and no 

growth at temperatures in excess of 45°C. These models all considered growth and death 

rates of microorganisms in separate equations. 

Peleg proposed that the two equations could be combined and demonstrated that, 

even though the kinetics are different in growth and death, they can overlap. The term 

that is used to describe this overall equation is the propagation/destruction rate constant. 

The general form of the equation is (Peleg, 1994:83): 

k(T) = \n((l + bexV-((T-Tm)/ai)
2))/(l + cxp((T-Tc)/a2))) 

where b= dimensionless constant that accounts for peak height 
T= current temperature deg C 
Tm= temperature at which peak height is obtained 
ai= temperature span of the curve 
Tc= critical lethal temperature of the population 

and &2= lethal decay steepness 

The range and contribution of each kinetic parameter varies independently among 

microorganisms of different types (Peleg, 1994: 88). Researchers are still trying to 

understand microbial growth as a function of temperature in important processes such as 

food preservation in order to increase safety. 

Another industry or process in which temperature plays an important function is 

in wastewater treatment. The same anaerobic reactions that occur in a landfill occur in 
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the degradation of organic fecal matter.   The optimum temperatures in anaerobic 

digestion are 35°C and 55°C in the mesophilic and thermophilic zones, respectively (Cha 

and Noike, 1997: 247). Cha and Noike researched the effects of rapid temperature drops 

on the characteristics of substrate degradation and bacterial population levels in anaerobic 

acidogenesis. An important conclusion was that the numbers of acidogens, homo- 

acetogens, and H2 utilizing methanogens were not affected in the first three days after a 

rapid temperature drop. However, the number of acetate-utilizing methanogens 

remarkably decreased in the first three days, when the temperature rapidly dropped from 

30°C to 25°C, and were completely elimianted when the temperature rapidly dropped 

from 20°C to 15°C (Cha and Noike, 253). The landfill system is vastly more complicated 

with more variables affecting microbial growth and temperature compared to the food 

processing, but there are many similar relationships and reactions found in wastewater 

treatment. 

An early view of temperature effects on microbial growth in a landfill is 

presented by Hartz using the Arrhenius equation (1982:630). 

-EA 

K = AeR< 

\n^ = Ea(T2-Tl)/R(T1T2) 
Ki 

where A = proportionality constant 
Ki, K2 = reaction rates at each temperature 
Ti and T2=temperature deg K 
Ea = activation energy 

and R =gas constant 

Hartz used this equation to study the effects of temperature on methane production. A 

significant finding was that the optimum temperature, for short-term timeframes was 
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41°C, with methane evolution ceasing between 48°C and 55°C (Hartz, 1982:637). Many 

researchers have followed up on Hartz's work to determine the effect of temperature on 

methanogenic rates of production. 

Gordon examined the relationship of three species of methanogens on 

temperature. These three species were the only methanogens known to have optimal 

growth below 30°C: Methanolobus tindarius, Methanogenium cariaci, and 

Methanogenium marisnergri (Gordon, 1996:334). Thus, landfill sites with temperatures 

greater than 30°C are capable of generating significant amounts of methane. An optimal 

temperature range of 30-35°C, with significant inhibitory responses occurring between 

45-55°C was found in the study. One vessel showed no methane production inhibition in 

the temperature range of 20-25°C. However, substrate availability from acidogenic and 

acetogenic populations seemed to limit methanogenic production at 20°C in two other 

vessels. 

Recent work by El-Fadel investigates the Arrhenius equation by using different 

activation energies for acidogen and methanogen growth rates, half saturation rates, and 

death rates. Proportionality constants are also given for each acidogen and methanogen 

rate. El-Fadel notes that the normal range of temperature for a sanitary landfill is 

between 25-40 C with temperatures rarely exceeding 70 C. The Arrhenius equation is 

assumed to fail beyond this value (El-Fadel, 1996:499). 

Temperature Increase from Refuse Degradation 

The energy in waste can be determined by analyzing the landfill waste 

composition. BTU values can be approximated by using a modified Dulong formula 
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(Tchobanoglous et al, 1993:86): BTU/lb = 145 C + 610 (H2 -1/8 O2) +40S +10N, each 

variable is % by weight. Table 3 shows the energy available for various categories of 

waste found in a landfill. 

Component Inert Residue 
Organic % Range Typical Energy, Btu/lb 

Food wastes 2-8 2000 
Paper 4-8 7200 
Cardboard 3-6 7000 
Plastics 6-20 14000 
Textiles 2-4 7500 
Rubber 8-20 10000 
Leather 8-20 7500 
Yard Wastes 2-6 2800 
Wood 0.6-2 8000 

Inorganic 
Glass 96-99+ 60 
Tin Cans 6-99+ 300 
Aluminum 90-99+ - 

Other metals 94-99+ 300 
Dirt, ashes, etc. 60-80 3000 

TABLE 3. TYPICAL VALUES FOR INERT RESIDUE AND ENERGY CONTENT OF RESIDENTIAL MSW (FROM 

TCHOBANOGLOUS ET AL., 1993:84) 

The energy released from the breakdown of waste can also be calculated 

by looking at the free energy released during the stages of biodegradation. This release 

of energy in a closed system such as a landfill increases the temperature of the system. 

Free energy values released during typical anaerobic reactions are shown in Table 4. 
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Energy                                                                     Change (kJ/reaction) 
Reaction Type AG0b 

(Std Conditions) 
AGC 

Fermentation of glucose to acetate, H2, and C02 -207 -319 

Fermentation of glucose to butyrate, C02, and H2 -135 -284 

Fermentation of butyrate to acetate and H2 +48.2 -17.6 

Fermentation of propionate to acetate, C02, and H2 +76.2 -5.5 

Methanogenesis from H2 + C02 -136 -3.2 

Methanogenesis from acetate -31 -24.7 

Acetogenesis from H2 + C02 -105 -7.1 

TABLE 3. MAJOR REACTIONS OCCURRING IN THE ANAEROBIC CONVERSION OF ORGANIC COMPOUNDS TO 

METHANE (FROM BROCK AND OTHERS, 1994:651) 

Depth in Landfill 

Temperature will vary with landfill depth because the waste is increasingly 

insulated at greater depths from heat losses additionally, there is more circulation of 

leachate and nutrients. The first six meters of a landfill is generally considered to be in 

the mesophilic temperature range. From 6 meters to 20-25 meters the temperature 

increases to the fhermophilic range (Chiampo et al., 1996:39). The following figures 

show the general temperature profile of the investigated landfill and the specific 

temperatures at different bore depths. 

Figure 5 shows a water lens at a depth of 16m. Vehicles driving over the daily 

cover of a landfill cell in order to reach the current operational cell form a water lens. 

When future cells are placed on this packed layer it acts as an impermeable layer where 

moisture can collect. The higher moisture content in this area allows the organic waste to 

rapidly decompose creating unfavorable biodegradable conditions.   The layers of waste 
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underneath the lens will have less moisture and characteristically less degradation than 

the layers above.   The high temperature value of the waste at the water lens was 

attributed to drilling friction since no biodegradation was occurring. 
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A previous study also examined the effect of temperature vs. landfill depth, and 

methane percentage vs. landfill depth. The results are similar to Chiampo in that the first 

six meters were under mesophilic influences with the remainder of the landfill falling 

under thermophilic influences. The results in Figure 7 show that the temperature 

increases from 26°C to 50°C as the depth goes from 2 to 10 m. The temperature remains 

steady, around 50°C ,for the remaining 15 meters of the landfill (Attal et al, 1992:249). 

Figure 8 illustrates how the methane percentage changes with respect to temperature at 

the varying burial depths. If methane percentage is used to describe the degree of landfill 

waste decomposition, one conclusion that could be drawn is that waste at greater depths 

has had more time to decompose compared with the waste closer to the surface, thus 

creating more methane. However, this is hard to determine due to gases closer to the 

surface being released into the atmosphere. 
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Gurijala and Suflita looked at environmental factors affecting methanogensis in a 

landfill through samples taken from Fresh Kills Landfill. Their research focused on 

moisture content, pH levels, and sulfate levels (Gurijala and Suflita, 1993: 1175) The 

initial data for the landfill samples had burial depths with temperature values and rate of 

methanogenesis for each depth. Table 5 shows the characteristics of the samples. Figure 

9 graphs burial depth against temperature in order to compare this set of data to the 

studies discussed previously. Notice that there is not a clear distinction in the 

temperature between 7-10 m, with temperatures varying from 14°C to 42°C.   The 

temperature at intermediate depths might vary because some of the refuse might be under 

different phases of degradation. 
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Sample 
No. 

Temp 
(°C) 

Sampli 
ng 

Depth( 
m) 

Rate of 

Methanogenesis 
(jxmol(dry kg)" 
May"1) 

Sampl 
e 
No. 

Tern 
P 
(°C) 

Sampling 

Depth(m) 

Rate of 

Methanogenesis 
(fimol(dry kg)" 
May"1) 

1-2 29.4 3.08 0 6-3 28.9 6.15 0 
1-3 42.2 6.15 262.5 6-4 27.8 9.85 302 
1-4 ND 9.23 0 7-1 21.1 3.08 0 
1-5 37.2 13.54 335.2 8-1 ND 3.08 79.9 
1-6 37.7 15.69 272.3 8-2 43.3 6.76 56.8 
2-1 ND 4.62 0 8-3 40.5 9.23 149.8 
2-2 ND 10.15 1.6 8-4 ND 15.38 26.3 
3-2 22.2 4.31 520.3 9-2 21.7 4.62 702.5 
3-3 25 6.77 435.1 10-2 21.7 3.08 17.2 
3-4A 14.4 9.23 124.9 11-2 21.7 4.92 52.2 
3-4B 14.4 9.23 297.5 12-2 21.7 5.23 148.1 
3-5 ND ND 116.1 13-4 31.7 8.62 377.8 
4-1 16.1 3.38 219.3 13-5 10.5 9.8 316.3 
5-2 22.2 3.38 371.8 14-2 57.8 13.85 109.4 
5-2A 22.2 3.38 302 14-4 45.5 20.31 24.1 
5-3 18.3 6.76 274.9 14-S 62.8 12.31 0 
6-2 21.1 3.08 0 14-M 45.5 21.53 298.3 

TABLE 5. SELECTED CHARACTERISTICS OF MUNICIPAL REFUSE COLLECTED FROM THE FRESH KILLS 

LANDFILL (AFTER GURIJALA ET SUFLITA, 1993:1177) 
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Seasonal Temperature Changes 

An extensive study on the effects of daily and seasonal temperature changes has 

not been performed on an entire landfill. Borjesson and Svensson investigated seasonal 

and diurnal methane emission from Hokhuvud landfill in Sweden. The experiment went 

from 1992-1994; soil and air temperatures were taken along with methane and carbon 

dioxide emissions (Borjesson and Svensson, 1997: 39-40). Experimental results are 

depicted in Table 6. 

Gas flux (mmol m"2 h_l) 

Date CH4 

1992 13 May 0.31 
5 June 0.037 

23 July* 1.2 
3 Sept.* 1.3 

1993 18 May* 
21 June* 
21 July* 
19 Aug.* 
28 Sept.* 
18 Nov.* 
29 Dec. 

1994 28 Jan. 
25 Feb. 

.  12 Mar. 
19 Apr.* 
16 May* 
15 June* 
26 July* 

0.048 
0.83 
0.68 
0.82 
9.8 

13 
3.2 

0.88 
6.9 
0.034 

20 
2.7 
0.77 
0.23 

(64.1) 
(164) 
(169) 
(200) 

(200) 
(240) 
(172) 
(200) 
(176) 
(188) 
(85.5) 

(200) 
(198) 
(59.7) 

(102) 
123) 
(123) 
(204) 

CO, 

12 
35 
22 

3.4 

16 
8.1 

23 
25 
10 
5.7 

14 

0.56 
3.9 

-0.42 
12 
25 
11 
33 

Soil moisture 
0-0.60 m 
(% wetness) 

Temperature (°C) 

(67.1) 
(64.2) 
(60.3) 
(93.5) 

(67.3) 
(69.5) 
(40.3) 
(71.6) 
(85.1) 

(120) 
(30.5) 

(200) 
(146) 
(-200) 
(94.5) 
(79.1) 

(116) 
(64.9) 

22 
12 
15 
18 

6.9 
12 
5.0 
6.8 

13 
12 
18 

22f 
39 
14 
9.1 
5.9 
6.8 
5.8 

(41) 
(70) 
(75) 
(49) 

(79) 
(59) 
(65) 
(33) 

(135) 
(74) 
(52) 

(47) 
(58) 
(64) 
(79) 
(56) 
(96) 

Air 

1.5 
5.5 

33.0 
27.0 

24.0 
18.5 
24.5 
17.5 
10.5 

-2.8 
-2.0 

-7.0 
-6.0 

4.0 
5.0 

12.2 
16.5 
26.0 

Soil 
(0.85 m; 

19.5 
16.8 

12.8 
14.8 
19.8 
18.0 
12.1 
4.5 
2.1 

0.4 

0.6 
3.4 

10.4 
14.1 
22.6 

—=Not measured. 

TABLE 6 MEAN GASEOUS EMISSIONS FOR FOUR CHAMBERS, SOIL MOISTURE AND TEMPERATURE MEASURED 

AT THE HOKHUVUD LANDFILL 1992-1994(% COEFFICIENT OF VARIATION IN PARENTHESES) (FROM 

BORJESSON AND SVENSSON, 1997:40) 

The ground was covered with snow and ice from December 1993 through March 1994. 

Methane emissions appear to have been greater during the winter months (September- 
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April) compared to emissions taken during the summer (May-August), excluding April 

19th and November 18th. There was a negative correlation between methane emission and 

soil temperature at a depth of 0.6 m (Borejesson and Svensson, 1997: 46). Jones and 

Nedwell (1983), in a study in Britain, found the opposite results with higher methane 

emission in the summer months, while Kunz and Lu (1980), at the Freshkills landfill in 

New York, obtained their highest methane emission during February (Borejesson and 

Svensson, 1997: 33-34). A lot of seasonal variation seems to be dependent on climatic 

variations. Soil covering particle size, moisture content level, and compaction play 

important roles in the ability of gases to escape through the landfill cover.   Specific 

studies concerning emissions from landfill cover soils have been done by Whalen et al., 

1990; Bogner, 1992; Jones and Nedwell, 1993; Boeckx and Cleempt, 1996. The optimal 

temperature range for methane oxidation was from 25°C to 30°C (Boeckx and Cleempt, 

1996:180), which corresponds to the Whalen et al. (1990) optimum value of 3PC. 

Solar Radiation 

A large portion of the internal heat of a landfill comes from the decomposition of 

waste. A significant portion of heat can be added by solar radiation. The average solar 

constant has been calculated to be 2.00 cal/cm2 min (langley/min) with an error of two 

percent (Chang, 1958:44). Houghton calculated the amount of solar radiation reaching 

the surface based on degrees of cloud cover and the vegetation at the ground surface. 

Actual daily solar radiation absorbed depends upon geographical location, the season of 

the year, the character of the ground, and the weather conditions (Chang, 1958: 46). The 

energy that is absorbed by the earth surface is consumed in evaporation or radiated back 

out into the atmosphere with remainder energy being transferred into the soil 
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Thermal Properties 

The porosity of soil and waste allow movement of gases and water in the landfill 

through a convection system. The soil/waste temperature will change due to radiant, 

conductive, and latent energy exchanges. Internal processes and thermal properties of 

various waste cells and soil coverings will affect the degree of temperature change. The 

combinations of waste layers and soil have thermal property characteristics such as 

thermal conductivity, heat capacity, and latent heat (Cox, 1995: 27). Thermal 

conductivity is defined as the quantity of heat, Q, flowing through a unit area of a 

substance of unit thickness in unit time under a unit temperature gradient, dT/dz, and 

coefficient of thermal conductivity, K, of the ground (Johnson, 1981: 114). The K value 

will be different for each soil type and is affected by moisture content. Thermal 

conductivity will increase as the soil's dry density increases, as the moisture content 

increases, and when the ground is more solid (Johnston, 1981:109-11). In a dry state the 

soil and waste will be surrounded by air which will insulate the passage of heat. 

However, when air is replaced by water, the thermal contact increases, causing an 

increase in thermal conductivity (Chang, 1958:33). 

Heat capacity, c, is the amount of heat required to raise a unit mass temperature of 

substance by one degree where c = Q/AT (Johnston, 1981:115). A soil's heat capacity is 

dependent upon its mineral and organic makeup, moisture content, and bulk density 

(Smith and Hinchee, 1993:8). This applies to all three phases that are present in a 

landfill: solid, liquid, and gas. 
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Current Model 

Shelley and others created the landfill model to be expanded in this research. The 

research is focused on enhancing the biodegradation in a landfill in order to reduce the 

stabilization time of the waste (Shelley, 2000). All of the previous models have used the 

system dynamics perspective to represent landfill behavior. The models were developed 

using a numerical integration software STELLA® version 5.0.1 Research (High 

Performance Systems Inc). The system dynamics methodology compares the 

relationships of different parameters to a given behavior. The model was tested by 

comparing output data to the known observed behavior shown in Figure 3. This process 

allows the "big picture" of the system to be modeled in a manner that can be used by 

landfill managers (Shelley, 2000). Monod kinetics was used to characterize the 

degradation reactions in the landfill with a focus on mass balance. 

A system dynamics approach was utilized to explain the complex relationships, 

behavior, and interrelationships of a landfill over an extended period of time. The 

primary assumption of the system dynamics paradigm is that the relationships in the 

system arise from a causal structure, which is formed by constraints, goals, and feedback 

loops (Meadows, 1980:31). Once the relationships are defined, simulations can be run to 

determine the sensitivity of parameter values and to explore and predict emergent 

behavioral patterns based on internal and external forces. 

System dynamics is a methodology that provides an organized process to build 

and explore system behavior. The first step in the modeling process is to develop a 

mental view of the behavior in the system, which is believed to be important to the 

objectives of the model. Once an understanding of the system behavior is achieved, 
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gathering relevant data will help define parameter values and possible relationships. This 

information is used to form logic diagrams showing the cause-and-effect relationships 

needed to define the system and its boundaries (Shelley, 2000). After the relationships 

are defined, the structure of the model may be built. Throughout the building of the 

structure, revisions to the structure are changed through new understanding of the mental 

model or logic diagrams. The final step of the modeling process is to perform numerous 

tests to verify the model structure and values as well as to validate the system boundaries 

and logic. 

The system dynamics process allows for an efficient means of exploring any 

system, no matter the complexity of the system. Modelers can first look at the whole 

system in a simple manner; and once relationships and behavior are understood, more 

complex aspects may be added. The modeling process is broken down into four stages: 

conceptualization, formulation, testing, and implementation. Each stage can be reiterated 

as new information is added to define the system's behavior. 

Conceptualization 

An initial literature review of the basic concepts that describe and comprise the 

system will help develop a mental view of important parameters. The conceptualization 

stage should be a time when questions are continuously being asked to ensure a thorough 

investigation of the system. Why is this system behaving in this manner? What is 

causing a change in behavior? Are the changes in the system internal or external? What 

is the effect of these changes on the system? Questions such as these will lead to the 

formulation of a reference mode. 
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The reference mode is the behavior of the system over a given range of interest 

(Shelley, 2000), which can be hypothesized or well documented in the literature. The 

biodegradation of waste in a landfill has historically been measured by landfill gas 

generation. Numerous researchers have used landfill gas as a metric to describe the 

extent of waste degradation in a landfill, energy potential, and longevity of existing 

landfills (Tchobanoglous et al., 1993:385; Barlaz et al.). The reference mode is a 

cornerstone for the model through its indication of important structure. The rise of 

relationships describing the reference mode is called the basic mechanism (influence 

diagram), which along with the reference mode forms the dynamic hypothesis for the 

system (Shelley, 2000). The dynamic hypothesis is what must be tested, and in the end, 

validated to ensure that the proposed model of the system is a good representation of the 

system's behavior. 

The basic mechanisms of the model are developed through causal relationships 

and feedback loops. Arrows between parameters indicate a relationship between them. 

A positive arrow into a parameter indicates that it has a positive relationship with the 

other parameter; as the other parameter increases, so will the parameter with the positive 

arrow. The opposite is true with a negative arrow. Multiple arrows can be drawn from 

and into a parameter creating feedback loops. A feedback loop with an overall positive 

relationship is representative of a reinforcing behavior and indicates the relationship is 

unstable, while a negative feedback loop is representative of a compensating behavior 

and indicates the relationship is stable. These feedback loops give rise to the system's 

behavior. Once the basic mechanism is understood, application to a model format is 
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necessary. The software package used to model this system is the numeric integration 

software STELLA from High Performance Systems (STELLA 5.1.1, 1998). 

Formulation 

Transferring the basic mechanisms into STELLA requires the parameters be 

separated into levels or stocks and flow rates. Stocks represent an initial level of an 

object in the system, which can accumulate or decrease in size depending on the flow rate 

of the substance into and out of the stock. The flow rates are formed by equations that 

describe the relationship of the stock with other parameters per unit of time. The connection 

of two or more stocks formulates the feedback loops present in the influence diagram. 

Detail is added in order to define the relationships and formulate the flow rate equations. 

This detail cannot add logic that is not present in the influence diagram. 

Testing 

Once the structure of the model adequately represents the influence diagram and 

all the parameters are defined, testing of the model may begin. Testing encompasses 

verification, validation, and credibility of the model. Verification of the model tests 

whether the model is performing as intended, compared to the logic presented in the 

influence diagram. Validation of the model compares the model's output to empirical 

data. The reference mode can be compared here to develop confidence in the model. 

The primary objective of validation in system dynamics is to ensure confidence in the 

model's soundness and usefulness as a policy tool (Forrester, 1980:211). 

Verification can be divided into small tests performed while building the model or 

before the addition of more complex aspects to the model. There are two main types of 

tests, structure tests and behavior tests. Structure tests include structure verification, 
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parameter verification, extreme conditions test, boundary adequacy test, and dimensional 

consistency test. The testing process is very iterative and can be broken up into small 

steps as the model is being built to ensure that the structure and behavior of the section is 

valid. This process was used in the model to test for the correct behavior of the transfer 

coefficient, life cycle curves with respect to temperature, and the Peleg equation. 

Structure Tests. Structure verification compares the model to the real system it 

represents. Knowledge of the real system must not be contradicted in the model 

(Forester, 1980:212). This test is done by comparing assumptions to information found 

in literature and ensures that the stocks and flows are interacting in the real system as 

described in the model. Extending the model to professional criticism or advice adds 

validation to the model's structure. 

Parameter verification is similar to structure verification in that it justifies the 

constants used in the model to the real system. A constant or parameter must be studied 

over the time frame of the model to ensure that the structure using that parameter is able 

to handle any changes. Parameter and structure tests often overlap but the bottom line is 

to ensure knowledge of the real system is never contradicted. 

Extreme conditions tests ensure that there are not abnormalities in the model by 

testing at reasonable, extreme values, which should produce a well-defined outcome. For 

example, if the temperature in the landfill remains below microbial activity levels, then 

biodegradation will not occur. Extreme conditions testing are essential for two reasons. 

First, any abnormalities in the test might indicate problems in the model's structure and 

formulation. Second, the documented range of a system in reality might extend beyond 
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any observations (Forrester, 1980:214). Modeling extreme conditions may provide new 

insight to a system's behavior that might increase the system's productivity or resilience. 

Boundary-adequacy tests are included in the testing of the model structure and 

behavior. The main purpose is to reinforce the concept that there is enough information 

built into the model to satisfy the purpose of the model and to represent the real system. 

The test allows for criticism of the model for parameters that have been omitted that may 

be important factors in the model based on the model's purpose. If a defense for not 

including the parameter in the model can be developed and represented by model output, 

the test passes. However, if output from the model indicates that more structure needs to 

be added to the model to fulfill its purpose, then the test fails. 

Behavioral Tests. Behavioral tests ensure that model structure performs 

adequately in order to represent the behavior of the real system. Verification of 

behavioral tests and structural tests seem to overlap in that each of their definitions 

includes the other. Behavioral tests focus on the output derived from the model's 

structure and not on the structure itself. There are numerous tests for model behavior, 

which include, behavior anomaly test, family member test, boundary adequacy test, and 

behavior sensitivity test. 

Behavior-anomaly tests allows for the investigation of behavior in the model that 

is contradictory to the behavior found in the real system. The anomalous behavior can be 

traced to model structure, which then can be evaluated for flaws. If no flaws can be 

found in the structure or assumptions then the model behavior might just represent a new 

range of behavior that has not been experienced before in the real system. 
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Boundary-adequacy (behavior) tests look at comparing model behavior based on 

the presence and absence of additional structure. This test builds confidence that the 

structure present adequately models the desired behavior. The test passes if the 

additional structure does not change the behavior. 

The behavior sensitivity test compares the range of a parameter's values. If the 

behavior of the model drastically changes over a defined range of values of a parameter 

that is defined in the real system, then the modeler must go back and see where this 

behavior is developed. In order to build confidence, a modeler must indicate and explain 

where a parameter passed one test but failed to pass the sensitivity test for a plausible 

range of values (Forrester, 1980:223). A modeler often gets caught up in performing 

numerous sensitivity tests on parameters and never compares these tests with other tests 

out of fear of invalidating their model. A model is not necessarily invalid if it fails the 

sensitivity test. Failure may indicate behavior that is actually observed in the real system 

but has not been documented. A system's model passes the sensitivity test if the output 

behavior for a parameter's range does not contradict what has already been documented 

for the real system. 

Implementation 

The final product of a model is ultimately evaluated by its usefulness to the 

customer in representing behavior found in the real system. The customer should be able 

to understand the real system's dynamics based upon model behavior. The model should 

be user friendly and allow updates as the understanding of the real system changes. 
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Ill Methodology 

Using the system dynamics approach described previously, structure will be added to 

Shelley's model to reflect temperature effects in a landfill system. This section will 

explain how the additional structure was developed and incorporated into the model. 

Throughout the process of development and incorporation, tests need to be done to verify 

and validate the system's structure. There are two reference modes that this model will 

be working from to develop and validate the model. The first reference mode, shown in 

Figure 2, is showing the mole fraction of gases emitted over the lifetime of the landfill. 

The second reference mode shown in Figure 3, is showing the temperature effects on 

microbial growth. From this reference mode, ideas for parameters affecting temperature 

were developed. Before formulation of model structure can begin, an influence diagram 

needs to be developed showing the relationships and influences of the parameters in the 

system. Figure 10 illustrates parameters that affect temperature in a landfill environment. 
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FIGURE 10. TEMPERATURE INFLUENCE DIAGRAM 

The initial temperature of waste at arrival and burial is one of the first influences 

on the landfill temperature. This relationship is positive because the warmer the initial 

waste, the warmer the temperature of the landfill cells will be when degradation begins. 

The landfill cell temperature can have a positive or negative affect on the microbial 

populations. When the temperature is at a low end of a population's growth range, an 

increase in temperature will allow an increase in the population. However, when 

temperature rises to the extreme value of a population's growth range an increase in 

temperature will decrease the population's size. Microbial activity can, in turn, affect the 

temperature of the landfill by the heat released due to their biodegradation. An increase 

in microbial activity will have a positive influence on the heat generated. Another factor 
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that influences the amount of heat generated available for a temperature increase is the 

specific heat of waste. The specific heat can have a positive or negative impact on the 

temperature. Specific heat >1 will have a positive impact on the temperature increase 

while a specific heat value <1 will reduce the potential for temperature increase. The 

temperature loss from the system is based upon properties of the landfill and the 

surrounding soil. The temperature of the soil is affected by its depth and by the local air 

temperature. A lower soil depth is cooler than soil close to the surface, causing more heat 

to be lost from the landfill. However, in the winter the soil at a deeper depth can be 

warmer than soil near the surface, which will reduce the heat lost to the atmosphere. 

Using the relationships and influences in this structure, model development may 

begin. Setting up the temperature structure in STELLA will encompass three distinct 

areas. The first area of development looked at how microbial activity translates into 

energy, which corresponds to a temperature value. The heat generated is based on the 

amount of kcal given off for the transformation of one mole of glucose to one of the nine 

simpler forms found in Shelley's model. The total heat generated in kcal will be 

transformed to a degree Celsius increase per day using specific heat and the changing 

landfill's mass. 

The second area of development looked at how temperature will, in turn, affect 

the microbial growth cycle. This process requires an equation to relate temperature to 

microbial activity. Temperature will affect the Umax parameter, the saturation parameter 

and the death parameter which are all part of Monod kinetics. The behavior of the 

equation will be checked against the reference mode in Figure 3. 
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The third area of development investigated how the temperature will be lost from 

the system. This section will use a temperature differential between the surrounding soil 

and the changing landfill temperature. This differential will be dissipated with a transfer 

coefficient. 

From these three areas, tests were run to confirm structure and behavior with 

respect to temperature and with the overall model. Verification began with running the 

growth and death equations, separated from Peleg's equation, to determine the range of 

the Umax and kd terms produced for methanogens and acetogens. The system's 

temperature will be artificially manipulated to gradually and steadily increase over a 

landfill's normal operating range. The Umax and kd terms will change with respect to the 

changing temperature in accordance with each population's parameter values. The range 

for the Umax and kd values will be compared to values found in the literature and values 

being used in the current model. 

After verification of the equation representing, Umax and kd it is important to test 

for a good growth curve for an acetogen and methanogen population over the 

population's temperature range. A series of simulations will be run to verify that the 

acetogen and methanogen populations' biomass curves have the correct behavior over 

their temperature range. The correct behavior in this case is a curve showing a 

population growth with unlimited substrate to a peak point where the population will 

begin to decline due to the approach of the population's critical temperature. The 

system's temperature will be artificially manipulated to gradually and steadily increase 

over a landfill's normal operating range. This test will be performed outside the main 

model using microbial equations and an acetogen and methanogen population structure. 
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Extreme boundary tests will be run at low and high temperature extremes to observe any 

anomalous behavior. 

Another test that can be performed outside the model is for the transfer 

coefficient. The transfer coefficient defines the rate of heat loss from the landfill. A 

plausible range of values for the transfer coefficient will be defined by testing the time it 

takes for a high initial landfill temperature to come to equilibrium with a fixed soil 

temperature when no other system influences are allowed to affect temperature. The test 

will be done using a sensitivity analysis approach for the transfer coefficient parameter. 

Once verification of the microbial equation, biomass curves, and transfer 

coefficient parameter are validated these structures can be implemented into the larger 

model. The microbial equations now can be tested against the entire model for effects on 

the mole fraction of gases generated and the amount of waste degraded. The growth 

equation will be tested by looking at the height parameter, current temperature, peak 

temperature, and temperature span. Testing the sensitivity of all the parameter values in 

the Peleg equation will be accomplished by comparing the mole fraction of gases 

produced to the mole fraction of gases seen in the reference mode The range for each 

parameter will be determined by comparing the mole fraction of gases generated to the 

reference mode.   The temperature span parameter will be tested initially using a 

sensitivity test running four simulations in the 5-30°C range. After observing the results 

of these simulations further simulations may be needed. The equations representing the 

methanogens will be tested similarly to the acetogens but the ranges initially used will be 

different due to the higher temperature these populations require for growth. The height 

variable affects the Umax variable and ultimately affects the time when the population will 
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reach its maximum value. The initial sensitivity test will have four simulations covering 

a height range of 2-10. The peak temperature controls the temperature value at which the 

population will reach its largest size. The sensitivity test will run four simulations in the 

temperature range of 20-35°C. The last parameter in the Umax equation is the current 

temperature. What will be changing in this test is the starting landfill temperature. The 

sensitivity test will run four simulations in the starting temperature range of 5-25°C. The 

total number of initial simulations testing the Umax equation is 2(methanogen and 

acetogen) * 4 parameters* 4 simulations in each range = 32 simulations. 

The decay rate equation is affected by the decay steepness, current temperature, 

and critical temperature parameters. These tests will be run for both acetogen and 

methanogen populations. The decay steepness is a constant that controls how fast the 

population will die off once the critical temperature is reached. The sensitivity test will 

run four simulations covering a range of 1-12°C. The critical temperature constant is the 

temperature value at which the population will begin to die off in large numbers. The 

sensitivity test will run four simulations in the temperature range 30-55°C. The same 

simulations will be performed for the starting temperature value in the growth equation. 

The total number of initial simulations testing the kd equation is 2 (methanogen and 

acetogen) * 4 parameters* 4 simulations in each range = 32 simulations. 

There are nine microbial processes transforming glucose into simpler substances. 

Each of these reactions has an associated heat generation value based on the number of 

moles of glucose converted into simpler substances. The current value being used, found 

in El-Fadel's work for heat generation, is on the order of 50 kcal/mol of heat generated 

per mole of glucose transformed. In order to test the heat generation, the nine heat 
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generation constants will be manipulated by changing one constant that is applied to all 

of them. A sensitivity analysis will be run for this one heat generation constant to 

determine the effects of the nine populations on the heat generated. The sensitivity test 

will run four simulations in the range of 10-50 kcal/mol. This number of simulations may 

depend on the first sensitivity test. The heat generation constant is important because it 

directly affects the temperature increase in the system, which then affects all the other 

parameters in the system. 

The specific heat of waste is a variable not well documented in the literature and a 

sensitivity analysis should be run. The initial value is 0.5 cal/gm-deg C taken from 

Chang for the specific heat of peat. Four simulations will be run for the specific heat 

using values of 0.2, 0.8, 1.4, 2.0 cal/gm-deg C. The tests will see how much of an effect 

specific height has on the temperature increase. Specific heat, along with the heat 

generation constants, affects the rate of temperature increase in the landfill. These two 

parameters may need to be varied to determine if the temperature increase in the landfill 

is accurate. 

The temperature differential between the landfill cell and surrounding soil 

temperature could impact the amount of heat lost depending on the location and time of 

year. Three different soil profiles will be investigated representing a cold climate, a 

temperate climate and a warm climate. Each profile will be run using a sensitivity test 

for different TC's, which will be defined in the transfer coefficient testing. A total of 12 

simulations will be run. A summary of the tests that will be initially performed to verify 

and validate the model are shown in Table 7. 
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# Simulations 
Initial Arrhenius 32 
Microbial Growth Curves 2 
Peleg test 1 
Transfer Coeff 5 
Sensitivty on Heat 4 
Genertion Constants 
Sensitivty on specific heat 4 
Peleg in entire model 64 
Soil Temperature 12 

Total 124 
time for each simulation is 5 minutes 

TABLE 7. SUMMARY OF TESTS 
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IV. Results and Discussions 

This chapter will focus on the actual tests performed using the system dynamics 

process. For a further description of the system dynamic process, see thesis done by 

Colborn and Benter (Colborn, 1997 and Benter, 1999). The purpose of this research was 

to investigate temperature effects inside a landfill in order to understand its effects on 

landfill behavior. Temperature effects on microbial populations and their subsequent 

release of energy from the degradation of waste are the key research questions that will 

be discussed in this chapter. A secondary research question is how landfill temperature 

changes affect the percentage of landfill gas produced. The analysis of the relationship 

between temperature and microbial activity will use the diagram in Figure 3 as a 

reference mode. This reference mode is one view of the relationship between 

microorganism's growth rates and temperature. An equation that has been proposed in 

the literature to represent the relationship between microbial activity and temperature is 

the Arrhenius equation. 

Arrhenius Equation Testing 

The first test conducted was the Arrhenius equation generation of values for Umax, 

the saturation constant, and the death constant. The test was run setting the initial landfill 

temperature to 0°C and raising the temperature incrementally over time across actual 

landfill temperature ranges. 
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The values obtained from the equation are reported below with corresponding literature 

values next to them. The model values were taken from output in Figures 42-45 of 

Appendix A. 

Model Results Literature Values (El-Fadel, 490) 

Acidogen: Acidogen: 
Death constant: 0.0 - 0.6 (day1) Death constant: 0.01 - 0.4(day_1) 

Umax: 0.0-6.0 (day!) Umax: 2.0-30.0(day"1) 

K: 0 .7- 0.02 IClO-lSOtmgCOD-1) 

Methanogen: Methanogen: 
Death constant: 0.0-0.0036 (day1) Death constant: 0.01-0.04 (dayl) 

Umax: 0.15-0.46 (day1) Umax: 0.1-0.5 (day1) 

K: 0.9 -0.4 KilO^OOCmgCOD"1) 

TABLE 7. COMPARISON OF ARRHENIUS MODEL RESULTS TO LITERATURE VALUES 

These values corresponded well for the death constants and Umax values reported by El- 

Fadel but were off by three orders of magnitude for the saturation constant. The 

verification of the Arrhenius equation representing microbial activity as a function of 

temperature was accomplished by taking a portion of Shelly's model representing 

butyrate activity and setting up a separate structure to test its behavior (see Appendix B). 

Butyrate Growth Curve Test Using Arrhenius Equation 

The purpose of this separate structure was to see if the growth curve reflected the 

curve present in Figure 3 with respect to the landfill temperature. The output of the 

Arrhenius equation initially behaved similarly to the reference mode. Figure 11 shows a 

well-defined biomass curve with respect to temperature, peaking at 19°C and decaying to 

zero at 40°C. 
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FIGURE 11. BUTYRATE BIOMASS CURVE VS TEMPERATURE USING ARRHENRJS EQUATION 

Noticeable differences in values for Umax, K, and, kd were observed. The Umax 

started at zero but rose with increasing temperature until a value of 15 was reached. The 

kd term likewise rose form zero to a value near 1.5. Both terms never decreased, even if 

temperatures not typical for that microbial population were reached. The problem with 

this basic model was in the structure. The substrate level, glucose, was not held constant 

so temperature was not the only value changing. 

A second model was developed to hold glucose constant and to have microbial 

growth cut off at 70°C. The biomass curve in Figure 12 rises to an extremely high value 

8.24 E167 due to the Umax growth not being offset by the kd term. Once the cutoff was 

reached at 70°C, the biomass curve dropped to zero. 
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FIGURE 12. BUTYRATE BIOMASS CURVE VS TEMPERATURE USING ARRHENIUS EQUATION 

A conclusion drawn from this test was that the values of the Arrhenius equation did not 

represent the death rate of microorganism with respect to temperature. Since the biomass 

growth curve is a reference mode for the system, it was necessary to go back to the 

literature to find an equation that accurately represents the overall microbial growth 

curve. 
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The Peleg Structure and Parameter Test 

The Peleg equation represents microbial activity with respect to temperature. 

This test looks at the range in values for the growth and death parameters. The values for 

the equation and other initial parameter values are shown in Table 8. 

k(T) = \n((l + btxV-((T-Tm)/a1)
2))/(l + cxp((T-Tc)/a2))) 

Peleg equation parameters: 
B height Acidogen- 3 
Temperature span-34 deg C 
Temperature Peak-38 deg C 
Temperature Critical- 46 deg C 
Decay Steepness-6 

B height Methanogen-4 
Temperature span- 25 deg C 
Temperature Peak-60 deg C 
Temperature Critical- 70 deg C 
Decay Steepness-5 
Initial Waste Temperature-15 deg C 
Fixed Temperature increase- starting at 0.1 deg C/day to 0.3 deg C/day 

TABLE 8. INITIAL PELEG EQUATION PARAMETER VALUES USED 

Results show the Umax and kd terms change with temperature and follow normal 

behavior. When the temperature is within the temperature span and less than the critical 

temperature the Umax value will increase. After the temperature reaches its critical 

temperature, the U max term decreases while the kd term increases. Figures 46-52 of 

Appendix A show the behavior described for the Peleg equation. 

47 



Butyrate Growth Curve Test Using the Peleg Equation 

The same structure that was used to test microbial activity using the Arrhenius 

equation was used to test the Peleg equation (see Appendix C for model structure). The 

microbial populations that use butyrate are controlled by Umax, saturation, and decay 

terms. The Umax and death terms are affected by the Peleg equation, which is controlled 

by a fixed temperature increase variable. The parameter values used by Shelley to model 

the saturation influence were left in the model. The important parameters were set at the 

following initial values shown in Table 9. 

Glucose Stock- 1E12 kg  
Butyrate-0 
Butyrate biomass-100 
Peleg equation parameters 

B height Acidogen- 3 
Temperature span-20 deg C 
Temperature Peak-25 
Temperature Critical- 46 
Decay Steepness-6 
Initial Waste Temperature-10 deg C 

 Fixed Temperature increase starting at 0.1 deg C/day to 0.3 deg C/day 

TABLE 9. PELEG EQUATION INITIAL PARAMETERS USED TO MODEL BUTYRATE ACTIVITY 

The purpose of setting aside this piece of the model was to test the structure of the Peleg 

equation, comparing the biomass present in the model to a known reference, Figure3. 

The test was set up with fixed temperature increase that would cover the full temperature 

range found in a landfill. The temperature started at 10°C and rose to 71°C. The 

important parameter tested was the butyrate biomass stock level. The test did a time 

series comparison of temperature vs biomass. 
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FIGURE 13. BUTYRATE BIOMASSS CURVE VS TEMPERATURE USING THE PELEG EQUATION 

Figure 13 shows that the butyrate population has low initial growth until a 

temperature value defined by the temperature range is reached, then the population 

begins to rapidly grow. There is no substrate limitation in this structure; therefore only 

temperature limits the population's growth. As the temperature reaches the defined 

critical temperature value, the death parameter is greater than the growth parameter, 

causing the population to decline to zero. 

Formate Basic Structure Testing Biomass Growth Curve 

The basic structure for the formate biomass is from the Shelley model for formate 

(see Appendix C for model structure). The structure indicates how glucose is broken 

down into other simpler products with some portion being transformed into formate. The 

microbial populations that use formate are controlled by U max, saturation, and decay 

terms. The Umax and death terms are affected by the Peleg equation, which is controlled 
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by a fixed temperature increase variable. The important parameters were set at the initial 

values shown in Table 9. 

Glucose Stock- 1E12 kg 

Butyrate-0 
Butyrate biomass-100 
Peleg equation parameters: 

B height Acidogen- 3 
Temperature span-20 deg C 
Temperature Peak-25 
Temperature Critical- 46 
Decay Steepness-6 

B height Methanogen-3 
Temperature span- 30 deg C 
Temperature Peak-40 
Temperature Critical- 55 
Decay Steepness-5 
Initial Waste Temperature-10 deg C 
Fixed Temperature increase- starting at 0.1 deg C/day to 0.3 deg C/day 

TABLE 9. PELEG EQUATION INITIAL PARAMETERS USED TO MODEL FORMAT ACTIVITY 

The purpose of setting aside this piece of the model was to test the structure of the 

Peleg equation, comparing the methanogenic biomass to a known reference, Figure 3. 

The test was set up with fixed temperature increase that would cover the full temperature 

range found in a landfill. The temperature started at 10°C and rose to 71°C. The 

important parameter tested was the formate biomass. The test did a time series 

comparison of temperature vs formate biomass. 
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FIGURE 14 FORMATE BIOMASS CURVE VS TEMPERATURE USING PELEG EQUATION 

The output shows that the formate population has low initial growth until a 

temperature value defined by the temperature range is reached, then the population 

begins to rapidly grow. There is no substrate limitation here; therefore temperature is the 

only parameter that is limiting the population's growth. As the temperature reaches the 

defined critical temperature value, the death parameter is greater than the growth, causing 

the population to decline to zero. 

Transfer Coefficient 

The structure set up to test the transfer coefficient is simple. The concept of 

thermodynamic principles and heat transfer are presented in Chapter 2, but the actual 
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application in a landfill system is not understood thoroughly. Keeping with system 

dynamics methodology, the structure is kept simple initially until tests can confirm the 

need for more complex structure. The temperature structure consists of a temperature 

stock representing the landfill temperature at a high value and a fixed ground 

temperature. The difference between the two is dissipated at a rate determined by the 

transfer coefficient (TC). The purpose of the structure was to test the plausible range for 

the transfer coefficient. 

A plausible transfer coefficient range was found by running time simulations to 

determine how long it would take for the landfill temperature to reach ground 

temperature. Figure 15 shows a range for the transfer coefficient between 0.1 and 0.0001 

which corresponds to a time to equilibrium of 75 days for a TC of 0.1 to well over one 

year for a TC of 0.00001. Figure 53, of Appendix A, shows in more detail the time for 

temperature equilibrium for the transfer coefficient range 0.001-0.00001. 
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Heat Constants 

The structure of the microbial populations with respect to temperature has been 

tested as well as the range for the transfer coefficient. The final structural area to test is 

the generation of heat, which corresponds to a temperature increase per day. The 

literature review provided information on the heat available for temperature increase 

based upon the degradation of glucose into simpler substances. For example, for every 

mole of glucose converted into acetate, there was 20 kcal of heat energy produced. 

Shelley's model has glucose breaking down into nine simpler substances. This test 

incorporated the whole model structure presented in Appendix D. 

Heat constants were all given the same initial value to evaluate the temperature 

generated. A sensitivity analysis was performed to check the temperature range. Since 

the values for the heat generation constant ranges from 20-50 kcal/mol of glucose, a 

value of 50 was used as the base constant. The sensitivity analysis showed that the 

temperature rose from an initial value of 15°C to a value close to 60°C for all four 

simulations, which is within the temperature range of a typical landfill. 

However, the temperature rise was too sudden, inhibiting the early stages of 

anaerobic degradation. Consequently, there was a small amount of glucose degraded, as 

seen in Figure 16. This clearly does not represent the system behavior and further tests 

were performed to find the heat constant values, which would produce reasonable system 

behavior. 
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FIGURE 16 LITERATURE HEAT CONSTANTS TESTED SHOWING GLUCOSE 

The methane mole fraction was similarly low with the high heat constants, as seen in 

Figure 17. Figure 17 is deceptive because it looks like methane is being produced in 

appropriate quantities, but this figure is representing the percentage of the total gas in the 

system. If there is little glucose being degraded, then there will be less total gas 

production, resulting in the relatively normal methane fraction graphs seen in Figure 17. 
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The range of heat constants tested in the next simulations was 1-10 kcal/ mole 

glucose. Glucose levels and the reference mode seen in Figure 3 are a good indication of 

biodegradation level. If little biodegradation occurs, then the methane mole fraction will 

decrease around day 225, seen in Figure 18 for simulation 2, when the temperature drops 

due to temperature dissipation. As a result, anaerobic degradation breaking glucose down 

into simpler substances begins again. The only value that did not behave in this manner 

was 1.0 kcal/mol. Simulation 5 looks like it will have a high methane mole fraction for 

the entire period but if the simulation was carried out another couple of days it would too 

drop to a lower fraction. Figures 54-56 of Appendix A include graphs of temperature, 

temperature increase and total heat gain over the simulation time. 
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FIGURE 18 HEAT CONSTANTS TEST WITH METHANE MOLE FRACTION, TC 0.001 

Specific Heat Constant 

Since, a value was found to produce results showing behavior of the reference 

mode, a sensitivity test was performed to see how changing the specific heat would affect 

the temperature increase. The range chosen for the specific heat constant was 0.3 to 2.00 

kcal/kg- deg C, with a set heat constant of 3 kcal/mol. The results in Figure 19 show that 

only the first simulation with 0.3 specific heat value, indicated a drop in methane 

production due to incomplete degradation of glucose. 
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Glucose is formed in the model from a set degradation rate of the solid waste 

present over time. The solid waste starts at 3.0 E9 kg and is converted at a constant rate 

until there is no more waste seen in Figure 20. The glucose will rise as the waste is being 

degraded seen in Figure 21. 
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As the solid waste is being degraded, the glucose stock will rise. The temperature of 

the system controls whether the glucose is converted into simpler forms by affecting the 

growth of microbial populations. If the temperature is favorable for microbial activity, 

specifically acetogens and fermentors, then the glucose stock will be used as it is being 

produced. This behavior can be seen in Figure 21 when the glucose rises but begins to 

fall around day 15 due to the onset of anaerobic degradation. However, if the specific 

heat is low, a value of 0.3, it take less heat energy to increase the temperature of the 

waste, causing the temperature to rise above microbial growth levels. Glucose 

degradation into simpler substances by microorganisms is stopped; as the remaining solid 

waste is degraded it is stored as glucose until the temperature drops low enough again for 

microorganism to become active. The resulting effect on gas production is a decrease in 

the methane mole fraction, seen in Figure 19, and a subsequent increase in the carbon 

dioxide mole fraction. Refer to Figures 57-61 in Appendix A for more graphs of Umax 

values and other gas mole fractions. 
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FIGURE 21. GLUCOSE LEVEL WITH CHANGING SPECIFIC HEAT VALUES 

The next simulations tested the range of heat constant's with a higher specific heat value, 

0.6 kcal/kg- deg C. The range tested for the heat constant was 5-20 kcal/mol glucose. 

The test was stopped at the second simulation, after seeing inhibited degradation. 

To find what specific heat would be required to get a slower heat rise, using the 

literature values for the heat constant, another sensitivity test was run on the specific heat 

constant. The heat constant was set at 30 kcal/mol and the sensitivity test values ranged 

form 1.00 - 5.00 kcal/kg- deg C. None of the specific heat values allowed 

biodegradation to occur in the system. 

In order to find a range of values for the heat constant, more sensitivity tests were 

performed using values from 1-5 kcal/mol. The simulations representing 1.0 and 2.0 

kcal/mol showed the desired behavior, this seems to be the upper range for the heat 

constant parameter. Another sensitivity analysis was performed from 1.0 - 0.01. The 
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sensitivity test was stopped after the second simulation when the heat constant of 0.333 

kcal/mol failed to produce a high enough temperature increase. 

Using the heat constant value of 2.0 kcal/mol, a sensitivity analysis was run to 

determine the range for the specific heat parameter. The tests range was from 0.2-2.00 

kcal/kg-deg C. The 0.2 specific heat value produced a rapid increase in temperature to 

53°C by day 40 while a value of 2.00 only produced a 5°C increase to a temperature 

value of 20.0°C. During this low temperature range glucose is depleted but due to a large 

hydrogen inhibition gas levels are kept low with most of the mass being stored as acetate 

see Figure 22. 
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All the above simulations running sensitivity tests for the heat constant and 

specific heat were obtained using only one transfer coefficient. The transfer coefficient 

was 0.001, which allows for only a small temperature loss out of the system. Using a 

transfer coefficient at the higher range shown in Figure 19 should increase the rate of heat 

loss from the system and allow use of a higher heat constant. The following discussions 

of simulations use a transfer coefficient of 0.1. Figure 23 shows the methane mole 

fraction of gas produced with different heat constants. These heat constants are similar to 

the values reported by El-Fadel. A heat constant value of 30 kcal/mole of glucose 

produces enough heat, to cause the temperature to rise rapidly to the methanogenic 

critical temperature value. There is little activity at this temperature until transfer to the 

environment reduces this heat. This is why there is a delay in the methane mole fraction 

curve for simulation four. Once the temperature reaches a value near 40°C then the 

acetogens and fermenters begin to degrade glucose. However, since the temperature 

value is near the critical temperature for these microbial populations the growth of the 

populations is low. This result is an extended glucose degradation curve over time. The 

slower glucose degradation results in less substance available for methanogenesis. 

Figures 62-65 of Appendix A show the CO2 mole fraction, temperature, and U max values 

for the simulation. 
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Related Factors with Heat Constants 

A heat constant value around 15 kcal/mol glucose with a specific heat of 0.6 kcal/ 

kg-deg C, using a transfer coefficient of 0.1, produces behavior that is similar to the 

behavior seen in the reference mode. Exploring this behavior further by looking at the 

initial waste temperature and seasonal soil temperature will help verify and validate the 

model. The waste's initial temperature will be affected by the climate where the waste is 

disposed. Other factors that might influence initial temperature of the waste is the 

amount of time the waste is exposed to ambient air conditions at a transfer station or the 

time it takes to transport the waste to the landfill. These factors were not investigated in 

this research; therefore, an assumption was made for the initial waste temperature. The 
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waste is assumed to have a starting temperature close to ambient air temperature. 

However, simulations show that with a high heat constant and transfer coefficient the 

initial waste temperature, °C, does not effect the landfill temperature or gas production as 

seen in Figure 24. 
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FIGURE 24. INITIAL WASTE TEMPERATURE AFFECTS ON LANDFILL TEMPERATURE, TC 0.1 

Initial waste changes affects on other parameter values such as; Umax 

methanogen, Umax acidogen, glucose, CO2 mole fraction and butyrate biomass curve are 

presented in Figures 66-71 of Appendix A. These graphs show that all the parameters 

have the same behavior for each simulation. The biomass curve is normal until the 

critical temperature is reached around 50°C. The curve jumps around here because of the 

fluctuations in the temperature, which are being mapped onto a scatter plot. 
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These observations are different as an alternative transfer coefficient was applied. 

Changing the transfer coefficient used in the system changes the heat constant it can be 

associated with. A transfer coefficient of 0.01 was proposed to see how an order of 

magnitude shift would affect the corresponding heat constant, biodegradation level, gas 

production, and temperature. Also, simulations were run to determine if the initial waste 

temperature would affect landfill conditions in a different manner due to an order of 

magnitude change in the transfer coefficient. Figure 25 illustrates the level of glucose 

biodegradation over time based on a transfer coefficient of 0.01, a heat constant value of 

10 kcal/mol glucose with a changing initial waste temperature. 
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The glucose level rises as solid waste is being degraded and is transformed into 

simpler substances until day 35. The temperature conditions at this time rise higher than 

the fermentators or acidogens can withstand. As the temperature decreases certain 

microorganisms become active increasing the temperature. This is why the temperature 

seems to fluctuate around 60°C seen in Figure 26. These fluctuations in temperature can 

be seen as small rises and dips in the glucose curves. 
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The majority of gas produced under this simulation is CO2 with little visible 

methane production seen in Figure 72 of Appendix A. Figures 74 and 75 of Appendix A 

illustrate that the acidogen and methanogen Umax values have the same oscillations with 

respect to the temperature oscillation. 
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The differences in graphs between the transfer coefficients indicate that if a high 

rate of heat generation and loss occurs in the landfill then the starting temperature will 

not have any affect on the glucose biodegradation or gas production amounts. The rate of 

heat loss will probably vary over time and not be at one constant rate. The rate changes 

in the beginning of the solid waste degradation will determine the significance of the 

initial waste temperature. 

Sensitivity Tests on the Peleg Equation 

The main equation in thesis model is the equation describing the growth and 

decay for the microorganisms in the system. The organisms in the system were assumed 

to take on the behavior of either an acidogen or methanogen based microorganism. 

Sensitivity tests were performed on all the variables in the equations for both the 

acidogens and methanogens. 

B Height Parameter 

The height parameter for both the acidogen and methanogen microorganisms 

affects their respective Umax value. The original value used by Peleg for microorganisms 

in the food processing industry had values between 3-5; this range was used as a 

beginning point for the sensitivity tests. The initial run for the sensitivity tests used a TC 

of 0.001 with a heat constant of 2 kcal/mol glucose. The sensitivity test for the acidogen 

height parameter tested the range between 1.0-10.0, using four simulations. The results 

in Figure 27 show that a low height value produces a lower methane mole fraction than 

the other three higher values. This is due to the Umax value having a low value, which 
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does not allow the acidogen populations to grow thus reducing the amount of simpler 

substances available for the production of methane. Height parameter values do not 

appear to be sensitive to values between 4-10 due to the fact that the Umax value is closer 

to maximizing the glucose available. Figures 76-80 of Appendix A show other model 

behavior sensitivity based on the changing height parameter. 
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FIGURE 27 ACIDOGEN HEIGHT PARAMETER SHOWING METHANE MOLE FRACTION, TC 0.001 

The TC was changed to 0.1, and follow up sensitivity tests were done to see if any 

of the Peleg equation parameters would have different effects on the behavior for the 

biomass curves and gas production. A simulation was run to compare various extreme 

values for the b height parameter seen in Figure 28. When the TC was 0.1 the height 

parameter needed to be above 3.0, which produced good results for the TC of 0.001. 
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The height parameter effects the Umax value for microbial growth. The Umax values 

produced from the height parameters tested in Figures 27 are not within the range 

reported in the literature, presented in Table 6, while Figure 28's height values produced 

Umax values within the literature range for simulations two, three and four. The low 

Umax values cause the glucose level, for TC of 0.001, in Figure 71 to remain high over 

the degradation process. Figures 81-85 of Appendix A include more model behavior for 

the changing acidogen height parameter. 
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FIGURE 28 ACIDOGEN HEIGHT PARAMETER SHOWING METHANE MOLE FRACTION, TC 0.1 

The methanogen height parameter behaved similarly to the acidogen height 

parameter with a low height value resulting in a lower methane mole fraction while 

higher height values seemed to produce methane mole fraction slightly above 50 percent, 
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see Figure 86 in Appendix A. A low height parameter, 1.0, in Figure 29 allows the Um; 

value for methanogens to maintain a value presented in literature, presented in Table 6. 

Also, the height parameter seems to have an effect on the shape of the biomass curve 

shown in Figure 30. 
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FIGURE 29. METHANOGEN UMAX VALUE WITH CHANGING METHANOGEN HEIGHT PARAMTER 

Figure 30 shows that a lower methanogen height pushes the methanogen biomass curve 

to a higher temperature range, which corresponds to the reference mode in Figure 3. 
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FIGURE 30 METHANOGEN HEIGHT PARAMETER WITH METHANE MOLE FRACTION, TC 0.001 

Decay Steepness 

The decay steepness affects the death rate constant and was reported by Peleg to 

range from 1-7 °C. There seemed to be little effect of the acidogen decay steepness on 

the mole fraction of methane and carbon dioxide produced or the shape of the biomass 

curves. Figure 31 illustrates the insensitivity of methane production to the decay 

steepness parameter. 
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FIGURE 31 ACIDOGEN DECAY STEEPNESS SHOWING METHANE MOLE FRACTION 

The methanogen decay parameter changes produced no noticeable behavior differences 

between values. Appendix A Figures 87-89 has the remaining acidogen graphs and the 

methanogen graphs can be seen in Figures 90-93. 

Temperature Span 

The temperature span affects the Umax value and also affects the biomass curve 

shape. A larger range for the temperature span will produce a higher Umax value. The 

first sensitivity test used an acidogen temperature range from 5-45°C. A value of 5°C did 

not produce a high enough Umax to support population growth resulting in no biomass 

growth. A second set of simulations was run when the TC was changed from 0.001 to 

0.1. Similarly to the first set of simulations the second showed that a value of 5°C 
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produced no noticeable biomass growth. Methane production, as well as the other gases, 

have similar mole fraction traces, seen in Figure 95 of Appendix A, with just a slightly 

higher mole fraction early in the biodegradation process with a TC of 0.1. 

Methane populations are more sensitive to temperature span changes. The big 

difference is that the methane biomass curves visibly shift with changing temperature 

span ranges as shown in Figure 32. Figures 32-34 are running sensitivity tests for the 

formate methane biomass curve by changing the temperature span range, °C. 
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FIGURE 32. METHANOGEN TEMPERATURE SPAN WITH FORMATE BIOMASS 

The low temperature span value of 5 °C produces a stunted biomass curve, which affects 

the amount of biomass produced compared to the other curves. As the temperature span 

increases, the base of the biomass curves shift to the left indicating increased activity at 
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lower temperatures. Simulation 2 with a temperature span of 13.3 produced a biomass 

curve that is more characteristic of methane populations. Figures 97 and 98 show the 

Umax and kd values for the methanogen populations. 

A change in the TC has a large impact on the methane biomass curve. The curves 

in Figure 33 begin to slope to the right and are not a distinct curve shown in Figure 32. 
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FIGURE 33. METHANOGEN TEMPERATURE SPAN WITH FORMATE BIOMASS, TC 0.1 

An explanation for this behavior is that a higher TC bleeds off heat faster causing 

the temperature to stay below 50 °C. Since the temperature never reaches the critical 

temperature for the methane populations, the curves appear skewed. As the food source 

and temperature decline the populations begins to die off due to lower extreme 

conditions. Since there has not been time for glucose to degrade there is little food for 

the methanogens. Once the temperature falls below 46°C, the critical temperature for 
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acidogens, acidogen growth begins allowing glucose to be broken down into simple 

substances. When the glucose is depleted the temperature rapidly drops and the 

remaining amount of simpler substances are converted to CO2 and CH4. Figures 99-102 

show other parameters are sensitive to the changing temperature span for a heat constant 

of 15 kcal/mol glucose. 

Since the biomass curves were not representative of the whole range, due to the 

temperature maintaining at a value below the critical temperature for the methanogen 

populations, a third sensitivity test was run with a heat constant of 25 kcal/mol glucose. 

Figure 34 shows more distinct curves for the same temperature span simulations. The 

other parameters run is this test can be seen in Figures 103-106. 
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The value used in the final model was 12 due to simulation 3 having a complete curve 

that was representative of methanogenic behavior, based on temperature. 

Peak Temperature 

The peak temperature controls the characteristic peak for each population. 

Simulations for the acidogen populations show that the range for the peak temperature 

running between 20-35 °C has no effect on the Umax, biomass curve or mole fraction of 

gases produced, see Figures 107-109. The peak temperature used in the final model is 

30°C.   The peak temperature used for the methanogen populations has an impact on the 

system's behavior. One reason for the methanogens having an effect is that the 

temperature range for their peak temperature is higher and conditions are reached in the 

system that go above this temperature range. The temperature range used in the 

sensitivity test for the methanogen peak temperature was 30-55°C. Figure 35 shows the 

methane mole fraction for this range. 
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FIGURE 35. METHANOGEN PEAK TEMPERATURE WITH METHANE MOLE FRACTION 

The first simulation produces the highest methane fraction but it is not characteristic 

of methanogenic populations. Simulation two has a methane mole fraction similar to the 

first but its peak temperature is closer to values reported in literature. Simulation three 

shows a decline in the methane mole fraction because the temperature is too high for 

actual temperature in the landfill. The last simulation's temperature is not reached in the 

system so the Umax value would always be negative resulting in no biomass growth. The 

Umax graph along with others can be seen in Figures 110-113. 
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Critical Temperature 

The critical temperature is an important parameter in the death rate constant that 

was lacking in the Arrhenius equation. The acidogen populations are mainly affected by 

this parameter in the lower extreme range. The sensitivity test range was between 

30-55 °C shown in Figure 36. 
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FIGURE 36. ACIDOGEN CRITICAL TEMPERATURE WITH DEATH RATE CONSTANT 

A value of 30°C for the critical temperature is unrealistic if the system begins at 

25°C. The Peleg equation generates a high kd in this case resulting in less glucose being 

degraded seen in Figure 114 of Appendix A. The second simulation produces a distinct 

ka curve with no oscillations which indicates that a large glucose stock is not built up or 
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is not being depleted over a long time period. The fourth simulation has a temperature 

value that is reached in a very short time so the kd term for this value is low, meaning 

there is a small amount of acidogen death occurring in the system. 

The methanogen critical temperature parameter did not affect the system due to 

temperatures not rising or sustaining at this high level. The temperature range tested in 

the sensitivity test was between 50-70°C; results are shown in Figure 117-120 of 

Appendix A. The temperatures needed for effects to be seen would have to occur over 

special circumstances. The temperature would have to gradually increase allowing for 

glucose depletion through fermentation then increase throughout methanogensis. This 

occurred when the model structure was tested separately with the temperature gain being 

manually controlled. Using a high transfer coefficient does not allow the system to 

maintain any kind of sustained temperature level to reach the methanogen critical 

temperature. 

Climate Influences 

The location of the landfill can have a significant effect on the biodegradation 

process. The temperature at the beginning of biodegradation can be affected by the 

seasonal variations in soil temperature in one location and between different climate 

locations. Data was collected on the seasonal soil temperature from three different 

climate locations. The temperature readings are based on a 1.2 m depth; temperature 

values beyond this depth appear to level off at this value (Chang, 1958:82-84). All the 

temperature profiles begin with the month of January and go through the month of 

October to account for the 300 days in the system simulations. Cairo was used as a warm 
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climate whose soil temperature maintains relatively the same temperature the whole year, 

roughly 20°C. Kansas was chosen as a moderate temperature climate with moderate 

temperature fluctuations between 5-20°C. A Moscow soil temperature profile was used 

to represent a cold climate; its soil temperature range is from 2-13°C. The main element 

explored with these soil profiles was the methane mole fraction produced and the landfill 

temperature profile. Each climate location was compared using a TC of 0.1 and 0.01 

over the same range of heat constants, 5.0-15.0 kcal/mol glucose. 
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FIGURE 37. CAIRO SOIL PROFILE WITH A TC OF 0.01 

The TC of 0.01 does not reduce the heat fast enough for most of the heat 

constants. The block like methane curve for simulation one is from a changing 

temperature value going in and out of the range for methane production. The colder 

climates produced less methane with this TC. Kansas and Moscow soil profile behavior 

results are in Appendix A, Figures 121-125 and 126-131 respectively. Figure 38 shows 
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the difference that a higher transfer coefficient can make. The 5.0 kcal/mol glucose heat 

constant now does not provide enough heat energy compared to the heat lost for the 

microorganisms to grow. All of the other heat constants produce normal methane curves. 

a 

« 
fa 

o s 
a 
es 

1.00 
1: 5.0 2: 8.33 3: 11.7 4: 15.0 

0.50 

0.00 -1-1=2 
0.00 75.00 150.00 

Days 
225.00 300.00 

FIGURE 38. CAIRO SOIL PROFILE WITH A TC OF 0.1 
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FIGURE 40 Moscow SOIL PROFILE WITH A TC OF 0.1 

The methane graphs for the three climates show that climate does have a 

significant impact on the methane mole fraction for a TC of 0.1. Cairo, having the 

warmest soil temperature does not lose a lot of heat during the week to two weeks of 

aerobic degradation so the temperature is warm enough for acidogen microorganism to 

begin growing immediately at the onset of anaerobic degradation. All the heat constants 

show some level of methane production. The soil in Kansas during January is much 

cooler than Cairo, which causes larger temperature loss early in the degradation process. 

When the heat constant is activated at the beginning of anaerobic degradation the 

temperature rise is rapid allowing for limited acidogen microbial growth thus limiting 

that substance needed for methanogensis. Refer to Figures 132-136 for more parameters 

of Kansas and Figures 137-141 for more parameters of Moscow. 
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Seasonal Influences 

Results show that climate can influence gas generation. Expanding this concept, 

seasonal temperature shifts were investigated to examine the effect of degradation of 

waste based on the month it is put into the landfill. The seasonal shift was accomplished 

starting the soil profile simulation with June's temperature instead of January's. Cairo 

was not changed due to its relative constant soil temperature throughout the year. Figures 

41 and 42 show the methane production with the seasonal shift for Kansas and Moscow. 

Seasonal shifts of the parameters influencing this shift and other parameters affected by it 

refer to Figures 142-146 for Kansas and 152-157 for Moscow. 
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FIGURE 42. Moscow SEASONAL SOIL PROFILE, TC 0.1 

These figures, when compared to Figures 39 and 40, show that landfilling waste in 

June will produce more methane than waste landfilled in January for a TC of 0.1. This 

seasonal change causes similar methane fraction levels to those seen for Cairo in Figure 

38. The behavior for a lower TC showed similar results with a higher gas production if 

biodegradation began in the summer months. Refer to Figures 147-151 and Figures 158- 

163 to see results for Kansas and Moscow respectively, using a 0.01 TC. 
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V. Conclusions and Recommendation for Further Study 

Microbial Activity 

The individual structure verification and validation for the Arrhenius and Peleg 

equations ensured that proper growth and death rates were modeled for the acidogens and 

methanogens. A clear relationship between microbial behavior in a landfill and 

temperature has not been documented in the literature with reference to each population's 

growth curve. Literature information on the temperature progression from one 

population becoming dominant to another is not known. It is clear that the Arrhenius 

equation often used by other researchers to model microbial growth fails to represent 

adequate structure when there are unlimited substrate conditions. This leads to questions 

concerning the Arrhenius equation accuracy when substrate is limited and what other 

parameters might be affecting the microbial activity. The Peleg equation, utilizing 

system dynamics principles, allows exploration of microbial activity solely based on 

temperature through its parameter values. However, starting information on the 

suspected or hypothesized range for various microbial populations would be helpful in 

the future to build accuracy for representing behavior observed in a real landfill. This 

research has only looked at grouping the landfill microbial populations into two groups: 

acidogens (including fermenters and acetogens) and methanogens. 

Temperature Generation 

The most difficult concept to model was the temperature rise due to heat gain and 

its loss due to internal processes and diffusion out of the landfill. Information on free 

energy and heat constants gets confusing when trying to determine a temperature change. 

Free energy looks at total energy available through certain degradation steps but does not 
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inform one how much energy is available to increase the temperature of a system or how 

much is used for other processes, such as microbial growth. Heat constants allow for the 

calculation of the energy in the form of heat available to increase the temperature. 

Literature is available to describe the heat released from anaerobic reactions along certain 

pathways. This information was taken and modified to fit Shelley's model by assuming 

the same heat constant for all nine microbial processes breaking glucose down into 

simpler substances. This simplifying assumption allowed for more thorough sensitivity 

testing on a value that is not well defined in the literature. Results show that values for 

the heat constant found in literature can be modeled to produce documented behavior if a 

high transfer coefficient is used. 

Transfer Coefficient 

The transfer coefficient is a simple mechanism that allows for the calculation of 

diffusion of heat from the landfill. Incorporated into this number are several more 

complex relationships. Thermodynamic properties mentioned in the literature review 

were not applied in order to keep the number of unknown parameters and relationships 

low. There are both internal and external avenues for temperature to be dissipated. For 

example, the infiltration of rainwater can cause a temperature drop in the system due to 

the heat lost warming the water or a significant amount of heat could be lost in escaping 

gases. A simple transfer coefficient allows for an easier understanding of temperature 

losses in order to see how significant this parameter is on the system's behavior. 

A conclusion from testing the transfer coefficient is that it represents the behavior 

for gas production adequately. A transfer coefficient of 0.1 allows the use of heat 

constants between 5-25 kcal/ mole glucose, which represent values found in the literature. 
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A transfer coefficient of one order of magnitude lower, 0.01, allows for a much smaller 

range of heat constants, 3-10 kcal/ mol glucose, that produce observed behavior. 

Information on the actual rate of heat loss will always be different between landfills due 

to landfill characteristics such as heat retention of the waste, effect of the liner on 

escaping gases as well as movement of heat to the surrounding soil, and the effects of 

seasonal temperature changes. The main issue from looking at the TCs and heat 

constants is what amount of energy given off by microbial activities, converting glucose 

to simpler substances, is actually available to effect the landfill temperature. If the 

reported literature values by El-Fadel are correct for the heat constants then a high TC is 

required to maintain a landfill temperature below 50°C. If the landfill is not losing 

enough heat then conditions will occur that will build up acetate and CO2. However, if 

the landfill loses more heat than a TC of 0.1 then the landfill temperature will maintain a 

temperature of 20°C during anaerobic degradation.   Control over the heat being lost from 

a landfill would increase waste degradation and allow production of desirable byproducts. 

Initial Waste Temperature 

This factor does not affect the landfill system if a large transfer coefficient is 

used, such as 0.1. However, an order of magnitude lower transfer coefficient can affect 

gas generation, based upon the initial waste temperature. This slower break down of 

glucose might be more realistic due to the amount of waste in a cell degrading at different 

rates. Different rates for solid waste degradation and glucose degradation occur due to 

warmer conditions occurring at the center of a landfill cell. The initial waste temperature 

is due largely to the ambient air temperature at each location and due to the time the 

86 



waste remains in a contact with the ambient air. This means that the local climate and 

season can affect the waste temperature. 

Climate/Seasonal Influences 

There were significant differences in gas generation between a warm climate 

compared to a cold climate when the soil temperature profile began in the winter months. 

The simulations looked at the changing soil temperature but did not take into account that 

the initial waste temperature would probably be lower during these months. Results still 

indicate that the warm climate has consistently better gas generation. This information 

can be expanded and used by landfill mangers by minimizing the time waste sits in trucks 

and recovery facilities and the time the trucks are on the road during colder months. 

When the soil profiles were changed so that waste degradation began during a summer 

month both the cold climates produced more methane, similar to the warmer climate. 

Options to Landfill Managers 

Keeping the waste at higher temperatures all year round similar to temperatures 

experienced in the summer, could increase the methane generation and reduce the time 

required for biodegradation. Besides following recommendations already mentioned, 

landfill mangers could implement indoor drive up holding facilities for trucks to park 

while waiting to unload. Engineering practices could be employed in cold climates to 

trap/reduce the amount of heat lost from a landfill through the design of a membrane liner 

that also acts as an thermal insulator or put heating rods that monitor landfill temperature 

and release heat if temperatures drop below minimum biodegradation levels.   These 

devices could monitor the temperature rise during anaerobic degradation. If the 
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temperature rise is detrimental to methane generation, managers could have a heat sink or 

increase the recycling flow rate through the cell in order to reduce the heat in the system. 

A heat sink could be made by running leachate pipes or even water pipes through the 

landfill. When the heat generation rises to levels inhibiting degradation of waste the flow 

rate through the pipes could be increased, resulting in a heat loss from the landfill to the 

fluid in the pipes. 

Review of Model Strengths 

The addition of a temperature structure to Shelley's model will enable more 

accurate simulations with respect to microbial behavior. Shelley's model assumed a 

constant value over the degradation process for microbial growth and death parameters 

which does not allow behavior to observe the effects of one population affecting another 

or one population giving over to another based on the landfill temperature. The addition 

of the Peleg equation will allow easy changes to occur in the model when parameter 

values become more commonly accepted. The use of a simple transfer coefficient allows 

for observations in the system describing other uncertain parameters without 

compounding the uncertainty. 

Review of Model Limitations 

There is uncertainty in the amount of heat released and available to be 

transformed into a temperature increase from the degradation of glucose using the heat 

constant. This uncertainty of heat generation as well as the uncertainty in the amount of 

heat lost compounds the model's uncertainty. Behavior found in the literature is 

observed in this model using transfer coefficients; but how much accuracy would be 

added by including thermodynamic principles, and what would be the consequence as far 
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as increased complexity? Also, the complexity of the model increases when the 

temperature structure is included in Shelley's model, creating problems when trying to 

determine which factors are producing the observed behavior. 

Suggestion for Further Study 

The above weaknesses raise questions on what could be tested or added that 

would increase the validation and usefulness of the model. Investigation of energy 

released from the degradation of glucose or even of the energy released from the 

degradation of solid waste to glucose is needed. How much of the energy is used by the 

microbial populations for growth and maintenance? How much of the energy is lost to 

internal reactions or stored in gases produced? Is there a defined internal temperature 

diffusion from the center of the cell to the edges, and what waste factors can influence 

this transfer? Are the process and conditions of aerobic degradation significant to 

anaerobic process behavior? The transfer of heat across the interface between the landfill 

cell and soil depends on waste properties and soil properties such as porosity and density. 

Neither of these is fully understood. 
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APPENDIX A 

ARRHENIUS EQUATION STRUCTURE TESTING FIGURES 43- 46 
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PELEG EQUATION 47-52 
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FIGURE 47. TEMPERATURE VS KD METHANOGEN 
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FIGURE 51. TEMPERATURE VS UMAX METHANOGEN 
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TRANSFER COEFFICIENT VERIFICATION FIGURE 53 
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HEAT CONSTANTS FIGURES 54-56 (KCAL/MOL GLUCOSE) 
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FIGURE 54. TEMPERATURE OVER TIME FOR HEAT CONSTANTS 20-80 KCAL/MOL GLUCOSE 
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FIGURE 55. TEMPERATURE INCREASE OVER TIME FOR HEAT CONSTANTS 20-80 
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FIGURE 61. GLUCOSE LEVELS AT VARIOUS SPECIFIC HEAT VALUES 
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HEAT CONSTANT TC 0.1, HC 15-30 KCAL/MOL GLUCOSE: FIGURES 62-65 

1:15 2:20 3:25 4:30 
|   1: C02 Mole Fraction 2: C02 Mole Fraction 3: C02 Mole Fraction 4: C02 Mole Fraction 

1: 1.00-r 

0.50"  ■ 

0.00' 

^1 
0.00 75.00 150.00 225.00 300.00 

|       TC1intemp25HC1530:p4(Untitled)   Days 3:03 PM   Tue, Jan 30,2001 

FIGURE 62. C02 MOLE FRACTION AT VARIOUS HEAT CONSTANTS 

1: 15 
1: Temperature 

60.00 -i 

2:20 
2: Temperature 

3:25 
3: Temperature 

4:30 
4: Temperature 

1: 

30.00- 

0.00 
0.00 75.00 150.00 225.00 300.00 

|       TC1intemp25HC1530:p2(Untitled)   Days 3:03 PM   Tue, Jan 30,2001 

FIGURE 63. TEMPERATURE AT VARIOUS HEAT CONSTANTS 
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1: 15 
I   1: Umax k Acido 

1: 3.45-r— 

2:20 
2: Umax k Acido 

3:25 
3: Umax k Acido 

4:30 
4: Umax k Acido 

3.00 

2.55 

^l 
0.00 75.00 150.00 225.00 300.00 

|       TC1intemp25HC1530:p6(Untitled)   Days 3:03 PM   Tue, Jan 30,2001 

FIGURE 64. UMAX ACIDOGEN AT VARIOUS HEAT CONSTANTS 

1: 15 
I   1:UmaxkMeth 

1: 0.70 T™ 

4:30 
4: Umax k Meth 

^ 

0.00 75.00 150.00 225.00 300.00 

|       TC1intemp25HC1530:p5(Untitled)   Days 3:03 PM   Tue, Jan 30,2001 

FIGURE 65. UMAX METHANOGEN AT VARIOUS HEAT CONSTANTS 
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INITIAL WASTE TEMPERATURE TC 0.1, HC 15 KCAL/MOL GLUCOSE FIGURES: 66-71 

1-3: Temperature v. Butyrate Biom... 

2.00e+007 

1.00e+007- 

0.00 
0.00 25.00 

^l 
50.00 

TC1intemp1535:p3... Temperature 12:55 PM   Tue, Jan 30, 2001 

FIGURE 66. BUTYRATE BIOMASS WITH VARIOUS INITIAL WASTE TEMPERATURES 

1: 15 
|   1: Glucose 

1: 8.00e+008^ 

4.00e+008- 

0.00 

^l 

2:25 
2: Glucose 

3:35 
3: Glucose 

i1i 

0.00 75.00 

TC1intemp1535: p1 (Untitled) 

150.00 225.00 300.00 

Days 12:55 PM   Tue, Jan 30, 2001 

FIGURE 67. GLUCOSE LEVEL WITH VARIOUS INITIAL WASTE TEMPERATURES 
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1: 15 
I  1:CH4 Mole Fraction 

1: "I.OOn •■■■■■■ 

^ 

0.50- 

0.00 -ft' 
0.00 

2:25 
2: CH4 Mole Fraction 

3:35 
3: CH4 Mole Fraction 

23«?3i 

75.00 150.00 225.00 300.00 

| TC1intemp1535:p5(Untitled) Days 12:55 PM   Tue, Jan 30,2001 

FIGURE 68. CH4 MOLE FRACTION WITH VARIOUS INITIAL WASTE TEMPERATURES 

1: 15 
|  1:C02 Mole Fraction 

1: 1.00 

0.50- 

0.00- 

^l 

2:25 
2: C02 Mole Fraction 

3:35 
3: C02 Mole Fraction 

2B«3ä 

0.00 75.00 150.00 

TC1intemp1535: p6 (Untitled) Days 

225.00 300.00 

12:55 PM   Tue, Jan 30, 2001 

FIGURE 69. CO, MOLE FRACTION WITH VARIOUS INITIAL WASTE TEMPERATURES 
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1: 15 
■   1:UmaxkMeth 

1: 2.00 

^ 

1.00- 

2:25 
2: Umax k Meth 

3:35 
3: Umax k Meth 

0.00 
0.00 75.00 150.00 225.00 300.00 

| TC1intemp1535:p7(Untitled) Days 12:55 PM   Tue, Jan 30,2001 

FIGURE 70. IW METHANOGEN WITH VARIOUS INITIAL WASTE TEMPERATURES 

1: 15 
|   1: Umax k Acido 

1: 1.45-v- 

Sll 

1.20 

0.95 

2:25 
2: Umax k Acido 

3:35 
3: Umax k Acido 

0.00 75.00 150.00 225.00 300.00 

TC1intemp1535:p8(Untitled) Days 12:55 PM   Tue, Jan 30,2001 

FIGURE 71. U«^ ACIDOGEN WITH VARIOUS INITIAL WASTE TEMPERATURES 
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INITIAL WASTE TEMPERATURE TC 0.01, HC 10 KCAL/MOL GLUCOSE FIGURES: 72-75 

1: 10 
|   1:CH4 Mole Fraction 

1: 1.00T 

2: 16.7 
2: CH4 Mole Fraction 

3: 23.3 
3: CH4 Mole Fraction 

1: 

^l 

0.50' 

0.00 1- 
0.00 

III 

75.00 

I1I 

150.00 

4:30 
4: CH4 Mole Fraction 

i1 ■ 
r 

Tc01HC10tempchanges: p4 (Unti...  Days 

225.00 300.00 

10:26 AM   Fri, Feb 02, 2001 

FIGURE 72. CH4 MOLE FRACTION WITH VARIOUS INITIAL WASTE TEMPERATURES 

1: 

1: 10 
1: C02 Mole Fraction 

1.00T 

1: 

1: 

\l 

0.50' 

2: 16.7 
2: C02 Mole Fraction 

3:23.3 
3: C02 Mole Fraction 

4:30 
4: C02 Mole Fraction 

=3—"4. 

0.00' 
0.00 75.00 150.00 225.00 300.00 

| Tc01HC10tempchanges:p3 (Unti... Days 10:26AM   Fri, Feb 02, 2001 

FIGURE 73. C02 MOLE FRACTION WITH VARIOUS INITIAL WASTE TEMPERATURES 
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1: 10 
I  1:UmaxkAcido 

1: 3.50 -t  

^ 

2.95- 

2.40 
0.00 

2:16.7 
2: Umax k Acido 

3:23.3 
3: Umax k Acido 

4:30 
4: Umax k Acido 

75.00 150.00 225.00 300.00 

| Tc01HC10tempchanges:p5(Unti... Days 10:26 AM   Fri, Feb 02, 2001 

FIGURE 74. U^, ACIDOGEN WITH VARIOUS INITIAL WASTE TEMPERATURES 

1: 10 
1: Umax k Meth 

0.70 -r 

0.40- "" 

0.10 

2: 16.7 
2: Umax k Meth 

3:23.3 
3: Umax k Meth 

4:30 
4: Umax k Meth 

^1 
75.00 150.00 225.00 300.00 

|       '       Tc01HC10tempchanges:p6(Unti... Days 10:26 AM   Fri, Feb 02,2001 

FIGURE 75. IW METHANOGEN WITH VARIOUS INITIAL WASTE TEMPERATURES 
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PELEG SENSITIVITY TESTS 

ACIDOGEN HEIGHT: TC 0.001, HC 2.0 KCAL/MOL GLUCOSE, INITIAL WASTE TEMPERATURE 25 
FIGURES 76-80 

1: 1.0 
|   1: C02 Mole Fraction 

1: 1.00T 

^ 

0.50- 

0.00' 

2:4.0 
2: C02 Mole Fraction 

3:7.0 
3: C02 Mole Fraction 

4: 10 
4: C02 Mole Fraction 

0.00 75.00 

H       bheight: p5 (Untitled) 

150.00 

Days 

225.00 300.00 

9:18 PM   Wed, Feb 07, 2001 

FIGURE 76. C02 MOLE FRACTION WITH VARIOUS HEIGHT VALUES 

1: 1.0 
1: Acetate Biomass 

2.00e+007-r 

1.00e+007- - 

0.00' 
0.00 

2:4.0 
_2: Acetate Biomass 

3:7.0 
3: Acetate Biomass 

4: 10 
4: Acetate Biomass 

^1 
150.00 225.00 300.00 

|       bheight: p6 (Untitled) Days 9:18 PM   Wed, Feb 07, 2001 

FIGURE 77. ACETATE BIOMASS WITH VARIOUS HEIGHT VALUES 
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1: 1.0 
I   1: Umax k Acido 

1: 3.00-1 ■ 

2:4.0 
2: Umax k Acido 

3:7.0 
3: Umax k Acido 

4: 10.0 
4: Umax k Acido 

1.50- 

0.00 

^l 
0.00 75.00 150.00 225.00 300.00 

|       bheight: p7 (Untitled) Days 9:18 PM   Wed, Feb 07,2001 

FIGURE 78. UMAX ACIDOGEN WITH VARIOUS HEIGHT VALUES 

1: 1.0 
|  1: Glucose 

1: 5.00e+008-i 

1: 2.50e+008- 

^ 

0.00 
0.00 

4: 10.0 
4: Glucose 

75.00 150.00 225.00 300.00 

|       bheight: p1 (Untitled) Days 9:18 PM   Wed, Feb 07,2001 

FIGURE 79. GLUCOSE LEVEL WITH VARIOUS HEIGHT VALUES 
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1: 1.0 
1: Temp Increase 

2.00-1 

1.00' 

0.00' 

^l 

3:7.0 
3: Temp Increase 

4: 10.0 
4: Temp Increase 

1^2^UH4^kn B1B-2_3^ 

75.00 150.00 225.00 300.00 

^        bheight: p2 (Untitled) Days 9:18 PM   Wed, Feb 07,2001 

FIGURE 80. TEMPERATURE INCREASE WITH VARIOUS HEIGHT VALUES 

ACIDOGEN HEIGHT: TC 0.1, HC 15 KCAL/MOL GLUCOSE, INITIAL WASTE TEMPERATURE 25°C 
FIGURES:81-85 

1:3.0 
|   1: Glucose 

1: 4.00e+008n 

^l 

2.00e+008-   I 

0.00' 
0.00 

2: 15.3 
2: Glucose 

3: 27.7 
3: Glucose 

4: 40.0 
4: Glucose 

75.00 150.00 225.00 300.00 

|       simcheck: p3 (Untitled) Days 9:26 PM   Mon, Feb 05, 2001 

FIGURE 81. GLUCOSE LEVEL WITH VARIOUS HEIGHT VALUES 
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1:3.0 
1: Temperature 

40.00 T 

3: 27.7 
3: Temperature 

4: 40.0 
4: Temperature 

20.00 

0.00 
0.00 

^ 

75.00 150.00 225.00 300.00 

simcheck: p4 (Untitled) Days 9:26 PM   Mon, Feb 05, 2001 

FIGURE 82. TEMPERATURE WITH VARIOUS HEIGHT VALUES 

1:3.0 
1: Umax k Acido 

3.80n 

2: 15.3 
2: Umax k Acido 

3: 27.7 
3: Umax k Acido 

4: 40.0 
4: Umax k Acido 

^ 

3.35 

2.90 
225.00 \       300.00 

|h»-'gIm^eck:p5(Unpear~"*"%v       DaVs 9:26 PM   Mon, Feb 0^2001 
FIGURE 83. U„_„ ACIDOGEN WITH VARIOUS HEIGHT VALUES 
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1:3.0 
1: Umax k Meth 

OJO-i 

^ 

0.35- 

3: 27.7 
3: Umax k Meth 

4: 40.0 
4: Umax k Meth 

0.00 75.00 150.00 225.00 300.00 

|       simcheck: p6 (Untitled) Days 9:26 PM   Mon, Feb 05, 2001 

FIGURE 84. UMAX METHANOGEN WITH VARIOUS HEIGHT VALUES 

1:3.0 
|   1: C02 Mole Fraction 

1: 1.00-t 

0.50- 

0.00' 
0.00 

^l 

2: 15.3 
2: C02 Mole Fraction 

3: 27.7 
3: C02 Mole Fraction 

4: 40.0 
4: C02 Mole Fraction 

75.00 150.00 225.00 300.00 

|       simcheck: p1 (Untitled) Days 9:26 PM   Mon, Feb 05, 2001 

FIGURE 85. C02 MOLE FRACTION WITH VARIOUS HEIGHT VALUES 
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METHANOGEN HEIGHT: TC 0.1, HC 15 KCAL/MOL GLUCOSE, INITIAL WASTE TEMPERATURE 25°C 
FIGURE 86 

|   1:CH4 Mole Fraction 2: CH4 Mole Fraction 3: CH4 Mole Fraction 4: CH4 Mole Fraction 

1: 1.00- 

1: 

1: 

^l 

0.50- 

0.00 + 1' 
0.00 75.00 150.00 225.00 300.00 

|       methbheight: p3 (Untitled) Days 3:55 PM   Tue, Dec 26, 2000 

FIGURE 86. CH4 MOLE FRACTION WITH VARIOUS HEIGHT VALUES 

ACIDOGEN DECAY STEEPNESS: FIGURES 87-89 

1: 1.0 
I   1: C02 Mole Fraction 

1: 1.00-1 

^1 

0.50" 

0.00' 
0.00 

2: 4.67 
2: C02 Mole Fraction 

3:8.33 
3: C02 Mole Fraction 

4: 12.0 
4: C02 Mole Fraction 

75.00 150.00 

acidodecaystepness: p4 (Untitled)     Days 

225.00 300.00 

1:47 PM   Fri, Dec 29, 2000 

FIGURE 87. C02 MOLE FRACTION WITH VARIOUS DECAY STEEPNESS VALUES 
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1-4: Temperature v. Butyrate Biom... 

3.00e+007- 

1.50e+007- 

0.00- 

■■• » '- 

- - H 

10.00 30.00 50.00 

^l ^|       acidodecaystepness... Temperature 1:47 PM   Fri, Dec 29,2000 

FIGURE 88. BUTYRATE BIOMASS VARIOUS DECAY STEEPNESS VALUES 

1:3.0 
1: kd Acidog 

0.60' 

2: 4.67 
2: kd Acidog 

3: 8.33 
3: kd Acidog 

4: 12.0 
4: kd Acidog 

0.30- 

0.00 

^1 
150.00 

acidodecaystepness: p2 (Untitled)     Days 

225.00 300.00 

1:47 PM   Fri, Dec 29, 2000 

FIGURE 89. KD ACIDOGEN WITH VARIOUS DECAY STEEPNESS VALUES 
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1:2.0 
I   1: Temperature 

1: 40.00 -i 

^ 

25.00" 

10.00- 

METHANOGEN DECAY STEEPNESS: FIGURES 90-93 

2: 5.33 3: 8.67 4: 12.0 
2: Temperature 3: Temperature 4: Temperature 

/ 

7 

,3—4- 

0.00 75.00 150.00 

^m       methdecaysteepness: p2 (Untitled)   Days 

225.00 300.00 

10:18 PM   Mori, Feb 05, 2001 

FIGURE 90. TEMPERATURE WITH VARIOUS DECAY STEEPNESS VALUES 

1:2.0 2:5.33 3:8.67 4:12.0 
|   1: Form Meth Biomass 2: Form Meth Biomass 3: Form Meth Biomass 4: Form Meth Biomass 

1:        5000000.00-1 ■•- 

1:       2500000.00 

0.00 

^l 
0.00 75.00 150.00 225.00 300.00 

m       J       methdecaysteepness: p3 (Untitled)   Days 10:18 PM   Mon, Feb 05,2001 

FIGURE 91. FORMATE METH BIOMASS LEVEL WITH VARIOUS DECAY STEEPNESS VALUES 
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1:2.0 
|  1:UmaxkMeth 

1: 2.00-1 

^ 

1.00- 

0.00' 

2: 5.33 
2: Umax k Meth 

3: 8.67 
3: Umax k Meth 

■3—4. 

4: 12.0 
4: Umax k Meth 

■1—2—3—4- 

0.00 75.00 150.00 225.00 300.00 

^       methdecaysteepness: p4 (Untitled)   Days 10:18 PM   Mon, Feb 05,2001 

FIGURE 92. UR„ METHANOGEN WITH VARIOUS DECAY STEEPNESS VALUES 

1:2.0 2:5.33 3:8.67 4:12.0 
|  1:CH4 Mole Fraction 2: CH4 Mole Fraction 3: CH4 Mole Fraction 4: CH4 Mole Fraction 

1: 1.00-t -  ••- 

^ 

0.50-  

0.00 +1~2 

0.00 75.00 150.00 225.00 300.00 

methdecaysteepness: p6 (Untitled)   Days 10:18 PM   Mon, Feb 05, 2001 

FIGURE 93. CH4 MOLE FRACTION WITH VARIOUS DECAY STEEPNESS VALUES 
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ACIDOGEN TEMPERATURE SPAN: FIGURES 94-96 

|  1-8: Lftiiax k Acido 

1:' 3.45- 

:          ' V'.:    -. / 
! 

3.05" 

0.C0 75.00 150.00 

cidogentempspntp2 (UntiMJJ Days 

2.5.00 300.00 

10:28 PI h   Mon, Feb 05, 2001 

FIGURE 94. UMAx ACIDOGEN AT VARIOUS TEMPERATURE SPAN VALUES 

■  1-8: GH4 Mole Fraction 

1: 1.00- 

^l 

J0.50' 

o.oo i— 
0.00 

T -r 
75.00 150.00 225.00 300.00 

m      cidogentempspn: p3 (Untitled) Days 10:28 PM  Mon, Feb 05,2001 

FIGURE 95. CH4 MOLE FRACTION AT VARIOUS TEMPERATURE SPAN VALUES 
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1: Glucose 

4.00e+008n 

1: 2.00e+008- 

^l 
0.00' 

2: Glucose 3: Glucose 4: Glucose 

0.00 75.00 

cidogentempspn: p4 (Untitled) Days 10:28 PM   Mon, Feb 05, 2001 

FIGURE 96. GLUCOSE LEVEL AT VARIOUS TEMPERATURE SPAN VALUES 

METHANOGEN TEMPERATURE SPAN: FIGURES 97-98 

|:Ytr8: KdMeth 

1:       y        0.03- 

0.01' 

0.00' 
0.00 '75.00';;!       "        150.00 225.00 300.00 

I       methspan2: p2 (Untitled) Days 1:41 PM  Sun, Dec 24,2000 

FIGURE 97. KD METHANOGEN AT VARIOUS TEMPERATURE SPAN VALUES 
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■  1: Umax k Meth 

1: 2.00 

1.00- 

2: Umax k Meth 3: Umax k Meth 4: Umax k Meth 

0.00' 
0.00 75.00 150.00 

^l 
225.00 300.00 

II        methspan2: p3 (Untitled) Days 1:41PM   Sun, Dec 24,2000 

FIGURE 98. UMAX METHANOGEN AT VARIOUS TEMPERATURE SPAN VALUES 

METHANOGEN TEMPERATURE SPAN: HC 15 KCAL/MOL GLUCOSE, FIGURES 99-102 

1:5.0 
|  1: Temperature 

1: 55.00 -I 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

30.00- 

5.00 

^1 
0.00 75.00 150.00 225.00 300.00 

|       methspanHC15:p3 (Untitled) Days 9:45 AM   Tue, Feb 06,2001 

FIGURE 99. TEMPERATURE AT VARIOUS TEMPERATURE SPAN VALUES 
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1:5.0 
I  1: C02 Mole Fraction 

1: 1.00-1 

2: 8.33 
2: C02 Mole Fraction 

3: 11.7 
3: C02 Mole Fraction 

4: 15.0 
4: C02 Mole Fraction 

^ 

0.50' 

0.00' 
0.00 75.00 150.00 

H       methspanHC15:p4(Untitled) Days 

225.00 300.00 

9:45 AM   Tue, Feb 06, 2001 

FIGURE 100. CO? MOLE FRACTION AT VARIOUS TEMPERATURE SPAN VALUES 

1:5.0 
I   1:CH4 Mole Fraction 

1: 1.00-1 

0.50- 

2: 8.33 
2: CH4 Mole Fraction 

3: 11.7 
3: CH4 Mole Fraction 

4: 15.0 
4: CH4 Mole Fraction 

0.00 

^1 
75.00 

methspanHC15: p5 (Untitled) 

150.00 

Days 

225.00 300.00 

9:45 AM Tue, Feb 06, 2001 

FIGURE 101. CH4 AT VARIOUS TEMPERATURE SPAN VALUES 
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1:5.0 
|  1:UmaxkMeth 

1: 0.70T 

0.35 

0.00 

^l 

2: 8.33 
2: Umax k Meth 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

0.00 75.00 150.00 

^|       methspanHC15:p6(Untitled) Days 

225.00 300.00 

9:45 AM   Tue, Feb 06, 2001 

FIGURE 102. IL« METHANOGEN AT VARIOUS TEMPERATURE SPAN VALUES 

METHANOGEN TEMPERATURE SPAN: HC 25 KCAL/MOL GLUCOSE, FIGURES 103-106 

1:5.0 
1: Temperature 

65.00 -i 

1: 

\]l 

35.00 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

5.00 
0.00 75.00 150.00 225.00 300.00 

^       methspanHC25: p3 (Untitled) Days 10:14 AM   Tue, Feb 06,2001 

FIGURE 103. TEMPERATURE AT VARIOUS TEMPERATURE SPAN VALUES 
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1:5.0 
I   1:CH4 Mole Fraction 

1: 1.00-1 ■■-■■■ 

2: 8.33 
2: CH4 Mole Fraction 

3: 11.7 
3: CH4 Mole Fraction 

4: 15.0 
4: CH4 Mole Fraction 

0.50- 

^1 

0.00 + 1™2" 
0.00 75.00 150.00 225.00 300.00 

|       |       methspanHC25: p4 (Untitled) Days 10:14AM   Tue, Feb 06,2001 

FIGURE 104. CH4 MOLE FRACTION AT VARIOUS TEMPERATURE SPAN VALUES 

1:5.0 
■   1: C02 Mole Fraction 

1: 1.00T      

2: 8.33 
2: C02 Mole Fraction 

3: 11.7 
3: C02 Mole Fraction 

4: 15.0 
4: C02 Mole Fraction 

^ 

0.50" 

0.00' 
0.00 75.00 150.00 225.00 300.00 

I       methspanHC25: p5 (Untitled) Days 10:14 AM   Tue, Feb 06,2001 

FIGURE 105. C02 MOLE FRACTION AT VARIOUS TEMPERATURE SPAN VALUES 
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1:5.0 
I   1:UmaxkMeth 

1: 0.70 

0.35 

0.00 

^l 

2: 8.33 
2: Umax k Meth 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

0.00 75.00 150.00 

I       methspanHC25: p6 (Untitled) Days 

225.00 300.00 

10:14 AM   Tue, Feb 06, 2001 

FIGURE 106. U^ METHANOGEN AT VARIOUS TEMPERATURE SPAN VALUES 
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ACIDOGEN PEAK TEMPERATURE: FIGURES 107-109 

1:20.0 
|   1: Umax k Acido 

1: 1.4CH 

3: 30.0 
3: Umax k Acido 

4: 35.0 
4: Umax k Acido 

1.15 

0.90 
0.00 150.00 

^l 
225.00 300.00 

                                                                  Days                      6:15 PM   Sun, Jan 07,2001 

FIGURE 107. UMAX ACIDOGEN AT VARIOUS PEAK TEMPERATURE VALUES 

75.00 

tpeakacid: p6 (Untitled) 

1:20.0 
|   1:CH4 Mole Fraction 

1: 1.00- 

2: 25.0 
2: CH4 Mole Fraction 

3: 30.0 
3: CH4 Mole Fraction 

4: 35.0 
4: CH4 Mole Fraction 

0.50- 

0.00 75.00 

^l tpeakacid: p1 (Untitled) 

150.00 

Days 

225.00 300.00 

6:15 PM   Sun, Jan 07, 2001 

FIGURE 108. CH* MOLE FRACTION AT VARIOUS PEAK TEMPERATURE VALUES 
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1:20.0 
I   1: C02 Mole Fraction 

1: 1.00T   

2: 25.0 
2: C02 Mole Fraction 

3: 30.0 
3: C02 Mole Fraction 

4: 35.0 
4: C02 Mole Fraction 

^ 

0.50' 

0.00' 
0.00 75.00 150.00 225.00 300.00 

|       ■       tpeakacid: p2 (Untitled) Days 6:15 PM   Sun, Jan 07,2001 

FIGURE 109. C02 MOLE FRACTION AT VARIOUS PEAK TEMPERATURE VALUES 

METHANOGEN PEAK TEMPERATURE: FIGURES 110-113 

1:30 
I   1: Temperature 

1: 50.00 T 

30.00" 

10.00 
0.00 

^l 

2: 38.3 
2: Temperature 

3:46.7 
3: Temperature 

4:55 
4: Temperature 

75.00 150.00 225.00 300.00 

^       tpeakmeth: p8 (Untitled) Days 7:15 PM   Sun, Jan 07,2001 

FIGURE 110. TEMPERATURE AT VARIOUS PEAK TEMPERATURE VALUES 
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1:30 
I  1: Glucose 

1: 7.00e+008 

1: 3.50e+008 

1: 0.00 
0.00 

^ll 

2: 38.3 
2: Glucose 

3: 46.7 
3: Glucose 

4:55 
4: Glucose 

I1I 

150.00 225.00 300.00 

^       tpeakmeth: p1 (Untitled) Days 7:15 PM   Sun, Jan 07, 2001 

FIGURE 111. GLUCOSE LEVEL AT VARIOUS PEAK TEMPERATURE VALUES 

1:30 
1: C02 Mole Fraction 

1.00T 

0.50- 

0.00' 

^l 

2: 38.3 
2: C02 Mole Fraction 

3: 46.7 
3: C02 Mole Fraction 

4:55 
4: C02 Mole Fraction 

0.00 75.00 

H       tpeakmeth: p3 (Untitled) 

150.00 

Days 

225.00 300.00 

7:15 PM   Sun, Jan 07, 2001 

FIGURE 112. CO, MOLE FRACTION AT VARIOUS PEAK TEMPERATURE VALUES 
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1:30 
I   1:UmaxkMeth 

1: 2.00T 

2: 38.3 
2: Umax k Meth 

3:46.7 
3: Umax k Meth 

1.00- 

4:55 
4: Umax k Meth 

O.OOi 
0.00 75.00 

^l 
150.00 225.00 300.00 

|       |       tpeakmeth: p7 (Untitled) Days 7:15 PM   Sun, Jan 07,2001 

FIGURE 113. U^ METHANOGEN AT VARIOUS PEAK TEMPERATURE VALUES 

ACIDOGEN CRITICAL TEMPERATURE: 114-116 

1:30.0 
| 1: Glucose 

1:   8.00e+008n 

^ 

4.00e+008" 

0.00 
0.00 

2: 38.3 

2: Glucose 

3: 46.7 

3: Glucose 

4: 55.0 

4: Glucose 

75.00 

tcritacid: p1 (Untitled) Days 

225.00 300.00 

6:47 PM Sun, Jan 07, 2001 

FIGURE 114. GLUCOSE LEVEL AT VARIOUS CRITICAL TEMPERATURE VALUES 
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1:30.0 
1: C02 Mole Fraction 

1.00T 

0.50- 

0.00 ■ 

2: 38.3 
2: C02 Mole Fraction 

3: 46.7 
3: C02 Mole Fraction 

4: 55.0 
4: C02 Mole Fraction 

0.00 75.00 

^l 
150.00 225.00 300.00 

^       ^       tcritacid: p3 (Untitled) Days 6:47 PM   Sun, Jan 07,2001 

FIGURE 115. C02 MOLE FRACTION AT VARIOUS CRITICAL TEMPERATURE VALUES 

1:30.0 
|  1: kd Acidog 

1: 2.00 -i 

1.00- •""- 

0.00 

2: 38.3 
2: kd Acidog 

3: 46.7 
3: kd Acidog 

4: 55.0 
4: kd Acidog 

^l 
0.00 75.00 

H       tcritacid: p7 (Untitled) 

150.00 

Days 

225.00 300.00 

6:47 PM   Sun, Jan 07, 2001 

FIGURE 116. KD METHANOGEN AT VARIOUS CRITICAL TEMPERATURE VALUES 
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METHANOGEN CRITICAL TEMPERATURE: FIGURES 117-120 

1:50.0 
|   1:CH4 Mole Fraction 

1: 1.00-r 

0.50" - 

0.00 -pi" 
0.00 

2: 56.7 
2: CH4 Mole Fraction 

3: 63.3 
3: CH4 Mole Fraction 

4: 70.0 
4: CH4 Mole Fraction 

^l 
75.00 150.00 225.00 300.00 

|       |       tcritmeth: p3 (Untitled) Days 7:40 PM   Sun, Jan 07,2001 

FIGURE 117. CH4 MOLE FRACTION AT VARIOUS CRITICAL TEMPERATURE VALUES 

1:50.0 
1:KdMeth 

0.20n 

0.10- 

0.00 

^l 

2: 56.7 
2: KdMeth 

3: 63.3 
3: KdMeth 

4: 70.0 
4: KdMeth 

75.00 

tcritmeth: p8 (Untitled) 

150.00 

Days 

225.00 300.00 

7:40 PM   Sun, Jan 07, 2001 

FIGURE 118. KD METHANOGEN AT VARIOUS CRITICAL TEMPERATURE VALUES 
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1:50.0 
1: Temperature 

40.0CH 

2: 56.7 
2: Temperature 

3: 63.3 
3: Temperature 

4: 70.0 
4: Temperature 

25.00- 

10.00' 

'1^ 
^4, 

0.00 75.00 150.00 225.00 300.00 

^\]B |       tcritmeth: p1 (Untitled) Days 7:40 PM   Sun, Jan 07,2001 

FIGURE 119. TEMPERATURE AT VARIOUS CRITICAL TEMPERATURE VALUES 

1:50.0 
|  1: Glucose 

1: 7.00e+008-r 

1: 3.50e+008- 

0.00 
0.00 

^l 

2: 56.7 
2: Glucose 

3: 63.3 
3: Glucose 

4: 70.0 
4: Glucose 

■ 1i 

75.00 

tcritmeth: p2 (Untitled) 

■ 1a 
150.00 

Days 

225.00 300.00 

7:40 PM   Sun, Jan 07, 2001 

FIGURE 120. GLUCOSE LEVEL AT VARIOUS CRITICAL TEMPERATURE VALUES 
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KANSAS SOIL PROFILE: TC 0.01, HC 5.0 -15.0 KCAL/MOL GLUCOSE FIGURES 121-125 

1:5.0 
|  1: Temperature 

1: 60.00 -i 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

40.00- 

20.00 
0.00 75.00 150.00 

^l 
225.00 300.00 

B       kansasHC10TC01:p2(Untitled)        Days 2:33 PM   Tue, Feb 06,2001 

FIGURE 121. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|  1: C02 Mole Fraction 

1: 1.00-1" 

2: 8.33 
2: C02 Mole Fraction 

^1 

0.50- 

0.00' 

3: 11.7 
3: C02 Mole Fraction 

-3- 

4: 15.0 
4: C02 Mole Fraction 

3- 

0.00 75.00 150.00 225.00 300.00 

|       ^       kansasHC10TC01:p4(Untitled)        Days 2:33 PM   Tue, Feb 06,2001 

FIGURE 122. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Umax k Acido 

4.00-1 

3.00 

2.00 
0.00 

^1 

2: 8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

75.00 150.00 225.00 300.00 

^       kansasHC10TC01:p5(Untitled)        Days 2:33 PM  Tue, Feb 06,2001 

FIGURE 123. U„.« ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|  1: Glucose 

1: 8.00e+008' 

1:        4.00e+008- 

^ 

0.00' 
0.00 

2: 8.33 
2: Glucose 

3: 11.7 
3: Glucose 

\r^\ 

..2.W .1—A 

4: 15.0 
4: Glucose 

75.00 150.00 225.00 300.00 

^       kansasHC10TC01:p1 (Untitled)        Days 2:33 PM   Tue, Feb 06,2001 

FIGURE 124. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
■  1:UmaxkMeth 

1: 0.75T 

2: 8.33 
2: Umax k Meth 

3:11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

^1 
0.00 75.00 150.00 225.00 300.00 

^       kansasHC10TC01:p6(Untitled)        Days 2:33 PM   Tue, Feb 06,2001 

FIGURE 125. IVx METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 

Moscow SOIL PROFILE: TC 0.01, HC 5.0-15.0 KCAL/MOL GLUCOSE FIGURES 126-131 

1:5.0 
|   1:CH4 Mole Fraction 

1: 1.00T —  

0.00 1" 
0.00 

^l 

2: 8.33 
2: CH4 Mole Fraction 

3: 11.7 
3: CH4 Mole Fraction 

0.50- ■■-"'- -"-■-- 

75.00 150.00 

MoscowTCOl: p3 (Untitled) Days 

4: 15.0 
4: CH4 Mole Fraction 

225.00 300.00 

10:46 AM   Wed, Feb 07, 2001 

FIGURE 126. CH4 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I   1: C02 Mole Fraction 

1: 1.00-1 

1: 

^l 

0.50- 

0.00' 
0.00 

2: 8.33 
2: C02 Mole Fraction 

3:11.7 
3: C02 Mole Fraction 

-3^-4- 

4: 15.0 
4: C02 Mole Fraction 

75.00 150.00 225.00 300.00 

MoscowTCOl: p4 (Untitled) Days 10:46 AM   Wed, Feb 07, 2001 

FIGURE 127. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Umax k Meth 

0.70-1 

0.40 

0.10 

^l 
0.00 75.00 150.00 

H        MoscowTCOl: p5 (Untitled) Days 

225.00 300.00 

10:46 AM   Wed, Feb 07, 2001 

FIGURE 128. UMAx METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Umax k Acido 

4.00T 

3.00" 

2: 8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

2.00 

Nil 
225.00 300.00 

MoscowTC01:p6(Untitled) Days 10:46 AM   Wed, Feb 07,2001 

FIGURE 129. U^ ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Glucose 

1.00e+009n 

1: 5.00e+008' 

^l 

0.00' 

2: 8.33 
«cose 

0.00 75.00 

4: 15.0 
4: Glucose 

150.00 225.00 300.00 

^        MoscowTC01:p1 (Untitled) Days 10:46 AM   Wed, Feb 07,2001 

FIGURE 130 GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Temperature 

70.00 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

45.00- 

20.00 
0.00 75.00 150.00 

^]l 
225.00 300.00 

|^       ^       MoscowTC01:p2(Untitled) Days 10:46 AM   Wed, Feb 07,2001 

FIGURE 131. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

KANSAS SOIL PROFILE: TC 0.1, HC 5.0 -15.0 KCAL/MOL GLUCOSE FIGURES 132-136 

1:5.0 
|   1: C02 Mole Fraction 

1: 1.00T 

2: 8.33 
2: C02 Mole Fraction 

3: 11.7 
3: C02 Mole Fraction 

4: 15.0 
4: C02 Mole Fraction 

0.50- 

0.00' 
0.00 75.00 150.00 

^]l 
225.00 300.00 

|       ^       kansasTC1:p4(Untitled) Days 3:21PM   Tue, Feb 06,2001 

FIGURE 132. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I   1:UmaxkAcido 

1: 3.45 -I 

3.25 

3.05 

2:8.33 3:11.7 4:15.0 
2: Umax k Acido 3:UmaxkAcido 4: Umax k Acido 

0.00 

^1 
75.00 150.00 225.00 300.00 

B       kansasTC1:p5(Untitled) Days 3:21PM   Tue, Feb 06,2001 

FIGURE 133. IVx ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|   1:UmaxkMeth 

1: 0.60T 

0.30- 

0.00' 

2: 8.33 
2: Umax k Meth 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

■1' 
■3-»-4. 

'1. 

^I 
0.00 75.00 150.00 225.00 300.00 

|       kansasTC1:p6(Untitled) Days 3:21PM   Tue, Feb 06,2001 

FIGURE 134. U^« METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I   1: Glucose 

1: 4.00e+008n 

2: 8.33 
2: Glucose 

3:11.7 
3: Glucose 

4: 15.0 
4: Glucose 

2.00e+008" 

"■T  

0.00+ ^2—3—4 
0.00 

■ 1i 

75.00 
I1I 

150.00 

11 ■ 

^1 
225.00 300.00 

^       kansasTC1:p1 (Untitled) Days 3:21PM   Tue, Feb 06,2001 

FIGURE 135. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Temperature 

35.00 T 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

20.00 

0.00 75.00 150.00 

^ 

225.00 300.00 

|       kansasTC1:p2 (Untitled) Days 3:21PM   Tue, Feb 06,2001 

FIGURE 136. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 
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Moscow SOIL PROFILE: TC 0.1, HC 5.0-15.0 KCAL/MOL GLUCOSE FIGURES 137-141 

1:5.0 
|   1: Umax k Acido 

1: 3.45 

2: 8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

3.15- 

2.85 

^l 
150.00 ^—**^_   225.00 300.00 

Moscow"lC1:pl(Untitled) Days /        10:31 ÄhSJA/ed, Feb 07, 2001 

FIGURE 137. UMAX ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|   1: Glucose 

1: 5.00e+008n 

1: 2.50e+008- 

0.00 

2: 8.33 
2: Glucose 

3:11.7 
3: Glucose 

4: 15.0 
4: Glucose 

0.00 

^1 
75.00 

MoscowTCI: p1 (Untitled) 

150.00 225.00 300.00 

                                                                  Days                    10:31AM   Wed, Feb 07,2001 

FIGURE 138. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I  1: Temperature 

1: 35.00 

20.00" 

5.00' 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

^1 

4: 15.0 
4: Temperature 

,3—4. 

150.00 225.00 300.00 

^       MoscowTC1:p2(Untitled) Days 10:31AM   Wed, Feb 07,2001 

FIGURE 139. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|   1:UmaxkMeth 

1: 0.50 T 

2: 8.33 
2: Umax k Meth 

0.25 

0.00 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

233.41 V 
»3—4- 

150.00 

^l 
225.00 300.00 

|       MoscowTC1:p6(Untitled) Days 10:31AM   Wed, Feb 07,2001 

FIGURE 140. U^ METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: C02 Mole Fraction 

1.00-1 -•»" 

0.50-  

0.001 

0.00 

^ 

2: 8.33 
2: C02 Mole Fraction 

3: 11.7 
3: C02 Mole Fraction 

4: 15.0 
4: C02 Mole Fraction 

75.00 150.00 225.00 300.00 

MoscowTC1:p3(Untitled) Days 10:31AM   Wed, Feb 07, 2001 

FIGURE 141. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 

140 



SEASONAL CHANGE KANSAS: TC 0.1, HC 5.0 -15.0 KCAL/MOL GLUCOSE FIGURES 142-146 

1:5.0 2:8.33 3:11.7 4:15.0 
|   1: C02 Mole Fraction           2: C02 Mole Fraction 3: C02 Mole Fraction 4: C02 Mole Fraction 

1: 1.00n  

0.50' 

0.00' 
0.00 75.00 150.00 

^l 
225.00 300.00 

I       |       seasonchangeTCI: p4 (Untitled)       Days 3:04 PM   Tue, Feb 06,2001 

FIGURE 142. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Umax k Meth 

0.70-1 

0.35- 

0.00 
0.00 

^l 

2: 8.33 
2: Umax k Meth 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

2feta3—4. 

75.00 150.00 

seasonchangeTCI: p5 (Untitled)       Days 

225.00 300.00 

3:04 PM   Tue, Feb 06, 2001 

FIGURE 143. UM,X METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I  1: Umax k Acido 

1: 3.50 

3.20 

2.90 

2:8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

^1 
0.00 75.00 150.00 225.00 300.00 

|       seasonchangeTCI: p6 (Untitled)       Days 3:04 PM   Tue, Feb 06,2001 

FIGURE 144. UMAX ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|  1: Glucose 

1: 4.00e+008n 

1: 2.00e+008-  • 

^l 
0.00 

2: 8.33 
2: Glucose 

3:11.7 
3: Glucose 

4: 15.0 
4: Glucose 

V"  

0.00+ L2—3—4 
75.00 150.00 225.00 300.00 

|       seasonchangeTCI: p1 (Untitled)       Days 3:04 PM   Tue, Feb 06,2001 

FIGURE 145. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Temperature 

55.00n 

30.00 

0.00 

^l 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

75.00 150.00 225.00 300.00 

^       seasonchangeTC1:p2(Untitled)       Days 3:04 PM   Tue, Feb 06,2001 

FIGURE 146. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

SEASONAL CHANGE KANSAS: TC 0.01, HC 5.0-15.0 KCAL/MOL GLUCOSE FIGURES 147-151 

1:5.0 2:8.33 3:11.7 4:15.0 
1: C02 Mole Fraction 2: C02 Mole Fraction 3: C02 Mole Fraction 4: C02 Mole Fraction 

1.00- 

0.50- 

0.00' 
0.00 75.00 

^l 
150.00 225.00 300.00 

|       ^       seasonchangeTCOl: p4 (Untitled)     Days 2:46 PM   Tue, Feb 06,2001 

FIGURE 147. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Umax k Acido 

1: 4.00-1 

^1 

3.00 

2.00 

2: 8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

0.00 75.00 150.00 225.00 300.00 

11       seasonchangeTC01:p5(Untitled)     Days 2:46 PM   Tue, Feb 06,2001 

FIGURE 148. UMAx ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
|   1:UmaxkMeth 

1: 0.75-r 

0.40- •  

2: 8.33 
2: Umax k Meth 

3: 11.7 
3: Umax k Meth 

4: 15.0 
4: Umax k Meth 

0.05 

^11 
0.00 75.00 150.00 

^M       seasonchangeTCOl: p6 (Untitled)     Days 

225.00 300.00 

2:46 PM   Tue, Feb 06, 2001 

FIGURE 149. UMAx METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
I  1: Glucose 

1: 2.00e+009 

1.00e+009 

2: 8.33 
2: Glucose 

3: 11.7 
3: Glucose 

4: 15.0 
4: Glucose 

0.00 

^1 
75.00 150.00 

seasonchangeTCOl: p1 (Untitled)     Days 

225.00 300.00 

2:46 PM   Tue, Feb 06, 2001 

FIGURE 150. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Temperature 

70.00 T 

45.00- 

20.00 
0.00 

^l 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

75.00 150.00 225.00 300.00 

^       seasonchangeTCOl: p2 (Untitled)     Days 2:46 PM   Tue, Feb 06,2001 

FIGURE 151. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 
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SEASONAL CHANGE MOSCOW: TC 0.1, HC 5.0-15.0 KCAL/MOL GLUCOSE FIGURES 152-157 

1:5.0 
|   1:CH4 Mole Fraction 

1: 1.00T 

^ 

0.50- 

2: 8.33 
2: CH4 Mole Fraction 

3: 11.7 
3: CH4 Mole Fraction 

4: 15.0 
4: CH4 Mole Fraction 

0.00 
75.00 150.00 225.00 300.00 

I       |       seasonMoscowTCI: p4 (Untitled)      Days 11:23 AM   Wed, Feb 07,2001 

FIGURE 152. CH4 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Umax k Meth 

OJO-i 

^ 

0.35 

2: 8.33 
2: Umax k Meth 

3:11.7 
3: Umax k Meth 

0.00 

4: 15.0 
4: Umax k Meth 

0.00 75.00 150.00 225.00 300.00 

II       seasonMoscowTCI: p5 (Untitled)      Days 11:23 AM   Wed, Feb 07,2001 

FIGURE 153. U^ METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Umax k Acido 

3.50n 

3.05- 

2.60 

^l 

2: 8.33 
2: Umax k Acido 

3: 11.7 
3: Umax k Acido 

4: 15.0 
4: Umax k Acido 

225.00 300.00 

11:23 AM   Wed, Feb 07, 2001 

FIGURE 154. UM« ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
1: Glucose 

4.00e+008' 

2: 8.33 
2: Glucose 

3: 11.7 
3: Glucose 

4: 15.0 
4: Glucose 

1: 2.00e+008- ■ 

0.00' 
0.00 75.00 150.00 225.00 300.00 

Sll ^       seasonMoscowTC1:p1 (Untitled)      Days 11:23AM   Wed, Feb 07,2001 

FIGURE 155. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 
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1:5.0 
1: Temperature 

40.00 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

20.00 

0.00 

\!l 
0.00 75.00 150.00 225.00 300.00 

|       seasonMoscowTC1:p2(Untitled)      Days 11:23 AM   Wed, Feb 07,2001 

FIGURE 156. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 2:8.33 3:11.7 4:15.0 
■   1: C02 Mole Fraction 2: C02 Mole Fraction 3: C02 Mole Fraction 4: C02 Mole Fraction 

1: 1.00T  

0.501 

0.00' 

■ 3—4- 

0.00 75.00 150.00 

^l 
225.00 300.00 

|       |       seasonMoscowTC1:p3(Untitled)      Days 11:23 AM   Wed, Feb 07,2001 

FIGURE 157. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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SEASONAL CHANGE MOSCOW: TC 0.01, HC 5.0-15.0 KCAL/MOL GLUCOSE FIGURES 158-163 

1:5.0 
1: Glucose 

2.00e+009-i 

1: 1.00e+009 

2: 8.33 
2: Glucose 

4: 15.0 
4: Glucose 

0.00 75.00 150.00 

Nil 
225.00 300.00 

^       seasMoscowTC01:p1 (Untitled)        Days 11:09 AM   Wed, Feb 07,2001 

FIGURE 158. GLUCOSE LEVEL WITH VARIOUS HEAT CONSTANT VALUES 

1:5.0 
I  1: Temperature 

1: 70.00-r 

45.00- 

20.00 
0.00 

^1 

2: 8.33 
2: Temperature 

3: 11.7 
3: Temperature 

4: 15.0 
4: Temperature 

75.00 150.00 225.00 300.00 

|       seasMoscowTC01:p2 (Untitled)        Days 11:09 AM   Wed, Feb 07,2001 

FIGURE 159. TEMPERATURE WITH VARIOUS HEAT CONSTANT VALUES 

149 



1:5.0 2:8.33 3:11.7 4:15.0 
1: C02 Mole Fraction 2: C02 Mole Fraction 3: C02 Mole Fraction 4: C02 Mole Fraction 

1.00n 

0.50- 

0.00' 
0.00 75.00 150.00 

^l 
225.00 300.00 

|       |       seasMoscowTC01:p3(Untitled)        Days 11:09AM   Wed, Feb 07,2001 

FIGURE 160. C02 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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FIGURE 161. CH4 MOLE FRACTION WITH VARIOUS HEAT CONSTANT VALUES 
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FIGURE 162. IW METHANOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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FIGURE 163. U«.« ACIDOGEN WITH VARIOUS HEAT CONSTANT VALUES 
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Appendix B: Arrhenius Model Structure 

Glucose 

Butyrate Biomass 

MW 

Buyate 

C02MW 

Butyrate Urhax     ButtrateK Butyrate Decay Rate Const 

Meth Qeath Factor 

Meth Death constant 
Meth Growth constant 

Meth Growth Art energy 
Meth KA;t energy 

Meth Death A:t e nergy 
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Appendix C Peleg Equation 

Glucose--> Butyrate + 2C02 + 2H2 

Hydrogen 

H2 from Butyrate Ferm 

Tcrtical Acidogen 

Decay Steepness Acidogen 

Butyrate Yield 

Butyrate Umax 
Butyrate K 

Theoretical Glucose Depletion 
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Temp Span Acidogen 

Glu to Mixed Bio 

Mixed umax 
Umax k Acido (      \      Mixed K 

Methane 
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Appendix D Model Structure 

The Temperature Sector immediate below was developed for this model, Shelley 
created the remaining sectors. 

kd Acidog 

Temp Span Acidogen Temp Span Meth 
Decay Steepness Meth 
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Physical Dimensions Sector Z\| 
Total Gas Mole Ca 

Porosity FaetöT 

PF Growth Factor, Solid Org Waste 

Cell Length JS^ 

H2 umax inh factor 

Cell Depth 
Cell Width 

Cell Porosity Org Waste Density    Inorg Waste Density 
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Substrate Mass Flow 

loAcet Bio _jjf\ Th Bufy Adjtogen Depl 
H1 

BiCarti Cnv 

Cloistr 

Atm L|)ss 

FAcet Meth Resq " '■■.. Mixed Resp 
Th Ac state Depl 
 1 Glu OH Cntf     ^ Formate -~x       I   MPth from Form 

Hydroxide '•.. / Acetate Resp Form Meth RespV      ;   Mem from i-orm 
Methane 
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Chemical Characteristics & Stoichiometry Z^vl 

Butyrate 

Lactate2 Path 

Meth fj 

Meti 

Ethan. 

Cnv 

Propionati 

Glu CO: 

Glu Eth Cj 

Glu Eth 

Eth Acet 

H2 Meth Cnv ^QttT _ _ 

( Mb -s-i-- f m   Ulu"H2MxCnv(   Wf     ^--•/^~~fj 

"•"'' Aceto from Butyrate 
Meth from C02   Butyrate Path       Butanol Acetone Path        Mixed Acid Path     Aceto from Prop Aceto from Eth 

Acetate Decay 

Acetogen Decay   CO?M^thDecay 

Butnl Acet Decay  Propionate Decay    Ethanol Decay    Lact to Prop Decay  Eth Acetogen Decay   Form Meth Decay 
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Aero 02 Factor   Smth Th Aero Growth 

Glu Aero Resp 

Aerobic Fract ^^ Yje|d     Max Fract Aero Mass 

Anaero 02 Factor 
Smth Th Clostridial Growth Aerobic Fract 

kd Acidog 
Clostridial Yield       Max Fract Clostridial Mass 

Butyrate Biomass Sector Z^l 

pH Factor 

Anaero 02 Factor 
Um^mktnX?r1(BUtyrate Growth     H2 umax inh factor Butyrate Yield 

kd Acidog 
"Max Fract Bury Mass 
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Anaero 02 Factor    '"■ 
Umax k Acido 

kd Acidog 

Smth ThLactate 2 Growth H2 umax inh factor Lacta,e 2 Yield Max Fract Lactate 2 Mass 

Propionate Biomass Sector Z\l 

Nutrient; 

pH Factj 

(       j Propionat^lirriax 

/ anaero 02 Factor Acidog Umax k Acido —                    H2 umax inh factor 

Smth Th Propionate Growth Propionate Yield      Max Fract Propionate Mass 

pH Factor / 

Anaero 02 Factojmax k Add0    — H2 umax inh factor 
Smth Th Ethanol Growth 

kd Acidog 
Ethanol Yield Max Fract Ethanol Mass 
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Nutrie 

pH Fact«; 

Acetate life 

Anaero 02 Factor 

Ur®rmh Afii&fcetate Growth H2 umax inh factor 
kd Acidog 

Acetate Yield Max Fract Acetate Mass 

Anaero 02 Factor 
Smth Th Mixed Growth Omax inh factor kd Acidog 

Mixed Yield Max Fract Mixed Mass 

Butanol Acetone Biomass Sector Zivi 

i Butnl Acet K 
Anaero 02 Factor W Sm{h Q|u 

Smth Th Butnl Acet Growth 
kd Acidog 

Butnl Acet Yield Max Fract Butnl Acet Mass 
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Butyrate Acetogen Biomass Sector 

!uty Acetogen K      f 
Anaero 02 Factor       ^—S ■■■-■■■ N—' ^ Acidog 

Smth Th Buty Acetogen Growth      H2 umax inh factor Buty Acetogen Yield        Max Fract Butv Acetogen Mass 

Lact to Prop Acetogen Biomass Sector 

Umax k Aciao 

Anaero 02 Factor kd Acidog 
Smth Th Lact to Prop Growth H2 umax inh factor Lact to Prop Yield Max Fract Lact t0 Prop Mass 

Propionate Acetogen Biomass Sector 

,cetogei\ Decay Rate/ 

  'ThßtöfTÄcefogen Depl 
Prop Acetogen ^--f—^^^SgSfRe, 

Anaero 02 Factor ^-^ '"-"■"' \_J kd Acidog 
 Smth Th Prop Acetogen Growth         H2 umax inh factor       prop Acetoqen yield     MaX FraCt Pr°P Acet09en Mass 

Ethanol Acetogen Biomass Sector 

Umax k Aci> 
/ ^ith Acetogen umax 

Anaero 02 Factor ^-^ '■--■' v—■' kd Acidog 
Smth Th Eth Acetogen Growth H2 umax inh factor Eth Acetogen Yield     Max Fract Eth Acetogen Mass 
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Acet Meth K 
Anaero 02 Factor ^-^ ''••"•■'' ^—' KdMeth 

Smth Th Acet Meth Growth H2 umax inh factor /^t ivieth Yield Max Fract Acet Meth Mass 

Anaero 02 Factor 
Smth Th Form Meth Growth H2 umax inh factor Form Meth Yield      Max Fract Form Meth Mass 

Carbopn Dioxide Methanogen Biomass Sector 

Anaero 02 Factor 
H2 to C02 

KdMeth 
C02 Meth Yield 

Smth H2     co2 umax inh factor Max Fract C02 Meth Mass 
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Total Mass Sector z\j 
Butyrate   Lactate   Acetone Proprionate Butanol   Ethanol   Formate Hydroxide    H Ion H1    Bicarbonate   Acetate 

Lactaf5-2-8iprnass   Propionate Biomass 
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Total Gas Mole Capacity 
Aero 02 Factor 

Neutral Gas Exch 
N2 Wt Fract 

Moisture Sector z\ 
Glucose   Butyrate Acetone   Butanol    Lactate   Bicarbonate 

Initial Percent Moisture 

Anaero Cnv 

Aceto from Eth 

from Butyrate 

Aceto from Prop 

\ .--Propionate Path \     J 

Glu H20 Prop Cnv Lact H20 Cnv  Lact to Prop Clostridial Path 
Prop H20 Cnv    Buty H20 Cnv 
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Appendix E Model Equations 

Acetate Biomass Sector 
Acetate_Biomass(t) = Acetate_Biomass(t - dt) + (Acetate_Growth - Acetate_Decay) * dt 
INIT Acetate_Biomass = 100000 

INFLOWS: 
Acetate_Growth = Glu_to_Acet_Bio 

OUTFLOWS: 
Acetate_Decay = Acetate_Biomass*Acetate_Decay_Rate 
Acetate_Decay_Rate = (0.15 + Acetate_Decay_Rate_Factor*((Acetate_umax) - 0.15))+kd_Acidog 
AcetateJC = 500 
Acetate_Resp = Th_Acetate_Depl - Th_Acetate_Growth 
Acetate_umax = Umax_k_Acido 
Acetate_Yield = .5 
Max_Fract_Acetate_Mass = .01 
Smth_Th_Acetate_Growth = SMTHl(Th_Acetate_Growth,l) 
Th_Acetate_Depl = Th_Acetate_Growth/Acetate_Yield 
Th_Acetate_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Acetate_Biomass*(Acetate_umax*H2_umax_inh_factor*Glucose)/( Acetat 
e_K+Glucose) ELSE 0 
Acetate_Decay_Rate_Factor = 
GRAPH(Acetate_Biomass/(Max_Fract_Acetate_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Acetate Methanogen Biomass Sector 
Acetate_Meth_Biomass(t) = Acetate_Meth_Biomass(t - dt) + (Acet_Meth_Growth - Acet_Meth_Decay) * 
dt 
INIT Acetate_Meth_Biomass = 10000 

INFLOWS: 
Acet_Meth_Growth = Acet_Meth_Bio 

OUTFLOWS: 
Acet_Meth_Decay = Acetate_Meth_Biomass*Acet_Meth_Decay_Rate 
Acet_Meth_Decay_Rate = (0.1 + Acetjvleth JJecay_Rate_Factor*((Acet_Meth_umax) - 0.1))+KdMeth 
Acet_Meth_K=1000 
Acet_Meth_Resp = Th_Acet_Meth_Depl - Th_Acet_Meth_Growth 
Acet_Meth_umax = Umax_k_Meth 
Acet_Meth_Yield = .4 
Max_Fract_Acet_Meth_Mass = .01 
Smth_Th_Acet_Meth_Growth = SMTHl(Th_Acet_Meth_Growth,l) 
Th_Acet_Meth_Depl = Th_Acet_Meth_Growth/Acet_Meth_Yield 
Th_Acet_Meth_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Acetate_Meth_Biomass*(Acet_Meth_umax*H2_umax_inh_factor*Acetate)/(Acet_Me 
th_K+Acetate) ELSE 0 
Acet_Meth_Decay_Rate_Factor = 
GRAPH(Acetate_Meth_Biomass/(Max_Fract_Acet_Meth_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 
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Aerobic Biomass Sector 
Aerobic_Biomass(t) = Aerobic_Biomass(t - dt) + (Aerobic_Growth - Aerobic_Decay) * dt 
INIT Aerobic_Biomass = 100000 

INFLOWS: 
Aerobic_Growth = Glu_to_Aero_Bio 

OUTFLOWS: 
Aerobic_Decay = Aerobic_Biomass*Aero_Decay_Rate 
Aero_Decay_Rate = 0.1 + Aero_Decay_Rate_Factor*(Aero_umax - 0.1) 
AeroJC = 50 
Aero_umax = .6 
Aero_Yield = 0.6 
Glu_Aero_Resp = Th_Aero_Depl-Th_Aero_Growth 
Max_Fract_Aero_Mass = 0.01 
Nutrients = 1 
Smth_Glu = SMTHl(Glucose,.l) 
Smth_Th_Aero_Growth = SMTH1 (Th_Aero_Growth, 1) 
Th_Aero_Depl = Th_Aero_Growth/Aero_Yield 
Th_Aero_Growth = IF(Nutrients=l)THEN 
(Aero_02_Factor*Aerobic_Biomass*(Aero_umax*Aerobic_Fract*Glucose)/(Aero_K+Aerobic_Fract*Glu 
cose)) ELSE 0 
Aero_Decay_Rate_Factor = 
GRAPH(Aerobic_Biomass/(Max_Fract_Aero_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Bifidum Biomass Sector 
Bifidum_Biomass(t) = Bifidum_Biomass(t - dt) + (Bifidum_Growth - Bifidum_Decay) * dt 
INIT Bifidum_Biomass = 100000 

INFLOWS: 
Bifidum_Growth = Glu_to_Bif_Bio 

OUTFLOWS: 
Bifidum_Decay = Bifidum_Biomass*Bifidum_Decay_Rate 
Bifidum_Decay_Rate = (0.15 + Bifidum_Decay_Rate_Factor*((Bifidum_umax) - 0.15))+kd_Acidog 
Bifidum_K = 500 
Bifidum_Resp = Th_Bifidum_Depl - Th_Bifidum_Growth 
Bifidum_umax = Umax_k_Acido 
Bifidum_Yield = .5 
Max_Fract_Bifidum_Mass = .01 
Smth_Th_Bifidum_Growth = SMTHl(Th_Bifidum_Growth,l) 
Th_Bifidum_Depl = Th_Bifidum_Growth/Bifidum_Yield 
Th_Bifidum_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Bifidum_Biomass*(Bifidum_umax*H2_umax_inh_factor*Glucose)/(Bifid 
um_K+Glucose) ELSE 0 
Bifidum_Decay_Rate_Factor = 
GRAPH(Bifidum_Biomass/(Max_Fract_Bifidum_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 
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Butanol Acetone Biomass Sector 
Butnl_Acet_Biomass(t) = Butnl_Acet_Biomass(t - dt) + (Butnl_Acet_Growth - Butnl_Acet_Decay) * dt 
INIT Butnl_Acet_Biomass = 100000 

INFLOWS: 
Butnl_Acet_Growth = Glu_to_Butanol_Bio 

OUTFLOWS: 
Butnl_Acet_Decay = Butnl_Acet_Biomass*Butnl_Acet_Decay_Rate 
Butnl_Acet_Decay_Rate = (0.15 + Butnl_Acet_Decay_Rate_Factor*((Butnl_Acet_umax) - 
0.15))+kd_Acidog 
Butnl_Acet_K = 500 
Butnl_Acet_Resp = Th_Butnl_Acet_Depl - Th_Butnl_Acet_Growth 
Butnl_Acet_umax = Umax_k_Acido 
Butnl_Acet_Yield = .5 
Max_Fract_Butnl_Acet_Mass = .01 
Smth_Th_Butnl_Acet_Growth = SMTHl(Th_Butnl_Acet_Growth,l) 
Th_Butnl_Acet_Depl = Th_Butnl_Acet_Growth/Butnl_Acet_Yield 
Th_Butnl_Acet_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Butnl_Acet_Biomass*(Butnl_Acet_umax*Glucose)/(Butnl_Acet_K+Gluc 
ose) ELSE 0 
Butnl_Acet_Decay_Rate_Factor = 
GRAPH(Butnl_Acet_Biomass/(Max_Fract_Butnl_Acet_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Butyrate Acetogen Biomass Sector 
Butyrate_Acetogen_Biomass(t) = Butyrate_Acetogen_Biomass(t - dt) + (Buty_Acetogen_Growth - 
Buty_Acetogen_Decay) * dt 
INIT Butyrate_Acetogen_Biomass = 100000 

INFLOWS: 
Buty_Acetogen_Growth = Buty_to_Acet_Bio 

OUTFLOWS: 
Buty_Acetogen_Decay = Butyrate_Acetogen_Biomass*Buty_Acetogen_Decay_Rate 
Buty_Acetogen_Decay_Rate = (0.1 + Buty_Acetogen_Decay_Rate_Factor*(Buty_Acetogen_umax) - 
0.1)+kd_Acidog 
Buty_Acetogen_K = 750 
Buty_Acetogen_Resp = Th_Buty_Acetogen_Depl - Th_Buty_Acetogen_Growth 
Buty_Acetogen_umax = Umax_k_Acido 
Buty_Acetogen_Yield = .4 
Max_Fract_Buty_Acetogen_Mass = .01 
Smth_Th_Buty_Acetogen_Growth = SMTHl(Th_Buty_Acetogen_Growth,l) 
Th_Buty_Acetogen_Depl = Th_Buty_Acetogen_Growth/Buty_Acetogen_Yield 
Th_Buty_Acetogen_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Butyrate_Acetogen_Biomass*(Buty_Acetogen_umax*H2_umax_inh_factor*Butyrate) 
/(Buty_Acetogen_K+Butyrate) ELSE 0 
Buty_Acetogen_Decay_Rate_Factor = 
GRAPH(Butyrate_Acetogen_Biomass/(Max_Fract_Buty_Acetogen_Mass*INIT(Solid_Org_Waste))) 
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(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4,0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Butyrate Biomass Sector 
Butyrate_Biomass(t) = Butyrate_Biomass(t - dt) + (Butyrate_Growth - Butyrate_Decay) * dt 
INIT Butyrate_Biomass = 100000 

INFLOWS: 
Butyrate_Growth = Glu_to_Buty_Bio 

OUTFLOWS: 
Butyrate_Decay = Butyrate_Biomass*Butyrate_Decay_Rate 
Butyrate_Decay_Rate = (0.15 + Butyrate_Decay_Rate_Factor*((Butyrate_umax) - 0.15))+kd_Acidog 
Butyrate_K = 500 
Butyrate_Resp = Th_Butyrate_Depl - Th_Butyrate_Growth 
Butyrate_umax = Umax_k_Acido 
Butyrate_Yield = .5 
Max_Fract_Buty_Mass = .01 
Smth_Th_Butyrate_Growth = SMTHl(Th_Butyrate_Growth,l) 
Th_Butyrate_Depl = Th_Butyrate_Growth/Butyrate_Yield 
Th_Butyrate_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Butyrate_Biomass*(Butyrate_umax*H2_umax_inh_factor*Glucose)/(Buty 
rate_K+Glucose) ELSE 0 
Butyrate_Decay_Rate_Factor = 
GRAPH(Butyrate_Biomass/(Max_Fract_Buty_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9,0.86), (1, 1.00) 

Carbopn Dioxide Methanogen Biomass Sector 
C02_Meth_Biomass(t) = C02_Meth_Biomass(t - dt) + (C02_Meth_Growth - C02_Meth_Decay) * dt 
INIT C02_Meth_Biomass = 10000 

INFLOWS: 
C02_Meth_Growth = C02_Meth_Bio 

OUTFLOWS: 
C02_Meth_Decay = C02_Meth_Biomass*C02_Meth_Decay_Rate 
C02_Meth_Decay_Rate = (0.1 + C02_Meth_Decay_Rate_Factor*((C02_Meth_umax) - 0.1))+KdMeth 
CO2_Meth_K=1000 
C02_Meth_Resp = Th_C02_Meth_Depl - Th_C02_Meth_Growth 
C02_Meth_umax = Umax_k_Meth 
C02_Meth_Yield = .4 
H2_to_C02 = IF(Carbon_Dioxide>0)THEN (Hydrogen/Carbon_Dioxide) ELSE (0.18) 
Max_Fract_C02_Meth_Mass = .01 
Smth_H2 = SMTH1 (Hydrogen, 1) 
Th_C02_Meth_Depl = Th_C02_Meth_Growth/C02_Meth_Yield 
Th_C02_Meth_Growth = IF ((Nutrients=l)) THEN 
Anaero_02_Factor*C02_umax_inh_factor*C02_Meth_Biomass*C02_Meth_umax*Carbon_Dioxide*Sm 
th_H2/((C02_Meth_K+Carbon_Dioxide)*(C02_Meth_K+Smth_H2)) ELSE 0 
C02_Meth_Decay_Rate_Factor = 
GRAPH(C02_Meth_Biomass/(Max_Fract_C02_Meth_Mass*INIT(Solid_Org_Waste))) 
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(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1, 1.00) 
C02_umax_inh_factor = GRAPH(H2_to_C02) 
(0.00, 1.00), (0.1, 0.745), (0.2, 0.5), (0.3, 0.25), (0.4, 0.00), (0.5, 0.00), (0.6, 0.00), (0.7, 0.00), (0.8, 0.00), 
(0.9, 0.00), (1,0.00) 

Chemical Characteristics & Stoichiometry 
Acetate_MW = 60 
Acetone_MW = 58 
Acet_Co2_Cnv = 1 *C02_MW/Acetate_MW 
Acet_Meth_Cnv = 1 *CH4_MW/Acetate_MW 
AcetJProd = Glu_Acet_Prop_Cnv*Propionate_Path + Lact_Acet_Cnv*Lact_to_Prop 
Aero_H20_Cnv = 6*Water_MW/Glu_MW 
BiCarb_Cnv = 1 *BiCarb_MW/Propionate_MW 
BiCarb_MW = 61 
Butanol_MW = 74 
Butyrate_MW = 88 
Buty_Acet_Cnv = 2*Acetate_MW/Butyrate_MW 
Buty_H20_Cnv = 2*Water_MW/Butyrate_MW 
Buty_H2_Cnv= 1 *H2_MW/Butyrate_MW 
Buty_Ion_Cnv = 2*Hl_MW/Butyrate_MW 
CH4_MW= 16 
C02_H20_Cnv = 2*Water_MW/C02_MW 
C02_Meth_Cnv = 1 *CH4_MW/C02_MW 
C02_MW = 44 
C02_Prod = Acet_Co2_Cnv*Meth_from_ Acetate + Form_C02_Cnv*Meth_from_Form + 
Glu_C02_Butnl_Cnv*Butanol_Acetone_Path + Glu_C02JButy_Cnv*Butyrate_Path + 
Glu_C02_Eth_Cnv*Ethanol_Path + Glu_C02_Lact2_Cnv*Lactate2_Path + 
Glu_C02_Mx_Cnv*Mixed_Acid_Path + Glu_C02_Prop_Cnv*Propionate_Path + 
Lact_C02_Cnv*Lact_to_Prop 
Ethanol_MW = 46 
Eth_Acet_Cnv = 1 * Acetate_MW/Ethanol_MW 
Eth_H20_Cnv = 1 *Water_MW/Ethanol_MW 
Eth_H2_Cnv = 2*H2_MW/Ethanol_MW 
Formate_MW = 46 
Form_C02_Cnv = 3*C02_MW/(4*Formate_MW) 
Form_H20_Cnv = 0.5*Water_MW/Formate_MW 
Form_Meth_Cnv = 0.25*CH4_MW/Formate_MW 
Glu_Acetone_Cnv = 0.5*Acetone_MW/Glu_MW 
Glu_Acet_Bif_Cnv = 3*Acetate_MW/(2*Glu_MW) 
Glu_Acet_Cnv = 3*Acetate_MW/Glu_MW 
Glu_Acet_Prop_Cnv = 2*Acetate_MW/(3*Glu_MW) 
Glu_Butanol_Cnv = 0.5*Butanol_MW/Glu_MW 
Glu_Buty_Cnv = 1 *Butyrate_MW/Glu_MW 
Glu_C02_Aero_Cnv = 6*C02_MW/Glu_MW 
Glu_C02_Butnl_Cnv = 5*C02_MW/(2*Glu_MW) 
Glu_C02_Buty_Cnv = 2*C02_MW/Glu_MW 
Glu_C02_Clos_Cnv = 6*C02_MW/Glu_MW 
Glu_C02_Eth_Cnv = 2*C02_MW/Glu_MW 
Glu_C02_Lact2_Cnv = l*C02_MW/Glu_MW 
Glu_C02_Mx_Cnv = 180*CO2_MW/(100*Glu_MW) 
Glu_C02_Prop_Cnv = 2*C02_MW/(3*Glu_MW) 
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Glu_Eth_Cnv = 2*Ethanol_MW/Glu_MW 
Glu_Eth_Lact2_Cnv = 1 *Ethanol_MW/Glu_MW 
Glu_Eth_Mx_Cnv = 75*Ethanol_MW/(100*Glu_MW) 
Glu_Form_Cnv = 60*Formate_MW/(100*Glu_MW) 
Glu_H20_Aero_Cnv = 6*Water_MW/Glu_MW 
Glu_H20_Mx_Cnv = 95*Water_MW/(100*Glu_MW) 
Glu_H20_Prop_Cnv = 2*Water_MW/(3*Glu_MW) 
Glu_H2_Butnl_Cnv = 2*H2_MW/Glu_MW 
Glu_H2_Buty_Cnv = 2*H2_MW/Glu_MW 

Glu_H2_Mx_Cnv = 200*H2_MW/(100*Glu_MW) 
Glu_Lact_l_Cnv = 2*Lactate_MW/Glu_MW 
Glu_Lact_2_Cnv = 1 *Lactate_MW/Glu_MW 
Glu_Lact_Bif_Cnv = 1 *Lactate_MW/Glu_MW 
Glu_MW=180 
Glu_02_Cnv = 6*02_MW/Glu_MW 
Glu_OH_Cnv= l*OH_MW/Glu_MW 
Glu_Prop_Cnv = 4*Propionate_MW/(3*Glu_MW) 
Glu_Prop_Mx_Cnv = 70*Propionate_MW/(100*Glu_MW) 
Hl_Cnv = 24*Hl_MW/Glu_MW 
H1_MW=1 
H20_Glu_Aero_Cnv = 1 *Water_MW/Glu_MW 
H20_Glu_Anaero_Cnv = 0.5*Water_MW/Glu_MW 
H2_Meth_Cnv = 4*H2_MW/C02_MW 
H2_MW = 2 
H2_Prod = Glu_H2_Buty_Cnv*Butyrate_Path + Glu_H2_Butnl_Cnv*Butanol_Acetone_Path + 
Glu_H2_Mx_Cnv*Mixed_Acid_Path + Prop_H2_Cnv*Aceto_from_Prop + 
Buty_H2_Cnv*Aceto_from_Butyrate + Eth_H2_Cnv*Aceto_from_Eth - H2_Meth_Cnv*Meth_from_C02 
Lactate_MW = 90 
Lact_Acet_Cnv = 1 *Acetate_MW/(3*Lactate_MW) 
Lact_C02_Cnv = 1 *C02_MW/(3*Lactate_MW) 
Lact_H20_Cnv = l*Water_MW/(3*Lactate_MW) 
Lact_Prop_Cnv = 2*Propionate_MW/(3*Lactate_MW) 
N2_MW = 28 
02_C02_Cnv = 6*02_MW/C02_MW 
02_Glu_Cnv = 0.25*O2_MW/Glu_MW 
02_MW = 32 
OH_MW=17 
Propionate_MW = 74 
Prop_Acet_Cnv = 1 *Acetate_MW/Propionate_MW 
Prop_H20_Cnv = 3*Water_MW/Propionate_MW 
Prop_H2_Cnv = 3*H2_MW/Propionate_MW 
Prop_Ion_Cnv = l*Hl_MW/Propionate_MW 
Water_MW=18 

Clostridial Biomass Sector 
Clostridial_Biomass(t) = Clostridial_Biomass(t - dt) + (Clostridial_Growth - Clostridial_Decay) * dt 
INIT Clostridial_Biomass = 100000 

INFLOWS: 
Clostridial_Growth = Glu_to_Clostr_Bio 

OUTFLOWS: 
Clostridial_Decay = Clostridial_Biomass*Clostridial_Decay_Rate 
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Clostridial_Decay_Rate = (0.1 + ClostridiaIJDecay_Rate_Factor*((Clostridial_umax) - 0.1))+kd_Acidog 
ClostridiaLK = 500 
Clostridial_Resp = Th_Clostridial_Depl - Th_ClostridiaLGrowth 
Clostridial_umax = Umax_k_Acido 
Clostridial_Yield = .5 
Max_Fract_Clostridial_Mass = .02 
Smth_Th_Clostridial_Growth = SMTHl(Th_Clostridial_Growth,l) 
Th_Clostridial_Depl = Th_Clostridial_Growth/Clostridial_Yield 
Th_Clostridial_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Clostridial_Biomass*(Clostridial_umax*Aerobic_Fract*Glucose)/(Clostridial_K+Aero 
bic_Fract*Glucose) + Clostridial_Biomass*(Clostridial_umax*(l- 
Aerobic_Fract)*Glucose)/(Clostridial_K+(l-Aerobic_Fract)*Glucose) ELSEO 

Clostridial_Decay_Rate_Factor = 
GRAPH(Clostridial_Biomass/(Max_Fract_Clostridial_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.145), (0.6, 0.285), (0.7, 0.42), (0.8, 
0.61), (0.9, 0.78), (1,1.00) 

Ethanol Acetogen Biomass Sector 
Eth_Acetogen_Biomass(t) = Eth_Acetogen_Biomass(t - dt) + (Eth_Acetogen_Growth - 
Eth_Acetogen_Decay) * dt 
INIT Eth_Acetogen_Biomass = 100000 

INFLOWS: 
Eth_Acetogen_Growth = Eth_to_Acet_Bio 

OUTFLOWS: 
Eth_Acetogen_Decay = Eth_Acetogen_Biomass*Eth_Acetogen_Decay_Rate 
Eth_Acetogen_Decay_Rate = (0.1 + Eth_Acetogen_Decay_Rate_Factor*((Eth_Acetogen_umax) - 
0.1))+kd_Acidog 
Eth_Acetogen_K = 750 
Eth_Acetogen_Resp = Th_Eth_Acetogen_Depl - Th_Eth_Acetogen_Growth 
Eth_Acetogen_umax = Umax_k_Acido 
Eth_Acetogen_Yield = .4 
Max_Fract_Eth_Acetogen_Mass = .01 
Smth_Th_Eth_Acetogen_Growth = SMTHl(Th_Eth_Acetogen_Growth,l) 
Th_Eth_Acetogen_Depl = Th_Eth_Acetogen_Growth/Eth_Acetogen_Yield 
Th_Eth_Acetogen_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Eth_Acetogen_Biomass*(Eth_Acetogen_umax*H2_umax_inh_factor*Ethanol)/(Eth_ 
Acetogen_K+Ethanol) ELSE 0 
Eth_Acetogen_Decay_Rate_Factor = 
GRAPH(Eth_Acetogen_Biomass/(Max_Fract_Eth_Acetogen_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Ethanol Biomass Sector 
Ethanol_Biomass(t) = Ethanol_Biomass(t - dt) + (Ethanol_Growth - Ethanol_Decay) * dt 
INIT EthanoLBiomass = 100000 

INFLOWS: 
EthanoLGrowth = Glu_to_Eth_Bio 

OUTFLOWS: 
Ethanol_Decay = Ethanol_Biomass*Ethanol_Decay_Rate 
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Ethanol_Decay_Rate = (0.15 + Ethanol_Decay_Rate_Factor*((Ethanol_umax) - 0.15))+kd_Acidog 
EthanolJC = 500 
Ethanol_Resp = Th_Ethanol_Depl - Th_Ethanol_Growth 
Ethanol_umax = Umax_k_Acido 
EthanoLYield = .5 
Max_Fract_Ethanol_Mass = .01 
Smth_Th_Ethanol_Growth = SMTHl(Th_Ethanol_Growth,l) 
Th_Ethanol_Depl = Th_EthanoLGrowth/Ethanol_Yie1d 
Th_Ethanol_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Ethanol_Biomass*(Ethanol_umax*H2_umax_inh_factor*Glucose)/(Ethan 
ol_K+Glucose) ELSE 0 
Ethanol_Decay_Rate_Factor = 
GRAPH(Ethanol_Biomass/(Max_Fract_Ethanol_Mass*INIT(Solid_Org_Waste))) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1, 1.00) 

Formate Methanogen Biomass Sector 
Form_Meth_Biomass(t) = Form_Meth_Biomass(t - dt) + (Form_Meth_Growth - Form_Meth_Decay) * dt 
INIT Form_Meth_Biomass = 10000 

INFLOWS: 
Form_Meth_Growth = Form_Meth_Bio 

OUTFLOWS: 
Form_Meth_Decay = Form_Meth_Biomass*Form_Meth_Decay_Rate 
Form_Meth_Decay_Rate = (0.1 + Form_Meth_Decay_Rate_Factor*((Form_Meth_umax) - 0.1))+KdMeth 
Form_Meth_K = 1000 
Form_Meth_Resp = Th_Form_Meth_Depl - Th_Form_Meth_Growth 
Form_Meth_umax = Umax_k_Meth 
Form_Meth_Yield = .4 
Max_Fract_Form_Meth_Mass = .01 
Smth_Th_Form_Meth_Growth = SMTHl(Th_Form_Meth_Growth,l) 
ThJForm_Meth_Depl = Th_Form_Meth_Growth/Form_Meth_Yield 
Th_Form_Meth_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Forrn_Meth_Biomass*(Forrn_Meth_urnax*H2_umax_inh_factor*Formate)/(Form_Me 
th_K+Formate) ELSE 0 
Form_Meth_Decay_Rate_Factor = 
GRAPH(Form_Meth_Biomass/(Max_Fract_Form_Meth_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Gas Sector 
Nitrogen(t) = Nitrogen(t - dt) + (- N2_Atm_Exch) * dt 
INIT Nitrogen = .8*Total_Gas_Mole_Capacity*N2_MW 

OUTFLOWS: 
N2_Atm_Exch = IF(Excess_Gas>0) THEN (N2_Mole_Fraction*Gas_Diff_Rate*Excess_Gas*N2_MW) 
ELSE IF (Excess_Gas<0) THEN (.8*Gas_Diff_Rate*Excess_Gas*N2_MW) ELSE 
(N2_Mole_Fraction*Gas_Diff_Rate*Neutral_Gas_Exch*N2_MW- 
.8*Gas_Diff_Rate*Neutral_Gas_Exch*N2_MW) 
Oxygen(t) = Oxygen(t - dt) + (- 02_Depletion - 02_Atm_Exch) * dt 

INIT Oxygen = .2*Total_Gas_Mole_Capacity*02_MW 
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OUTFLOWS: 
02_Depletion = 02_Glu_Cnv*Aero_Hydr + Glu_02_Cnv*Aerobic_Degrade 
02_Atm_Exch = IF(Excess_Gas>0) THEN (02_Mole_Fraction*Gas_Diff_Rate*Excess_Gas*02_MW) 
ELSE IF (Excess_Gas<0) THEN (0.2*Gas_Diff_Rate*Excess_Gas*O2_MW) ELSE 
(02_Mole_Fraction*Gas_Diff_Rate*Neutral_Gas_Exch*02_MW- 
.2*Gas_Diff_Rate*Neutral_Gas_Exch*02_MW) 
CH4_Exch = IF(Excess_Gas>0) THEN (CH4_Mole_Fraction*Gas_Diff_Rate*Excess_Gas*CH4_MW) 
ELSE IF (Excess_Gas<0) THEN (0) ELSE 
(CH4_Mole_Fraction*Gas_Diff_Rate*Neutral_Gas_Exch*CH4_MW) 
CH4_Moles = Methane/CH4_MW 
CH4_Mole_Fraction = CH4_Moles/Total_Gas_Moles 
CH4_Wt_Fract = Methane/Total_Gas 

C02_Exch = IF(Excess_Gas>0) THEN (C02_Mole_Fraction*Gas_Diff_Rate*Excess_Gas*C02_MW) 
ELSE IF (Excess_Gas<0) THEN (0) ELSE 
(C02_Mole_Fraction*Gas_Diff_Rate*Neutral_Gas_Exch*C02_MW) 
C02_Moles = Carbon_Dioxide/C02_MW 
C02_Mole_Fraction = C02_Moles/Total_Gas_Moles 
C02_Wt_Fract = Carbon_Dioxide/Total_Gas 
Excess_Gas = Total_Gas_Moles-Total_Gas_Mole_Capacity 
Gas_Diff_Rate = 1 
H2_Exch = IF(Excess_Gas>0) THEN (H2_Mole_Fraction*Gas_Diff_Rate*Excess_Gas*H2_MW) ELSE 
IF (Excess_Gas<0) THEN (0) ELSE (H2_Mole_Fraction*Gas_Diff_Rate*Neutral_Gas_Exch*H2_MW ) 
H2_Moles = Hydrogen/H2_MW 
H2_Mole_Fraction = H2_Moles/Total_Gas_Moles 
H2_Wt_Fract = Hydrogen/Total_Gas 
N2_Moles = Nitrogen/N2_MW 
N2_Mole_Fraction = N2_Moles/Total_Gas_Moles 
N2_Wt_Fract = Nitrogen/Total_Gas 
Neutral_Gas_Exch = 100 
02 JVIoles = Oxygen/02_MW 
02_Mole_Fraction = 02_Moles/Total_Gas_Moles 
02_Wt_Fract = Oxygen/Total_Gas 
Total_Gas = Oxygen+Carbon_Dioxide+Hydrogen+Methane+Nitrogen 
Total_Gas_Moles = CH4_Moles+C02_Moles+H2_Moles+N2_Moles+02_Moles 
Aero_02_Factor = GRAPH(Oxygen/INIT(Oxygen)) 
(0.00, 0.00), (0.1, 0.045), (0.2, 0.16), (0.3, 0.46), (0.4, 0.795), (0.5, 1.00), (0.6, 1.00), (0.7, 1.00), (0.8, 
1.00), (0.9, 1.00), (1, 1.00) 
Anaero_02_Factor = GRAPH(Oxygen/INIT(Oxygen)) 
(0.00, 1.00), (0.1, 0.895), (0.2, 0.795), (0.3, 0.695), (0.4, 0.57), (0.5, 0.455), (0.6, 0.32), (0.7, 0.205), (0.8, 
0.105), (0.9,0.00), (1,0.00) 
H2_umax_inhjactor = GRAPH(Hydrogen/Initial_Cell_Volume) 
(0.00, 1.00), (0.1, 0.97), (0.2, 0.935), (0.3, 0.895), (0.4, 0.845), (0.5, 0.795), (0.6, 0.745), (0.7, 0.67), (0.8, 
0.595), (0.9, 0.52), (1,0.41) 
Meth_H2_Factor = GRAPH(H2_Mole_Fraction) 
(0.00, 0.7), (0.1, 1.00), (0.2, 1.00), (0.3, 1.00), (0.4, 1.00), (0.5, 1.00), (0.6, 1.00), (0.7, 1.00), (0.8, 1.00), 
(0.9, 1.00), (1,1.00) 

Lact to Prop Acetogen Biomass Sector 
Lact_to_Prop_Biomass(t) = Lact_to_Prop_Biomass(t - dt) + (Lact_to_Prop_Growth - 
Lact_to_Prop_Decay) * dt 
INIT Lact_to_Prop_Biomass = 100000 
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INFLOWS: 
Lact_to_Prop_Growth = Lact_to_Prop_Bio 

OUTFLOWS: 
Lact_to_Prop_Decay = Lact_to_Prop_Biomass*Lact_to_Prop_Decay_Rate 
Lact_to_Prop_Decay_Rate = (0.1 + Lact_to_Prop_Decay_Rate_Factor*((Lact_to_Prop_umax) - 
0.1))+kd_Acidog 
Lact_to_Prop_K = 500 
Lact_to_Prop_Resp = Th_Lact_to_Prop_Depl - Th_Lact_to_Prop_Growth 
Lact_to_Prop_umax = Umax_k_Acido 
Lact_to_Prop_ Yield = .5 
Max_Fract_Lact_to_Prop_Mass = .01 
Smth_Th_Lact_to_Prop_Growth = SMTHl(Th_Lact_to_Prop_Growth,l) 
Th_Lact_toJProp_Depl = Th_Lact_to_Prop_Growth/Lact_to_Prop_Yield 
Th_Lact_to_Prop_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Lact_to_Prop_Biomass*(Lact_to_Prop_umax*H2_umax_inh_factor*Lactate)/(Lact_to 
_Prop_K+Lactate) ELSE 0 
Lact_to_Prop_Decay_Rate_Factor = 
GRAPH(Lact_to_Prop_Biomass/(Max_Fract_Lact_to_Prop_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1, 1.00) 

Lactate 1 Biomass Sector 
Lactate_l_Biomass(t) = Lactate_l_Biomass(t - dt) + (Lactate_l_Growth - Lactate_l_Decay) * dt 
INIT Lactate_l_Biomass = 100000 

INFLOWS: 
Lactate_l_Growth = Glu_to_Lactate_l_Bio 

OUTFLOWS: 
Lactate_l_Decay = Lactate_l_Biomass*Lactate_l_Decay_Rate 
Lactate_l_Decay_Rate = (0.15 + Lactate_l_Decay_Rate_Factor*((Lactate_l_umax) - 0.15))+kd_Acidog 
Lactate_l_K=500 
Lactate_l_Resp = Th_Lactate_l_Depl - Th_Lactate_l_Growth 
Lactate_l_umax = Umax_k_Acido 
Lactate_l_Yield = .5 
Max_Fract_Lactate_l_Mass = .01 
Smth_Th_Lactate_l_Growth = SMTHl(Th_Lactate_l_Growth,l) 
Th_Lactate_l_Depl = Th_Lactate_l_Growth/Lactate_l_Yield 
Th_Lactate_l_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Lactate_l_Biomass*(Lactate_l_umax*H2_umax_inh_factor*Glucose)/(L 
actate_l_K+Glucose) ELSE 0 
Lactate_l_Decay_Rate_Factor = 
GRAPH(Lactate_l_Biomass/(Max_Fract_Lactate_l_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1, 1.00) 

Lactate 2 Biomass Sector 
Lactate_2_Biomass(t) = Lactate_2_Biomass(t - dt) + (Lactate_2_Growth - Lactate_2_Decay) * dt 
INIT Lactate_2_Biomass = 100000 

INFLOWS: 
Lactate 2 Growth = Glu to Lactate_2_Bio 
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OUTFLOWS: 
Lactate_2_Decay = Lactate_2_Biomass*Lactate_2_Decay_Rate 
Lactate_2_Decay_Rate = (0.15 + Lactate_2_Decay_Rate_Factor*((Lactate_2_umax) - 0.15))+kd_Acidog 
Lactate_2_K = 500 
Lactate_2_Resp = Th_Lactate_2_Depl - Th_Lactate_2_Growth 
Lactate_2_umax = Umax_k_Acido 
Lactate_2_Yield = .5 
Max_Fract_Lactate_2_Mass = .01 
Smth_Th_Lactate_2_Growth = SMTHl(Th_Lactate_2_Growth,l) 
Th_Lactate_2_Depl = Th_Lactate_2_Growth/Lactate_2_Yield 
Th_Lactate_2_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Lactate_2_Biomass*(Lactate_2_umax*H2_umax_inh_factor*Glucose)/(L 
actate_2_K+Glucose) ELSE 0 
Lactate_2_Decay_Rate_Factor = 
GRAPH(Lactate_2_Biomass/(Max_Fract_Lactate_2_Mass*INIT(Solid_Org_Waste))) 

(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1, 1.00) 

Mass Balance Sector 
Net_CH4_Atm_Loss(t) = Net_CH4_Atm_Loss(t - dt) + (CH4_Loss) * dt 
INIT Net_CH4_Atm_Loss = 0 

INFLOWS: 
CH4_Loss = CH4_Atm_Loss 
Net_C02_Atm_Loss(t) = Net_C02_Atm_Loss(t - dt) + (C02_Loss) * dt 
INIT Net_C02_Atm_Loss = 0 

INFLOWS: 
C02_Loss = C02_Atm_Loss 
Net_H2_Atm_Loss(t) = Net_H2_Atm_Loss(t - dt) + (H2_Loss) * dt 
INIT Net_H2_Atm_Loss = 0 

INFLOWS: 
H2_Loss = H2_Loss_to_Atm 
Net_02_Atm_Loss(t) = Net_02_Atm_Loss(t - dt) + (02_Loss) * dt 
INIT Net_02_Atm_Loss = 0 

INFLOWS: 
02_Loss = 02_Atm_Exch 
Mass_Balance = Current_Mass+Net_Gas_Loss 
Net_Gas_Loss = Net_CH4_Atm_Loss+Net_C02_Atm_Loss+Net_H2_Atm_Loss+Net_02_Atm_Loss 
Percent_Mass_Deviation = 100*(Mass_Balance-Initial_Mass)/Initial_Mass 

Mixed Acid Biomass Sector 
Mixed_Biomass(t) = Mixed_Biomass(t - dt) + (Mixed_Growth - Mixed_Decay) * dt 
INIT Mixed_Biomass = 100000 

INFLOWS: 
Mixed_Growth = Glu_to_Mixed_Bio 

OUTFLOWS: 
Mixed_Decay = Mixed_Biomass*Mixed_Decay_Rate 
Max Fract_Mixed_Mass= .01 
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Mixed_Decay_Rate = (0.15 + Mixed_Decay_Rate_Factor*((Mixed_umax) - 0.15))+kd_Acidog 
MixedJC = 500 
Mixed_Resp = Th_Mixed_Depl - Th_Mixed_Growth 
Mixed_umax = Umax_k_Acido 
Mixed_Yield = .5 
Smth_Th_Mixed_Growth = SMTHl(Th_Mixed_Growth,l) 
Th_Mixed_Depl = Th_Mixed_Growth/Mixed_Yield 
Th_Mixed_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Mixed_Biomass*(Mixed_umax*H2_umax_inh_factor*Glucose)/(Mixed_ 
K+Glucose) ELSE 0 
Mixed_Decay_Rate_Factor = 
GRAPH(Mixed_Biomass/(Max_Fract_Mixed_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9, 0.86), (1,1.00) 

Moisture Sector 
Water(t) = Water(t - dt) + (Aerobic_H20_Production + Other_H20_Production - H20_Lost_to_Hydrolysis 
- Aceto_H20_Consumption - Ferm_H20_Consump) * dt 
INIT Water = (Initial_Percent_Moisture/100)*(Solid_Org_Waste/Org_Waste_Fraction) 

INFLOWS: 
Aerobic_H20_Production = Aero_H20_Cnv*Aerobic_Degrade 
Other_H20_Production = C02_H20_Cnv*Meth_from_C02 + Form_H20_Cnv*Meth_from_Form + 
Glu_H20_Prop_Cnv*Propionate_Path + Lact_H20_Cnv*Lact_to_Prop 

OUTFLOWS: 
H20_Lost_to_Hydrolysis = H20_Glu_Aero_Cnv*Aero_Hydr + H20_Glu_Anaero_Cnv*Anaero_Hydro 
Aceto_H20_Consumption = Eth_H20_Cnv*Aceto_from_Eth + Buty_H20_Cnv*Aceto_from_Butyrate + 
Prop_H20_Cnv*Aceto_from_Prop 
Ferm_H20_Consump = Glu_H20_Aero_Cnv*ClostridiaLPath + Glu_H20_Mx_Cnv*Mixed_Acid_Path 
Initial_Percent_Moisture = 25 
Moisture = 
Acetate+Acetone+BiCarbonate+Butanol+Butyrate+Ethanol+Formate+Glucose+Lactate+Proprionate+Wate 
r 
Percent_Moisture = Moisture / (Solid_Org_Waste+Inorg_Waste+Moisture) 
Moisture_Factor = GRAPH(Percent_Moisture) 
(0.00, 0.00), (0.1, 0.45), (0.2, 0.66), (0.3, 0.8), (0.4, 0.865), (0.5, 0.89), (0.6, 0.905), (0.7, 0.925), (0.8, 
0.95), (0.9, 0.975), (1,0.995) 

pH Sector 
pH = GRAPH(Acet_Conc) 
(0.00, 7.80), (5.00, 7.10), (10.0, 6.45), (15.0, 5.95), (20.0, 5.55), (25.0, 5.55), (30.0, 5.55), (35.0, 5.55), 
(40.0, 5.55), (45.0, 5.55), (50.0, 5.55) 
pH_Factor = GRAPH(pH) 
(5.00, 0.00), (5.50, 0.845), (6.00, 1.00), (6.50, 1.00), (7.00, 1.00), (7.50, 1.00), (8.00, 1.00), (8.50, 0.855), 
(9.00, 0.00), (9.50, 0.00), (10.0, 0.00) 

Physical Dimensions Sector 
Acet_Conc = Acetate/Initial_Cell_Volume 
Aerobic_Fract = 1 
Avg_Solid_Density = 1350/(1 - Porosity_Factor*Cell_Porosity) 
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CelLDepth = 3 
Cell_Length= 1000 
CelLPorosity = (8-(4/3)*PI) / 8 
CelLVolume = Org_Sphere_Number*(2*Org_Sphere_Radius)A3 + (Total_Spheres- 
Org_Sphere_Number)*(2*Initial_Radius)A3 
Cell_Width= 1000 
Initial_Cell_Volume = Cell_Depth*CellJLength*Cell_Width 
Initial_Radius = .07 
Initial_Sphere_Vol = (4*PI*Initial_RadiusA3)/3 
Inorg_Sphere_Number = (1 - Org_Waste_Fraction)*Total_Spheres 
Inorg_Waste = Inorg_Sphere_Number*Initial_Sphere_Vol*Inorg_Waste_Density 
Inorg_Waste_Density = Org_Waste_Density/Org_Density_Factor 
Organic_Waste_Volume = Solid_Org_Waste/Org_Waste_Density 
Org_Density_Factor = .75 
Org_Sphere_Number = Org_Waste_Fraction*Total_Spheres 
Org_Sphere_Radius = (3*Org_Sphere_Volume/(4*PI))A(l/3) 
Org_Sphere_Volume = Organic_Waste_Volume/Org_Sphere_Number 
Org_Surface_Area = Org_Sphere_Number*4*PI*(Org_Sphere_Radius)A2 
Org_Waste_Density = Avg_Solid_Density/(Org_Waste_Fraction + (1 - 
Org_Waste_Fraction)/Org_Density_Factor) 

Org_Waste_Fraction = .75 
PF_Growth_Factor = (Initial_Sphere_Vol + (l-Porosity_Factor)*Cell_Porosity*(2*Initial_Radius)A3) / 
Initial_Sphere_Vol 
Porosity_Factor = . 1 
Surf_Area_Exp_Factor = .01 
Total_Gas_Mole_Capacity = Cell_Porosity*Initial_Cell_Volume*1000/22.4*Porosity_Factor * 
PF_Growth_Factor 
TotaLSpheres = Initial_Cell_Volume/((2*Initial_Radius)A3) * PF_Growth_Factor 

Propionate Acetogen Biomass Sector 
Prop_Acetogen_Biomass(t) = Prop_Acetogen_Biomass(t - dt) + (Prop_Acetogen_Growth - 
Prop_Acetogen_Decay) * dt 
INIT Prop_Acetogen_Biomass = 100000 

INFLOWS: 
Prop_Acetogen_Growth = Prop_Acetogen_Bio 

OUTFLOWS: 
Prop_Acetogen_Decay = Prop_Acetogen_Biomass*Prop_Acetogen_Decay_Rate 
Max_Fract_Prop_Acetogen_Mass = .01 
Prop_Acetogen_Decay_Rate = (0.1 + Prop_Acetogen_Decay_Rate_Factor*((Prop_Acetogen_umax) - 
0.1))+kd_Acidog 
Prop_Acetogen_K = 750 
Prop_Acetogen_Resp = Th_Prop_Acetogen_Depl - Th_Prop_Acetogen_Growth 
Prop_Acetogen_umax = Umax_k_Acido 
Prop_Acetogen_Yield = .4 
Smth_Th_Prop_Acetogen_Growth = SMTHl(Th_Prop_Acetogen_Growth,l) 
Th_Prop_Acetogen_Depl = Th_Prop_Acetogen_Growth/Prop_Acetogen_Yield 
Th_Prop_Acetogen_Growth = IF (Nutrients=l) THEN 
Anaero_02_Factor*Prop_Acetogen_Biomass*(Prop_Acetogen_umax*H2_umax_inh_factor*Proprionate)/ 
(Prop_Acetogen_K+Proprionate) ELSE 0 
Prop_Acetogen_Decay_Rate_Factor = 
GRAPH(Prop_Acetogen_Biomass/(Max_Fract_Prop_Acetogen_Mass*INIT(Solid_Org_Waste))) 
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(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9,0.86), (1, 1.00) 

Propionate Biomass Sector 
Propionate_Biomass(t) = Propionate_Biomass(t. dt) + (Propionate_Growth - Propionate_Decay) * dt 
INIT Propionate_Biomass = 100000 

INFLOWS: 
Propionate_Growth = Glu_to_Prop_Bio 

OUTFLOWS: 
Propionate_Decay = Propionate_Biomass*Propionate_Decay_Rate 
Max_Fract_Propionate_Mass = .01 
Propionate_Decay_Rate = (0.15 + Propionate_Decay_Rate_Factor*((Propionate_umax) - 
0.15))+kd_Acidog 
Propionate_K =500 
Propionate_Resp = Th_Propionate_Depl - Th_Propionate_Growth 
Propionate_umax = Umax_k_Acido 
Propionate_Yield = .5 
Smth_Th_Propionate_Growth = SMTHl(Th_Propionate_Growth,l) 
Th_Propionate_Depl = Th_Propionate_Growth/Propionate_Yield 

Th_Propionate_Growth = IF (Nutrients=l) THEN 
pH_Factor*Anaero_02_Factor*Propionate_Biomass*(Propionate_umax*H2_umax_inh_factor*Glucose)/( 
Propionate_K+Glucose) ELSE 0 
Propionate_Decay_Rate_Factor = 
GRAPH(Propionate_Biomass/(Max_Fract_Propionate_Mass*INIT(Solid_Org_Waste))) 
(0.00, 0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 0.00), (0.4, 0.00), (0.5, 0.185), (0.6, 0.36), (0.7, 0.52), (0.8, 0.7), 
(0.9,0.86), (1, 1.00) 

Substrate Mass Flow 
Acetate(t) = Acetate(t - dt) + (Bifidum_Path + Other_Acet_Prod + Aceto_from_Butyrate + 
Aceto_from_Prop + Aceto_from_Eth + Acetate_Pathway - Meth_from_Acetate - Acet_Meth_Bio) * dt 
INIT Acetate = 0 

INFLOWS: 
Glu_Acet_Bif_Cnv = 3*Acetate_MW/(2*Glu_MW) 
Other_Acet_Prod = Acet_Prod 
Buty_Acet_Cnv = 2*Acetate_MW/Butyrate_MW 
Prop_Acet_Cnv = 1 * Acetate_MW/Propionate_MW 
Eth_Acet_Cnv = 1 * Acetate_MW/Ethanol_MW 
Glu_Acet_Cnv = 3*Acetate_MW/Glu_MW 

OUTFLOWS: 
Meth_frotn_Acetate(o) = Acet_Meth_Resp 
Acet_Meth_Bio = Th_Acet_Meth_Depl - Meth_from_Acetate 
Acetone(t) = Acetone(t - dt) + (Acetone_from_Butanol_Acet_Path) * dt 

INIT Acetone = 0 

INFLOWS: 
Acetone_from_Butanol_Acet_Path = Glu_Acetone_Cnv*Butanol_Acetone_Path 
BiCarbonate(t) = BiCarbonate(t - dt) + (HC03_Form) * dt 
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INIT BiCarbonate = 0 

INFLOWS: 
HC03_Form = BiCarb_Cnv*Aceto_from_Prop 
Butanol(t) = Butanol(t - dt) + (Butanol_Acetone_Path) * dt 

INIT Butanol = 0 

INFLOWS: 
Glu_Butanol_Cnv = 0.5*Butanol_MW/Glu_MW 
Butyrate(t) = Butyrate(t - dt) + (Butyrate_Path - Aceto_from_Butyrate - Buty_to_Acet_Bio) * dt 

INIT Butyrate = 0 

INFLOWS: 
Glu_Buty_Cnv = 1 *Butyrate_MW/Glu_MW 

OUTFLOWS: 
Aceto_from_Butyrate(o) = Buty_Acetogen_Resp 
Buty_to_Acet_Bio = Th_Buty_Acetogen_Depl - Aceto_from_Butyrate 
Carbon_Dioxide(t) = Carbon_Dioxide(t - dt) + (ClostridiaLPath + Aerobic_Degrade + Other_C02_Prod - 
Meth_from_C02 - C02_Atm_Loss - C02_Meth_Bio) * dt 

INIT Carbon Dioxide = 0 

INFLOWS: 
Glu_C02_Clos_Cnv = 6*C02_MW/Glu_MW 
Glu_C02_Aero_Cnv = 6*C02_MW/Glu_MW 
Other_C02_Prod = C02_Prod 

OUTFLOWS: 
Meth_from_C02(o) = C02_Meth_Resp 
C02_Atm_Loss = C02_Exch 
C02_Meth_Bio = Th_C02_MethJDepl - Meth_from_C02 
Ethanol(t) = Ethanol(t - dt) + (Ethanol_Path + Other_Ferm_to_Eth - Aceto_from_Eth - Eth_to_Acet_Bio) * 
dt 

INIT Ethanol = 0 

INFLOWS: 
Glu_Eth_Cnv = 2*Ethanol_MW/Glu_MW 
Other_Ferm_to_Eth = Glu_Eth_Mx_Cnv*Mixed_Acid_Path + Glu_Eth_Lact2_Cnv*Lactate2_Path 

OUTFLOWS: 
Aceto_from_Eth(o) = Eth_Acetogen_Resp 
Eth_to_Acet_Bio = Th_Eth_Acetogen_Depl - Aceto_from_Eth 
Formate(t) = Formate(t - dt) + (Mixed_Acid_Path - Meth_from_Form - Form_Meth_Bio) * dt 

INIT Formate = 0 

INFLOWS: 
Glu_Form_Cnv = 60*Formate_MW/(100*Glu_MW) 
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OUTFLOWS: 
Meth_from_Form = Form_Meth_Resp 
Form_Meth_Bio = Th_Form_Meth_Depl - Meth_from_Form 
Glucose(t) = Glucose(t - dt) + (Aero_Hydr + Anaero_Hydro + Org_from_Bio - Butanol_Acetone_Path • 
Butyrate_Path - Lactatel_Path - Propionate_Path - EthanoLPath - Bifidum_Path - Mixed_Acid_Path - 
Clostridial_Path - Aerobic_Degrade - Lactate2_Path - Glu_to_Aero_Bio - Glu_to_Buty_Bio - 
Glu_to_Butanol_Bio - Glu_to_Lactate_l_Bio - Glu_to_Lactate_2_Bio - Glu_to_Prop_Bio - 
Glu_to_Clostr_Bio - Glu_to_Eth_Bio - Glu_to_Bif_Bio - Glu_to_Mixed_Bio - Acetate_Pathway - 
Glu_to_Acet_Bio) * dt 

INIT Glucose = 0 

INFLOWS: 
AeroJHydr = IF (Oxygen>0.05*INIT(Oxygen)) THEN 
Growth_Lag*Aero_Hyd_Rate*Org_Surface_Area*Surf_Area_Exp_FactorELSE 0 
Anaero_Hydro = IF (OxygenO. 1 *INIT(Oxygen)) THEN 
(Growth_Lag*An_Hyd_Rate*Org_Surface_Area)ELSE 
(Growth_Lag*An_Hyd_Rate*Org_Surface_Area*( 1 - Surf_Area_Exp_Factor)) 
Org_from_Bio = Total_Decay 

OUTFLOWS: 
Butanol_Acetone_Path(o) = Butnl_Acet_Resp 
Butyrate_Path(o) = Butyrate_Resp 
Lactatel_Path(o) = Lactate_l_Resp 

Propionate_Path(o) = Propionate_Resp 
Ethanol_Path(o) = Ethanol_Resp 
Bifidum_Path(o) = Bifidum_Resp 
Mixed_Acid_Path(o) = Mixed_Resp 
Clostridial_Path(o) = Clostridial_Resp 
Aerobic_Degrade(o) = Glu_Aero_Resp 
Lactate2_Path(o) = Lactate_2_Resp 
Glu_to_Aero_Bio = Th_Aero_Depl-Aerobic_Degrade 
Glu_to_Buty_Bio = Th_Butyrate_Depl - Butyrate_Path 
Glu_to_Butanol_Bio = Th_Butnl_Acet_Depl - Butanol_Acetone_Path 
Glu_to_Lactate_l_Bio = Th_Lactate_l_Depl - Lactatel_Path 
Glu_to_Lactate_2_Bio = Th_Lactate_2_Depl - Lactate2_Path 
Glu_to_Prop_Bio = Th_Propionate_Depl - Propionate_Path 
Glu_to_Clostr_Bio = Th_Clostridial_Depl - Clostridial_Path 
Glu_to_Eth_Bio = Th_Ethanol_Depl - EthanoLPath 
Glu_to_Bif_Bio = Th_Bifidum_Depl - Bifidum_Path 
Glu_to_Mixed_Bio = Th_Mixed_Depl - Mixed_Acid_Path 
Acetate_Pathway(o) = Acetate_Resp 
Glu_to_Acet_Bio = Th_Acetate_Depl - Acetate_Pathway 
Hl(t) = Hl(t - dt) + (Hl_from_Cloistr) * dt 

INIT HI =0 

INFLOWS: 
Hl_from_Cloistr = Hl_Cnv*Clostridial_Path 
Hydrogen(t) = Hydrogen(t - dt) + (Tot_H2_Prod - H2_Loss_to_Atm) * dt 

INIT Hydrogen = 0 
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INFLOWS: 
Tot_H2_Prod = H2_Prod 

OUTFLOWS: 
H2_Loss_to_Atm = H2_Exch 
Hydroxide(t) = Hydroxide(t - dt) + (OH_from_Hydr) * dt 

INIT Hydroxide = 0 

INFLOWS: 
OH_from_Hydr = Glu_OH_Cnv*Aero_Hydr 
H_Ion(t) = H_Ion(t - dt) + (Ion_Form) * dt 

INIT H_Ion = 0 

INFLOWS: 
Ion_Form = Prop_Ion_Cnv*Aceto_from_Prop + Buty_Ion_Cnv*Aceto_from_Butyrate 
Lactate(t) = Lactate(t - dt) + (Lactatel_Path + Lactate2_Path + Other_Ferm_to_Lact - Lact_to_Prop 
Lact_to_Prop_Bio) * dt 

INIT Lactate = 0 

INFLOWS: 
Glu_Lact_l_Cnv = 2*Lactate_MW/Glu_MW 
Glu_Lact_2_Cnv = 1 *Lactate_MW/Glu_MW 
Other_Ferm_to_Lact = Glu_Lact_Bif_Cnv*Bifidum_Path 

OUTFLOWS: 
Lact_to_Prop(o) = Lact_to_Prop_Resp 
Lact_to_Prop_Bio = Th_Lact_to_Prop_Depl - Lact_to_Prop 
Methane(t) = Methane(t - dt) + (Meth_from_Form + Meth_from_C02 + Meth_from_Acetate - 
CH4_Atm_Loss) * dt 

INIT Methane = 0 

INFLOWS: 
Meth_from_Form = Form_Meth_Resp 
C02_Meth_Cnv = 1 *CH4_MW/C02_MW 
Acet_Meth_Cnv = 1 *CH4_MW/Acetate_MW 

OUTFLOWS: 
CH4_Atm_Loss = CH4_Exch 
Proprionate(t) = Proprionate(t - dt) + (Propionate_Path + Lact_to_Prop + Mx_Prop_Prod - 
Aceto_from_Prop - Prop_Acetogen_Bio) * dt 

INIT Proprionate = 0 

INFLOWS: 
Glu_Prop_Cnv = 4*Propionate_MW/(3*Glu_MW) 
Lact_Prop_Cnv = 2*Propionate_MW/(3*Lactate_MW) 
Mx_Prop_Prod = Glu_Prop_Mx_Cnv*Mixed_Acid_Path 

OUTFLOWS: 

182 



Aceto_from_Prop(o) = Prop_Acetogen_Resp 
Prop_Acetogen_Bio = Th_Prop_Acetogen_Depl - Aceto_from_Prop 
Solid_Org_Waste(t) = Solid_Org_Waste(t - dt) + (- Anaerobic_Depletion - Aerobic_Hydr_Depl) * dt 
INIT Solid_Org_Waste = Org_Sphere_Number*Initial_Sphere_Vol*Org_Waste_Density 

OUTFLOWS: 
Anaerobic_Depletion = Anaero_Hydro - (H20_Glu_Anaero_Cnv*Anaero_Hydro) 
Aerobic_Hydr_Depl = Aero_Hydr + OH_from_Hydr - (02_Glu_Cnv*Aero_Hydr) - 
(H20_Glu_Aero_Cnv*Aero_Hydr) 
Aero_Hyd_Rate = 50 
An_Hyd_Rate = .7 
Growth_Lag = GRAPH(TIME) 
(0.00, 0.055), (5.00, 0.21), (10.0, 0.51), (15.0, 0.795), (20.0, 0.93), (25.0, 1.00), (30.0, 1.00), (35.0, 1.00), 
(40.0, 1.00), (45.0, 1.00), (50.0, 1.00) 

Temperature Sector 
Heat_Generated(t) = Heat_Generated(t - dt) + (Total_heat_gain - Heatjose) * dt 
INIT Heat_Generated = 0 

INFLOWS: 
Total_heat_gain = 
((Acetate_Pathway/(Glu_MW/1000))*Acetate_Heat)+((Bifidum_Path/(Glu_MW/1000))*Bifidium_Heat)+ 
((Butanol_Acetone_Path/(Glu_MW/1000))*Butanol_Heat)+((Butyrate_Path/(Glu_MW/1000))*Butyrate_ 
Heat)+((Clostridial_Path/(Glu_MW/1000))*ClostridialHeat)+((Ethanol_Path/(Glu_MW/1000))*Ethanol_H 
eat)+((Lactatel_Path/(Glu_MW/1000))*Lactate_Heat)+((Lactate2_Path/(Glu_MW/1000))*Lactate_Heat)+ 
((Mixed_Acid_Path/(Glu_MW/1000))*Mixed_Acid_Heat)+((Propionate_Path/(Glu_MW/1000))*Propiona 
teJHeat) 

OUTFLOWS: 
Heat_lose = Temp_Loss*Current_Mass*Specific_heat 
Temperature(t) = Temperature(t - dt) + (Tempjncrease - Temp_Loss) * dt 

INIT Temperature = 25 

INFLOWS: 
Tempjncrease = Total_heat_gain/(Specific_heat*Current_Mass) 

OUTFLOWS: 
TempJLoss = Temp_Differential*TC 
Acetate_Heat = Heat_Constant 
Bifidium_Heat = Heat_Constant 
Butanol_Heat = Heat_Constant 
Butyrate_Heat = Heat_Constant 
b_Height_Acidogen = 5 
b_Heigth_Meth = 3 
ClostridialHeat = Heat_Constant 
Decay_Steepness_Acidogen = 6 
Decay_Steepness_Meth = 5 
Ethanol_Heat = Heat_Constant 
Heat_Constant = 30 
KdMeth = LOGN( 1 /1 +exp((Temperature-Tcritical_Meth)/Decay_Steepness_Meth)) 
kd_Acidog = LOGN(l/l+exp((Temperature-Tcrtical_Acidogen)/Decay_Steepness_Acidogen)) 

183 



Lactate_Heat = Heat_Constant 
Mixed_Acid_Heat = Heat_Constant 
PropionateJHeat = Heat_Constant 
Specific_heat = .6 
TC = .001 
Tcritical_Meth = 60 
Tcrtical_Acidogen = 46 
Temp_Differential = (Temperature-Soil_Temp) 
Temp_Span_Acidogen = 30 
Temp_Span_Meth = 12 
Tpeak_Acidogen = 25 
Tpeak_Meth = 40 
Umax_k_Acido = LOGN((l+b_Height_Acidogen*exp(-l*((Temperature- 
Tpeak_Acidogen)/Temp_Span_Acidogen)A2))) 
Umax_k_Meth = LOGN(l+b_Heigth_Meth*exp 
(-1 *((Temperature-Tpeak_Meth)/Temp_Span_Meth)A2)) 
SoiLTemp = GRAPH(TIME) 
(0.00, 7.00), (30.0, 11.0), (60.0, 19.5), (90.0, 16.8), (120, 12.8), (150, 14.8), (180, 19.8), (210, 18.0), (240, 
12.1), (270,4.50), (300, 2.10) 

Total Biomass Decay 
Total_Decay = 
Bifidum_Decay+Acet_Meth_Decay+Aerobic_Decay+Butyrate_Decay+Buty_Acetogen_Decay+Butnl_Ace 
t_Decay+Clostridial_Decay+C02_Meth_Decay+Ethanol_Decay+Eth_Acetogen_Decay+Form_Meth_Dec 
ay+Lactate_l_Decay+Lactate_2_Decay+Lact_to_Prop_Decay+Mixed_Decay+Propionate_Decay+Prop_A 
cetogen_Decay+Acetate_Decay 

Total Mass Sector 
Current_Mass = 
Acetate+Bifidum_Biomass+Acetate_Meth_Biomass+Acetone+Aerobic_Biomass+BiCarbonate+Butanol+ 
Butyrate+Butyrate_Acetogen_Biomass+Butyrate_Biomass+Butnl_Acet_Biomass+Carbon_Dioxide+Clostr 
idial3iomass+C02_Meth_Biornass+Ethanol+Ethanol_Biomass+Eth_Acetogen_Biomass+Formate+Form 
_Meth_Biomass+Glucose+Hl+Hydrogen+Hydroxide+H_Ion+Lactate+Lactate_l_Biomass+Lactate_2_Bio 
mass+Lact_to_Prop_Biomass+Methane+Mixed_Biomass+Oxygen+Propionate_Biomass+Proprionate+Pro 
p_Acetogen_Biomass+Solid_Org_Waste+Water 

InitiaLMass = INIT(Solid_Org_Waste) + INIT(Water) + INIT(Oxygen) 
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